next up previous
Next: About this document Up: Domain decomposition for the Previous: Conclusions

References

1
O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning methods. Numerische Mathematik, 48:479--498, 1986.

2
M.J. Berger. On conservation at grid interfaces. SIAM Journal of Numerical Analysis, 24:967--984, 1987.

3
P. Bjørstad and M.D. Skogen. Domain decomposition algorithms of Schwarz type, designed for massively parallel computers. Report in informatics 54, Department of Informatics, University of Bergen, Bergen, 1991.

4
P. Bjørstad and M.D. Skogen. Domain decomposition algorithms of Schwarz type, designed for massively parallel computers. In David E. Keyes, Tony F. Chan, Gérard Meurant, Jeffrey S. Scroggs, and Robert G. Voigt, editors, Proc. of the Fifth International Symposium on Domain Decomposition methods for Partial Differential Equations, pages 362--375, SIAM, Philadelphia, 1992.

5
P.E. Bjørstad and O.B. Widlund. Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM Journal of Numerical Analysis, 23:1097--1120, 1986.

6
Christoph Börgers. The Neumann-Dirichlet domain decomposition method with inexact solvers on the subdomains. Numer. Math., 55:123--136, 1989.

7
E. Brakkee and A. Segal. A parallel domain decomposition algorithm for the incompressible Navier-Stokes equations. In L. Dekker, W. Smit, and J.C. Zuidervaart, editors, Massively Parallel Processing Applications and Development, pages 743--752, Elsevier, Amsterdam, 1994.

8
E. Brakkee, A. Segal, and C.G.M. Kassels. A parallel domain decomposition algorithm for the incompressible Navier-Stokes equations. To appear in Journal of Simulation Practice and Theory.

9
E. Brakkee, C. Vuik, and P. Wesseling. An investigation of Schwarz domain decomposition using accurate and inaccurate solution of subdomains. Report 95-18, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, 1995. Available from anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1995/DUT-TWI-95-18.ps .gz, Submitted to Numerical Linear Algebra with Applications.

10
Erik Brakkee and Piet Wesseling. Schwarz domain decomposition for the incompresssible Navier-Stokes equations in general coordinates. Report 94-84, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, 1994. Available from anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-84.ps .gz.

11
Erik Brakkee and Peter Wilders. A domain decomposition method for the advection-diffusion equation. Report 94-08, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, 1994. Available from anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-08.ps .gz.

12
J.H. Bramble, J.E. Pasciak, and A.H. Schatz. The construction of preconditioners for elliptic problems by substructuring I. Math. Comp., 47:103--134, 1986.

13
Xiao-Chuan Cai, William D. Gropp, and David E. Keyes. A comparison of some domain decomposition and ILU preconditioned iterative methods for nonsymmetric elliptic problems. Numerical Linear Algebra with Applications, 1, 1994.

14
Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund, editors. Proc. of the Second International Symposium on Domain Decomposition methods, SIAM, Philadelphia, 1989.

15
Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund, editors. Proc. of the Third International Symposium on Domain Decomposition methods for Partial Differential Equations, SIAM, Philadelphia, 1990.

16
A.J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745--762, 1968.

17
C.W.Oosterlee and P.Wesseling. A multigrid method for an invariant formulation of the incompressible Navier-Stokes equations in general coordinates. Comm. Applied Num. Methods, 8:721--725, 1992.

18
E. de Sturler and D.R. Fokkema. Nested Krylov methods and preserving the orthogonality. In N. Duane Melson, T.A. Manteuffel, and S.F. McCormick, editors, Sixth Copper Mountain Conference on Multigrid Methods, Nasa Conference Publication 3224, Part I, pages 111--125, Nasa Langley Research Center, Hampton, VA, USA, 1993.

19
Eric de Sturler. IBLU preconditioners for massively parallel computers. In D. E. Keyes and J. Xu, editors, Domain Decomposition Methods in Science and Engineering (Proceedings of the Seventh International Conference on Domain Decomposition, October 27--30, 1993, The Pennsylvania State University). American Mathematical Society. Providence, USA, 1995.

20
H.A. Van der Vorst. Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from pde-problems. J. Comput. Phys., 44:1--19, 1981.

21
Radicati di Brozolo and Y. Robert. Parallel conjugate gradient like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor. Parallel Computing, 11:223--239, 1989.

22
Maksymillian Dryja and Olof B. Widlund. Some recent results on Schwarz type domain decomposition algorithms. In A. Quarteroni, J. Periaux, Yu.A. Kuznetsov, and O.B. Widlund, editors, Proc. of the Sixth International Symposium on Domain Decomposition methods in Science and Engineering, pages 53--61, AMS, Providence, 1992.

23
S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods for nonsymmetric systems of linear equations. SIAM Journal of Numerical Analysis, 20:345--357, 1983.

24
R. Glowinski, G.H. Golub, G.A. Meurant, and J. Périaux, editors. First International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1988.

25
Roland Glowinski, Yuri A. Kuznetsov, Gérard Meurant, Jacques Périaux, and Olof B. Widlund, editors. Proc. of the Fourth International Symposium on Domain Decomposition methods for Partial Differential Equations, SIAM, Philadelphia, 1991.

26
William D. Gropp and Barry F. Smith. Experiences with domain decomposition in three dimensions: Overlapping Schwarz methods. In A. Quarteroni, J. Periaux, Yu.A. Kuznetsov, and O.B. Widlund, editors, Proc. of the Sixth International Symposium on Domain Decomposition methods in Science and Engineering, pages 323--333, AMS, Providence, 1992.

27
I. Gustafsson. A class of first order factorization methods. BIT, 18:142--156, 1978.

28
D. Hall. Measurements of the mean force on a particle near a boundary in turbulent flow. J. Fluid Mechanics, 187:451--466, 1988.

29
F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. The Physics of Fluids, 8:2182--2189, 1965.

30
W.D. Henshaw and G. Chesshire. Multigrid on composite meshes. SIAM J. Sci. Stat. Comp., 8:914--923, 1987.

31
C.P. Jackson and P.C. Robinson. A numerical study of various algorithms related to the preconditioned conjugate gradient method. Internal Journal for Numerical Methods in Engineering, 21:1315--1338, 1985.

32
Wang Jin-xiau. The parallel block preconditioned conjugate gradient algorithms. In David E. Keyes, Tony F. Chan, Gérard Meurant, Jeffrey S. Scroggs, and Robert G. Voigt, editors, Proc. of the Fifth International Symposium on Domain Decomposition methods for Partial Differential Equations, pages 339--345, SIAM, Philadelphia, 1992.

33
David E. Keyes, Tony F. Chan, Gérard Meurant, Jeffrey S. Scroggs, and Robert G. Voigt, editors. Proc. of the Fifth International Symposium on Domain Decomposition methods for Partial Differential Equations, SIAM, Philadelphia, 1992.

34
P.L. Lions. On the Schwarz alternating method, I. In R. Glowinski, G.H. Golub, G.A. Meurant, and J. Périaux, editors, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 1--42, SIAM, Philadelphia, 1988.

35
Jan Mandel and Steve McCormick. Iterative solution of elliptic equations with refinement: The two-level case. In Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund, editors, Proc. of the Second International Symposium on Domain Decomposition methods, pages 81--92, SIAM, Philadelphia, 1989.

36
J.A. Meijerink and H.A. Van der Vorst. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148--162, 1977.

37
A. M. Mollinger. Particle entrainment: Measuring the fluctuating lift force. PhD dissertation, Delft University of Technology, 1994.

38
A.E. Mynett, P. Wesseling, A. Segal, and C.G.M. Kassels. The ISNaS incompressible Navier-Stokes solver: invariant discretization. Applied Scientific Research, 48:175--191, 1991.

39
C.W. Oosterlee, P. Wesseling, A. Segal, and E. Brakkee. Benchmark solutions for the incompressible Navier-Stokes equations in general coordinates on staggered grids. International Journal for Numerical Methods in Fluids, 17:301--321, 1993.

40
Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat. Comp., 14:461--469, 1993.

41
Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856--869, 1986.

42
H.A. Schwarz. Über einige Abbildungsaufgaben. Journal für Reine und Angewandte Mathematik, 70:105--120, 1869.

43
A. Segal, P. Wesseling, J.J.I.M. Van Kan, C.W. Oosterlee, and C.G.M. Kassels. Invariant discretization of the incompressible Navier-Stokes equations in boundary fitted coordinates. International Journal for Numerical Methods in Fluids, 15:411--426, 1992.

44
John C. Strikwerda and Carl D. Scarbnick. A domain decomposition method for incompressible flow. SIAM J. Sci. Comput., 14:49--67, 1993.

45
Wei Pai Tang. Generalized Schwarz splittings. SIAM J. Sci. Stat. Comput., 13:573--595, 1992.

46
H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numerical Linear Algebra with Applications, 1(4), 1994.

47
J.J.I.M. Van Kan. A second-order accurate pressure correction method for viscous incompressible flow. SIAM J. Sci. Stat. Comp., 7:870--891, 1986.

48
C. Vuik. Fast iterative solvers for the discretized incompressible Navier-Stokes equations. Reports of the Faculty of Technical Mathematics and Informatics 93--98, Delft University of Technology, Delft, 1993. Available from anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1993/DUT-TWI-93-98.ps .gz. To appear in Int. J. Num. Meth. in Fluids.

49
C. Vuik. New insights in GMRES-like methods with variable preconditioners. Reports of the Faculty of Technical Mathematics and Informatics 93--10, Delft University of Technology, Delft, 1993. Available from anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1993/DUT-TWI-93-10.ps .gz.

50
C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with the GMRES method. International Journal for Numerical Methods in Fluids, 16:507--523, 1993.

51
P. Wesseling, A. Segal, J. van Kan, C.W. Oosterlee, and C.G.M. Kassels. Invariant discretization of the incompressible Navier-Stokes equations in general coordinates on staggered grids. Comput. Fluids Dyn. J., 1:27--33, 1992.

52
O.B. Widlund. Some Schwarz methods for symmetric and nonsymmetric elliptic problems. In David E. Keyes, Tony F. Chan, Gérard Meurant, Jeffrey S. Scroggs, and Robert G. Voigt, editors, Proc. of the Fifth International Symposium on Domain Decomposition methods for Partial Differential Equations, SIAM, Philadelphia, 1992.

53
J.A. Wright and W. Shyy. A pressure-based composite grid method for the Navier-Stokes equations. Journal of Computational Physics, 107:225--238, 1993.

54
M. Zijlema, A. Segal, and P. Wesseling. Finite volume computation of incompressible turbulent flows in general coordinates on staggered grids. Int. J. of Num. Meth. in Fluids, 20:621--640, 1995.

55
M. Zijlema, A. Segal, and P. Wesseling. Invariant discretization of the k- model in general coordinates for prediction of turbulent flows in complicated geometries. Computers and Fluids, 24:209--225, 1995.



ISNaS ontwikkeling
Thu Jun 1 11:07:52 METDST 1995