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Chapter 1

Introduction

The information about the Deft Navier-Stokes solver is distributed over three
different documents. This User Manual contains all information needed to run
the program for an arbitrary problem on a given grid. The Deft Programmers
Guide [40] explains the internals of the program and discusses program installa-
tion and maintenance. The Mathematical Manual [38] discusses the mathemat-
ical details and the discretization. The user manual deals with these subjects
only insofar as they are relevant to the program options.
In addition to the above mentioned documents you may need the manuals of
your chosen grid generator and display program. At the moment the following
pre- and postprocessing packages are supported:

- SEPRAN 2D and 3D grid generation [39]

- LISS 2D grid generation [3]

- SEPRAN 2D and 3D postprocessing [39]

Please note that this manual describes the Unix version of Deft and SEPRAN,
other implementations may behave differently.

1.1 Purpose and motivation

The purpose of the program is the solution of the 2D and 3D Navier-Stokes
equations (incompressible or incompressible) coupled with an arbitrary number
of convection-diffusion equations (also known as transport equations) on fairly
general grids by the boundary fitted finite volume method. The main goal is
to solve these equations in an accurate and fast way. During code development
emphasis was placed on speed of execution on vector and parallel computers.
This resulted in a restriction on the way in which the region can be decomposed
into blocks. Only blocks that are topologically equivalent to a a rectangle or a
cube are allowed. More specifically, each block must be simply connected (no
holes) and preferably have at least four corners in R2 and eight in R3. Some
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examples of single block grids are shown in Figure 1.1.1; Figure 1.1.2 shows an
example of a grid consisting of four single blocks.
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 p3    p4   

 c1   

 c2   

 c3   

 c4   

 

 p1    p2    p3   
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 p9    p19    p20    p21   

 c1    c2   
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 c4   

 c5   

 c6   

 c7   

 c8    c9    c10   

 c11   

 

Figure 1.1.1: Two possible single block grids

Note that, for computations, blocks are actually mapped onto rectangles or their
3D equivalents.

1.2 Limitations

The program can deal with the Navier-Stokes equations, coupled with a number
of transport equations or alternatively a set of convection diffusion equations
for a given velocity field.
The region must be such that it can be subdivided into a number of blocks, each
of which can be mapped onto a rectangle or a cube. The grid on the rectangle
or cube must be rectangular. In the original region, the grids are allowed to be
curvilinear.
Here is the current state of the package. Concerning the 2-D method, three
discretizations are available: the standard staggered scheme based on a total

6



transformation of the equations and accurate on smooth grids only, the Wessel-
ing and Van Beek [48] staggered scheme accurate on non-smooth grids also and
the Wesseling and Van Beek collocated scheme, which is currently used only
to compute incompressible laminar flows. Note that the staggered approach
follows a coupled treatment of the momentum equation whereas the collocated
approach follows a decoupled treatment of it. Concerning the 3-D method, two
discretizations are available: the standard staggered scheme and the Wesseling
and Van Beek staggered scheme. The mapping of the domain onto a rectangle
or cube divides the boundary of the domain into parts that correspond to the
sides of that rectangle or cube.
While the coefficients may depend on time, place and the solution of the system
of equations, the solution used to compute them is always the ”old” solution.
i.e. the solution obtained in the last time step.
The solution procedure per time step is always an iterative one and the equations
are decoupled, i.e. first the momentum equations are solved with a pressure cor-
rection step, and then each of the transport equations is dealt with.
Always remember that the mesh should be such that a piecewise linear interpo-
lation on the mesh contains all aspects of both the solution and the boundary
conditions.

1.3 Hardware and software requirements

The program needs at least 4Mb of memory and 20Mb of hard disk space to
run. Run time depends on problem size and complexity.
To add user-defined functions to the program, a fortran 77 compiler and a linker
are needed. On a Unix system the standard fortran 77 compiler and linker may
be used.
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Figure 1.1.2: Grid consisting of four single blocks
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Chapter 2

Theory

In this chapter we shall give an overview of the equations that can be solved
by the Deft program for compressible and incompressible flow. The boundary
conditions allowed will be specified as well as the available turbulence models.
Mathematical details, in so far they are not necessary for the user, will not be
treated. We refer to the Mathematical Manual [38] for a complete description.
However, if the user has the opportunity to choose between various possibilities
the consequences will be indicated in this chapter.

2.1 Physics

In this section we formulate the equations for compressible and incompressible
viscous fluid flow as they are solved by Deft. The user definable parameters will
be indicated.
The Deft incompressible program has been developed to solve the momentum
equations in combination with the incompressibility condition. In the compress-
ible case of course there is no incompressibility condition, but the same types of
methods are applied. The flow may be laminar or turbulent. Both stationary
and time-dependent flows are allowed.
The momentum equations may be coupled with an arbitrary number of trans-
port equations (convection-diffusion equations). Hence, flows with heat transfer
are included. Since it is possible to skip the momentum equations, in fact Deft
may also be used to solve stand-alone convection-diffusion equations. Either the
convection or the diffusion term may be set equal to zero.

2.1.1 Momentum equations

The two basic equations that describe an incompressible viscous fluid are: the
continuity equation (2.1) and the Navier-Stokes equation (2.2) for an incom-
pressible fluid.

∂ui

∂xi
= 0 (2.1)
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∂ρui

∂t
+

∂ρuiuj

∂xj
+

∂p

∂xi
− ∂τij

∂xj
= ρfi (2.2)

where τ is the deviatoric stress tensor, defined as

τij = µ(
∂uj

∂xi
+

∂ui

∂xj
) (2.3)

Here, we have used the assumption Dρ/Dt = 0 (total derivative of ρ is zero).
We use the Einstein summation convention, i.e. if an index occurs twice in a
term, a summation over that index is implied. Summations run from 1 to the
dimension of the space in which we work. If an index occurs once, the equation
represents a set of equations, one for each space dimension.
In the above formulae ρ is the density of the fluid, u is the velocity field, p the
pressure and x are the space co-ordinates. The coefficient µ represents the dy-
namical viscosity. fi represents the ith component of some external force given
in Cartesian co-ordinates.
The coefficients ρ, µ and fi may all depend on space, time and of all the un-
knowns (u, p, T ... ).

The stress tensor has the form:

σij = τij − pδij (2.4)

If the viscosity µ is zero, these equations are known as the Euler equations.

The compressible Navier-Stokes equations read:

∂ρ

∂t
+

∂ρui

∂xi
= 0 (2.5)

∂ρui

∂t
+

∂ρuiuj

∂xj
+

∂p

∂xi
− ∂τij

∂xj
= ρfi (2.6)

These equations must be extended with an equation of state (See Section 2.1.8)
and an extra energy equation, usually the enthalpy equation (See Section 2.1.9).

The deviatoric stress tensor for the compressible equations contains an extra
term, compared to the incompressible case:

τij = µ(
∂uj

∂xi
+

∂ui

∂xj
)− 2

3
µδij

∂uk

∂xk
, (2.7)

where δij is the Kronecker delta.

2.1.2 Boundary conditions for the momentum equations

In order to solve the momentum equations uniquely it is necessary to prescribe
boundary conditions at the complete outer boundary of the domain. In R2

exactly two boundary conditions for the velocity in two independent directions
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are necessary, in R3 exactly three boundary conditions are required. The types
of boundary conditions may vary for each part of the boundary.
A boundary condition of the form p is given is ill-posed, but there may be
boundary conditions that involve the pressure, for instance σnn given. Whenever
un is given, however, no other boundary condition may involve the pressure.

The following types of boundary conditions for the velocity are available in
Deft, for a staggered arrangement of unknowns. For the collocated scheme,
only Dirichlet boundary conditions are available at this moment.

Dirichlet boundary conditions These boundary conditions indicate that the
complete velocity at a part of the boundary is prescribed. Typical exam-
ples are the no-slip boundary conditions u = 0 and the fully developed
inflow conditions, where the tangential velocity is zero and the normal
velocity is parabolic.
In Deft the Dirichlet boundary conditions may be prescribed by giving
noslip, inflow or explicitly giving the normal and tangential velocities or
the Cartesian components.

Stresses prescribed A completely different possibility is to prescribe the nor-
mal (σnn) and tangential (σnt) stress components at a boundary.
Since the normal stress is equal to −p + 2µ∂un

∂n and in practical problems
either µ, or the normal derivative of the normal velocity at boundary is
small, prescribing the normal stress is more or less the same as prescribing
the pressure.
A special case is the so-called outflow boundary condition which is defined
as σnn = 0 and σnt = 0.

Normal velocity and tangential stress given This boundary condition is
typical for free surface boundaries where we have un = 0 and σnt = 0
(tangential stress). This boundary condition is also indicated as free slip
boundary condition.

Tangential velocity and normal stress given This boundary condition will
for example be used at outflow. A typical example is parallel outflow
which means ut = 0 and σnn = 0 or approximately p = 0.

Given pressure In the case of viscous flow the pressure can not be prescribed
explicitly, but only by prescribing the normal stress. See ”Tangential
velocity and normal stress given”.
In the case of the Euler equations one can not speak about stress boundary
conditions. However, also in this case the pressure is prescribed by giving
the normal stress. So for this special case the user must read ”Tangential
velocity and normal stress given” as ”pressure given”. The value of the
pressure must be substituted as normal stress.

Law of the wall This wall law typically occurs in turbulent flow. It is used
instead of a no-slip condition at a fixed wall, when a ”high-Reynolds num-
ber” turbulence model is applied as explained in Section 2.1.5. The reason
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to do this is to bridge the viscous sub-layer so that the number of cells in
the neighbourhood of the fixed wall may be decreased considerably com-
pared to a classical no-slip boundary condition. Hence the computation
time will be strongly reduced. A disadvantage of this approach is that the
law of the wall is only accurate in special situations.
With the log-law-based wall law a turbulent shear stress tangent to the
wall τw is computed depending on smoothness or roughness of the bound-
ary. The user defines only the roughness or smoothness. A free slip type
boundary condition will be used in the following way: un = 0 and σnt = τw

In Section 2.1.6 more information about the wall functions can be found.

2.1.3 Convection-diffusion or transport equations

In addition to the momentum and continuity equations given above, the program
can solve several transport equations of the form

∂c∗T
∂t

+
∂c∗ujT

∂xj
− ∂

∂xj
κij

∂T

∂xi
+ DT = f∗ (2.8)

It is possible to skip the momentum equations in which case only the transport
equations are solved. Hence Deft is also able to solve a stand-alone convection-
diffusion equation or even a pure convection or pure diffusion equation.
The coefficients c∗, κij , D and f∗ may depend on all dependent and independent
variables.
For example, we consider the incompressible flow with heat transfer. The energy
equation is thus given by

∂ρcpT

∂t
+

∂ρcpujT

∂xj
− ∂

∂xj
(λT +

cpµt

σT
)
∂T

∂xi
= ST (2.9)

Here T is the temperature, cp is the specific heat capacity at constant pressure,
λT is the laminar thermal conductivity, µt is the turbulent viscosity specified by
a two-equation turbulence model (see Section 2.1.5), σT is the turbulent Prandtl
number as being of the order of 1, and ST represents energy sources or sinks.
In our applications we take σT = 2.

2.1.4 Boundary conditions for the transport equations

The following types of boundary conditions for the scalar T are available in
Deft:

Dirichlet boundary condition: This boundary condition means that the un-
known T is prescribed at a part of the boundary.

Neumann boundary condition: This boundary condition has the form:

κijni
∂T

∂xj
= h, (2.10)

with h given and ni the ith component of the outward normal.
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Mixed or Robbins boundary condition: This boundary condition has the
form:

gT + κijni
∂T

∂xj
= h, (2.11)

with g and h given.

Thermal boundary conditions may be specified in terms of temperature or heat
flux.

2.1.5 Turbulence models

In modeling the flow a turbulence model may be used if this seems appropriate.
Turbulence modeling capabilities are primarily based on two-equation eddy-
viscosity models. These models are based on approximate constitutive laws
which predict the unknown Reynolds stress tensor ρu′

iu
′
j that appears in the

Reynolds-averaged Navier-Stokes equations (2.2), as follows

τij = µ(
∂ui

∂xj
+

∂uj

∂xi
)− ρu′

iu
′
j (2.12)

Through the introduction of an eddy-viscosity µt these models relate the Reynolds
stresses to mean flow variables and to the turbulent velocity and length scales.
Based on series-expansion arguments, a general relationship between stresses
and mean strains can be written as

− ρu′
iu

′
j = −2

3
ρkδij + 2µtsij − 4µ2

t

ρcµk
[cτ1(sikskj − 1

3
sklsklδij)

+cτ2(ωikskj + ωjkski) + cτ3(ωikωjk − 1
3
ωklωklδij)] (2.13)

where k is the turbulent kinetic energy, sij and ωij are the mean rate of strain
and rotation tensors, viz.,

sij =
1
2
(
∂ui

∂xj
+

∂uj

∂xi
), ωij =

1
2
(
∂ui

∂xj
− ∂uj

∂xi
) (2.14)

Both k and µt are predicted from the solution of two semi-empirical transport
equations for two turbulence quantities to be presented later. Note that the
constitutive relation (2.13) includes terms up to quadratic order in the velocity
gradient. The common approach is to determine the closure coefficients cµ, cτ1,
cτ2 and cτ3 so that agreement is achieved with a simple shear flow and with one
other difficult class of flow. Several researchers have proposed anisotropic eddy-
viscosity formulations, which can be cast into (2.13). These are summarized in
Table 2.1.1.
The turbulent viscosity µt must be specified by the two-equation model. At the
moment four types of two-equation models are dealt with: the standard k − ε
model [24], the RNG based k − ε model [64], the extended k − ε model [9] and
the Wilcox’s k-ω model [63]. All these models use transport equations for both
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Model cµ cτ1 cτ2 cτ3 Approach
Boussinesq 0.09 0 0 0 Analog of Stokes’ vis-

cosity law (isotropic) [23]
Speziale 0.09 0.1512 0.1512 0 Asymptotic expansion

DIA
Yoshizawa technique [46]
Rubinstein- 0.085 0.68 0.14 -0.56 RNG theory of Yakhot
Barton and Orszag [35]
Nisizima- 0.09 -0.7881 0.1769 1.0675 Kraichnan’s DIA
Yoshizawa technique [29]
Myong- 0.09 0.275 0.2375 0.05 Relation from processes
Kasagi in high-Re k-budget [28]

Table 2.1.1: Numerical values of closure constants in stress-strain relation.

k and ε or ω, as follows

k-ε type model

µt = ρcµ
k2

ε
(2.15)

∂ρk

∂t
+

∂

∂xj
(ρujk)− ∂

∂xj
(µ +

µt

σk
)

∂k

∂xj
= Pk − ρε (2.16)

∂ρε

∂t
+

∂

∂xj
(ρujε)− ∂

∂xj
(µ +

µt

σε
)

∂ε

∂xj
=

ε

k
(cε1Pk − cε2ρε) (2.17)

Wilcox’s k-ω model
µt = ρ

k

ω
(2.18)

∂ρk

∂t
+

∂

∂xj
(ρujk)− ∂

∂xj
(µ + σ∗µt)

∂k

∂xj
= Pk − β∗ρkω (2.19)

∂ρω

∂t
+

∂

∂xj
(ρujω)− ∂

∂xj
(µ + σµt)

∂ω

∂xj
=

ω

k
(αPk − βρkω) (2.20)

Here ε stands for the dissipation rate of turbulent energy, ω is the ratio of dis-
sipation to turbulent energy (≡ ε/k) and Pk is the production rate of turbulent
energy given by

Pk = −ρu′
iu

′
j

∂ui

∂xj
(2.21)

Using the Boussinesq eddy-viscosity approximation, we obtain

Pk = µtS
2 (2.22)

where S = (2sijsij)
1
2 is the magnitude of the mean rate of strain. In a stagna-

tion flow, the very high levels of S produce excessive levels of turbulent energy
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whereas deformation near stagnation point is nearly irrotational. Defining the
magnitude of the mean rotation as Ω = (2ωijωij)

1
2 and replacing (2.22) by

Pk = µtSΩ (2.23)

leads to a marked reduction in energy production near the stagnation point,
while having no effect in a simple shear flow [20]. In [8] a hybrid form is proposed
in which (2.22) and Kato-Launder correction (2.23) are averaged:

Pk = µtS((1− α)S + αΩ) (2.24)

with 0 ≤ α ≤ 1 a weight factor. This hybrid model is particularly used for
stagnation flows. In that case the weight factor is chosen to be α = 0.85, as
recommended by [8].

The models contain some closure constants which are given as follows:

the standard k-ε model

cµ = 0.09, cε1 = 1.44, cε2 = 1.92, σk = 1.0, σε = 1.3 (2.25)

the RNG k-ε model

cµ = 0.085, cε1 = 1.42−η(1− η/η0)
1 + γη3

, cε2 = 1.68, σk = 0.7179, σε = 0.7179

(2.26)
the extended k-ε model

cµ = 0.09, cε1 = 1.35+cε3cµη2, cε2 = 1.9, cε3 = 0.05, σk = 0.75, σε = 1.15
(2.27)

the k-ω model

α =
5
9
, β =

3
40

, β∗ =
9

100
, σ =

1
2
, σ∗ =

1
2

(2.28)

with
η =

Sk

ε
, η0 = 4.38 and γ = 0.012 (2.29)

The extended model in Deft employs slightly revised values for coefficients cε1

and cε3. Chen and Kim [9] recommended cε1 = 1.15 and cε3 = 0.25 which
produce significantly wrong solutions over a wide range of flows. In [17], it was
reported that this model give consistently better results, when cε1 = 1.35 and
cε3 = 0.05.
The treatment of the wall is a crucial point when calculating turbulent flows.
For most applications the use of wall functions is sufficient for reproducing
the impact of the wall on the flow. This will be described in Section 2.1.6.
Nevertheless, some flow problems need a more accurate treatment, especially
when heat or mass transfer is involved. In such cases, viscous effects must
be accurately represented, and Section 2.1.7 will discuss commonly used low-
Reynolds-number corrections.
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2.1.6 Wall function method

Near a solid wall, wall functions use empirical laws, to circumvent the inability
of the k-ε model to predict a logarithmic velocity profile near a wall [24]. An
important advantage of wall functions is that they allow inclusion of empirical
information for special cases, such as, for example, wall roughness. For a rough
wall, the wall shear stress τw is computed as follows:

τw =
ρc

1/4
µ κ
√

kP

ln(ErYP/hR)
u · tP if h+

R ≡
ρc

1/4
µ

√
kPhR

µ
> 11.6. (2.30)

The subscript P denotes the grid point in the center of the wall-adjacent control
volumes, which is assumed to be located in the log-law region, Y is the distance
perpendicular to the wall, hR denotes the average height of roughness elements,
u · t is the tangential velocity along the wall, κ is the Von Kármán constant
(approximately equal to 0.4) and Er is a roughness parameter. For a very
rough wall Er should be approximately 30, as recommended by Schlichting [37].
For h+

R < 11.6 the wall is considered to be smooth. In that case, wall functions
for a smooth wall, as explained in [24], can be employed:

τw =
ρc

1/4
µ κ
√

kP

ln(EY +
P )

u · tP with Y +
P =

ρc
1/4
µ YP

√
kP

µ
and E = 9.0. (2.31)

The location of the cell center away from the wall must be such that Y +
P > 11.6

for the wall law (2.31) to be valid. Otherwise, it is calculated from the viscous
sublayer profile:

τw =
µ

YP

u · tP (2.32)

The rapid variation of turbulence quantities also necessitates special mea-
sures in evaluating the production and dissipation rates of turbulent kinetic
energy near the wall. The average production and dissipation rates used in the
near-wall cells have the following form:

P k = τw
u · tP

YP

, (2.33)

ε =




c
3/4
µ k

3/2
P

Y +
P

YP
, Y +

P < 11.6 and h+
R < 11.6

c
3/4
µ k

3/2
P

ln(EY +
P )

κYP
, Y +

P > 11.6 and h+
R < 11.6

c
3/4
µ k

3/2
P

ln(ErYP/hR)
κYP

, h+
R > 11.6.

(2.34)

These expressions replace Pk and ε, respectively, which are source terms in the
standard form of the equation for turbulent energy (2.16). Finally, the flux of
turbulent energy through the wall is set to zero and the value of ε at the first
grid point away from the wall is determined from

εP =
c
3/4
µ k

3/2
P

κYP

. (2.35)
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Wall functions provide also the means of modeling the near-wall region for the
temperature. The heat flux q at smooth walls is computed as follows ([24]):

qw =
ρcpc

1/4
µ κ
√

kP

σT ln(EY +
P )

(TP − Tw) if Y +
P > 11.6 (2.36)

Here Tw is the temperature at the wall. In the viscous sublayer, we have

qw = −λT nj
∂T

∂xj
≈ λT

TP − Tw

YP

(2.37)

2.1.7 Low-Reynolds-number modeling

Thus far, the turbulence models we have considered are restricted to high-
Reynolds number applications, except the Wilcox’s k-ω model. This means
that they cannot be applied in the near-wall viscous-dominated regions. Many
researchers have attempted to devise viscous corrections for the k-ε model to
permit its integration through the viscous sublayer [34]. It is well known that
a low-Reynolds-number approach imposes a very fine mesh normal to the wall,
which can be prohibitive when dealing with large 3D applications.

When the low-Reynolds-number k-ε model is used the values of the closure
constants cµ, cε1, cε2, σk and σε remain the same and the viscous damping
functions are introduced into the constants, as follows:

cµ ← fµcµ, cε1 ← f1cε1, cε2 ← f2cε2 (2.38)

The damping functions are chosen according to the model proposed by Lam and
Bremhorst [22]:

fµ = (1 − e−0.0165Ry)2 (1 +
20.5
ReT

) (2.39)

f1 = 1 + (
0.05
fµ

)3 (2.40)

f2 = 1− e−Re2
T (2.41)

with

Ry =
ρ
√

kY

µ
, ReT =

ρk2

εµ
(2.42)

the local and turbulent Reynolds numbers, respectively. Boundary conditions
for the momentum, k and ε equations are u = 0, k = 0 and nj∂ε/∂xj = 0,
respectively.

In the case of k-ω model, standard boundary conditions must be employed at
a solid wall, i.e. for the momentum equations noslip conditions are imposed on
the boundary, whereas for turbulent energy k a homogeneous Dirichlet condition
holds (in order to avoid non-positive values of k, k = 10−8 may be taken as
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boundary condition on the wall). Due to the singular behaviour of ω at the
wall, a special boundary condition for ω must be used, which is given by

ω =
Nων

Y 2
P

, Y +
P < 5.0, (2.43)

where

Nω =




6/β, without viscous corrections

2/β∗, with viscous corrections.
(2.44)

Even without viscous corrections the k-ω model correctly calculates the law-of-
the-wall. Viscous corrections are needed in this model to predict the sharp peak
of turbulent energy close to the wall accurately. More details can be found in
[63].

2.1.8 Equation of state

For a compressible flow it is necessary to define the relation between density
and pressure. This relation is known as equation of state.
For a perfect gas this equation is defined as:

ρ =
γ

γ − 1
p

h
, (2.45)

with p the pressure, h the enthalpy and γ the specific heat ratio.

2.1.9 Enthalpy equation

The energy equation for compressible flow is formulated in terms of the enthalpy
by:

∂h

∂t
+ uj

∂h

∂xj
= −(γ − 1)h

∂uj

∂xj
(2.46)

with u the Cartesian velocity, h the enthalpy and γ the specific heat ratio.
Mark that a non-conservative form for the energy equation is used. This form is
used to get a greater efficiency in the pressure correction time stepping scheme.
It could be replaced by a conservative form.

2.2 Discretization

In order to solve the momentum and transport equations a discretization pro-
cedure must be applied. We distinguish between the time integration and the
space discretization. Besides that the incompressibility condition imposes extra
problems with respect to the solution.
In Section 2.3 the time integration is treated, Section 2.4 deals with the incom-
pressibility condition.
Compressible flows are computed by an adapted pressure correction scheme, see
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Section 2.5

Space discretization is accomplished by a boundary-fitted finite volume method.
A staggered grid arrangement is used. A collocated grid arrangement is available
for incompressible laminar flows. The staggered arrangement means that not all
unknowns are positioned in the same points, whereas the cell-center collocated
arrangement means that all the unknowns are located in the same points. Both
arrangements (staggering or non-staggering) introduce extra complications, but
that is of no concern to the user. The output will always contain interpolated
values in the vertices of the cells. Furthermore function subroutines for bound-
ary conditions, coefficients and initial conditions are constructed such that the
user has to evaluate these quantities only in certain points, without knowing
what type of points it concerns. The mathematical details with respect to the
discretization can be found in the Mathematical Manual [38].

Before we discretize the equations we need a grid. In Deft we restrict our-
selves to so-called structured grids. For a structured grid the region must be
mapped onto a rectangle (R2) or a hexahedron (R3). As a consequence each
two-dimensional region must have four ”sides” and each three-dimensional re-
gion have six ”faces”. The grid must be constructed such that it is a regular
grid in the mapped region. Hence in R2 the mapped grid consists of straight
cells, nx in the x-direction and ny in the y-direction. A typical example of such
a mapping is shown in Figure 2.2.1.

Ω

 

y ↑
→ x

T
→

G

η

ξ

Figure 2.2.1: Boundary fitted co-ordinates and computational grid

A region that is mapped onto one such a rectangular domain will be called a
block. Of course in practical problems the regions are often too complex to map
onto one single block. In that case it is necessary to subdivide the domain into
sub domains each of which can be mapped on a single block. Such an ensemble
of blocks will be called a multi block configuration.
At this moment there is one restriction on the blocks in a multi block domain
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and that is that grid lines in adjacent blocks must be continuous across block
boundaries. Hence a grid line at the common boundary must be present in both
blocks and intersect the boundary in one point. Figure 2.2.2 shows a subdivision
of a domain in six blocks, the corresponding grid is given in Figure 2.2.3.

65 4

1

3

2

Figure 2.2.2: Decomposition of region into 6 blocks

x

y

 

Figure 2.2.3: grid in multi block region

Once the grid has been defined, the finite volume method must be applied.
The equations are discretized in the computational domain. Since the curved
region has been mapped, the equations in the computational domain are com-
plicated and the discretization is far from trivial. In this case there are several
possibilities:
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• The classical discretization, which is also the default discretization, is the
discretization described in report 91-09 [51].

• Since the classical discretization is only applicable for fairly smooth grids
an improved scheme has been developed by Wesseling and van Beek [48].
This scheme is more complicated but it is able to discretize the equations
at rather non-smooth grids.

• Two schemes are available with a collocated arrangement of the unknowns
(See [38]).The first one (see section 5.2), corresponding to the keyword
discr method=wesbeek naturally derives from the scheme developed by
Wesseling and van Beek and the second one (see section 5.2) correspond-
ing to the keyword discr method=bilinear interpolation, lays on an im-
provement of the previous method. It is based on bilinear interpolation.

All discretization schemes may be chosen by the user.

2.2.1 Restriction for the collocated scheme based on bi-
linear interpolation

In case of the collocated scheme improved by bilinear interpolation, quantities
at the face center of the control volumes are given by bilinear interpolation. The
bilinear function is built from quantities at the cell centers. Consider the (1, 0)-
face in Figure 2.2.4. To keep a compact nine-point molecule, we assume that
(1, 0) is surrounded by the polygons defined by (0, 0), (0,±2), (2,±2), (2, 0).
But that is not always possible (See Figure 2.2.4). Sometimes the grid is so
skewed that point (1, 0) is lying in a polygon containing other centroids. In that
case, the discretization is incorrect. A solution to remedy this problem is to
refine the mesh.

(-2,2)

(0,0)
(2,0)

(4,0) (4,2)

(0,2)

(2,2)

(1,0)

(-2,0)

Figure 2.2.4: Configuration where (1, 0) is not surrounded by (0, 0), (0,±2),
(2,±2), (2, 0)

2.2.2 Upwind schemes

The finite volume method applied, may be considered as a type of central dif-
ference scheme. This implies that for convection-dominated flows it is possible
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that wiggles in the solution arise. This is especially the case for the convection-
diffusion equations, where the ratio convection/diffusion may be very large. In
that case upwind discretization may be necessary. In fact in case of turbulence it
is hardly possible to solve the turbulence transport equations without applying
upwind discretization.

At this moment, four types of upwind schemes are implemented:

• the standard first order upwind scheme

• a hybrid central/upwind scheme

• higher order upwind schemes obtained with the κ-formulation

• TVD schemes with several classes of flux limiters:

– Sweby Φ-limiter

– R-κ limiter

– MR-κ limiter

– symmetric rational limiter

– PL-κ limiter

– MPL1-κ limiter

– MPL2-κ limiter

– symmetric PL-κ limiter

All upwind schemes are applied in each computational direction. Hence no
stream line upwinding is used.
A short explanation and references of these schemes will be given below.

The standard first order upwind scheme This scheme is first order accu-
rate, but it is unconditionally monotone. Details can be found in [44]. In skewed
grids, the scheme generally produces numerical cross-flow diffusion, which may
result in a large error in the solution.

A hybrid central/upwind scheme In an effort to combine the advantages
of both central and first order upwind schemes Patankar and Spalding [33] have
proposed a hybrid form of these schemes, which is based on the mesh-Péclet
number, i.e. central differencing is employed for low Péclet and otherwise first
order upwind differencing.

Higher order upwind schemes Using the so-called κ-formulation of Van
Leer [53], it is possible to derive a higher order upwind scheme. Assuming that
the velocity ue as given in Figure 2.2.5 is positive, a general form of such a
scheme may be written as

Te = TC +
1
4
[(1 + κ)(TE − TC) + (1− κ)(TC − TW)] (2.47)
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e

w C e E
u

Figure 2.2.5: One-dimensional finite volume used to formulate the κ-scheme

where T is the unknown variable (both velocity components and scalars), the pa-
rameter −1 ≤ κ ≤ 1 indicates a specified scheme. The following often employed
schemes can be obtained by setting κ as follows:

κ = −1→ one-sided linear upwind difference scheme (LUDS) (2.48)
κ = 0→ Fromm’s scheme (2.49)

κ =
1
3
→ Cubic upwind interpolation scheme (CUI) (2.50)

κ =
1
2
→ QUICK (2.51)

κ = 1→ Central differencing scheme (CDS) (2.52)

For κ 6= 1
3 the local truncation error is of second order and for κ = 1

3 it is of
third order.

TVD schemes All higher order schemes mentioned above are not monotone,
i.e. they can give rise to un-physical numerical oscillations. To avoid non-
monotone behaviour of the solution, a flux-limiting approach is employed [47]:

Te = TC +
1
2
Ψ(re)(TC − TW) (2.53)

with flux limiter Ψ. The limiter argument re is the upwind ratio of consecutive
solution gradients:

re =
TE − TC

TC − TW

(2.54)

Note that for Ψ = 0 the first order upwind scheme is recovered. Furthermore,
the κ-scheme (2.47) is implemented in the flux-limiting form, i.e.,

Ψκ(r) =
1
2
(1 + κ)r +

1
2
(1− κ) (2.55)

Since no linear convection scheme of higher order accuracy can be monotone,
nonlinear schemes or limiters should be employed for obtaining wiggle-free re-
sults, provided that

0 ≤ Ψ(r) ≤ min(2r, M) (2.56)
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where M ≥ 1 is a parameter that controls the resolution of sharp gradients, i.e.
with a large value of M more accuracy near steep gradients can be obtained.
The following classes of limiters are generalizations of the κ-scheme (2.55).

The so-called piecewise linear κ-based (PL-κ) class of limiters, proposed in
[62], has been implemented:

Ψκ,M,α(r) = max[0, min(M,
1
2
(1+κ)r+

1
2
(1−κ), (2+α)r)], M ≥ 1, −1 ≤ α ≤ 0

(2.57)
The parameter α controls Ψ′(0) and hence the amount of down-winding. This
class brings together a number of flux limiters known in the literature. The
Davis’ limiter used in [1] is a member of the PL-κ class with the parameters
κ = −1, α = 0 and M = 1 and is identical to the BSOU scheme developed in
[31]. The parameters κ = α = 0, M = 2 give a scheme which was used by Van
Leer in his MUSCL approach [52]. For κ = 1

3 , α = 0 and M = 2 one obtains the
so-called limited κ = 1

3 -scheme proposed by Koren [21]. The SMART scheme
presented in [16] is obtained with κ = 1

2 , M = 4 and α = 0. By taking κ = 1,
α = −1, 1 ≤M ≤ 2 the Chakravarthy-Osher limiter is recovered, discussed, for
example, in [47] and [1], which also contains the Minmod limiter (M = 1) or
SOUCUP scheme proposed in [66].

Another piecewise linear class is the symmetric PL-κ limiter presented in
[62], that satisfies the symmetry condition Ψ(r) = rΨ(1/r):

Ψκ,M(r) = max[0, min(M,
1
2
(1 + κ)r +

1
2
(1 − κ),

1
2
(1− κ)r +

1
2
(1 + κ), Mr)]

(2.58)
of which UMIST [25] (κ = 1

2 , M = 2) and MUSCL (κ = 0, M = 2) are special
ones. Here 1 ≤M ≤ 2.

In [70], it has been shown that the necessary and sufficient condition for
second order accuracy at smooth extrema is

3Ψ(
1
3
)−Ψ(−1) = 2 (2.59)

provided that such extrema are located at cell centers. In the same paper,
two modifications of (2.57) have been proposed, which satisfy (2.59) and thus
enhance the accuracy of the numerical solution. The first modified class, called
the MPL1-κ limiter, is given by

Ψκ,M,α(r) = max[0, min(2r,
2
3
), min(M,

1
2
(1+κ)r+

1
2
(1−κ), (2+α)r)] (2.60)

where M ≥ 1 and −1 ≤ α ≤ 0. Observe that (2.60) and (2.57) are equivalent if
−1 ≤ κ ≤ 0 and α = 0. The other modified class, to be referred to as MPL2-κ
class, obeys the so-called Spekreijse’s monotonicity restriction [45]:

∃β ∈ [−2, 0], ∃M > 0, ∀r ∈ IR : β ≤ Ψ(r) ≤M and −M ≤ Ψ(r)
r
≤ 2 + β

(2.61)
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which is a less restrictive sufficient condition than (2.56) for a flux-limiting
scheme (2.53) to be TVD. The modified limiter reads:

Ψκ,M,α(r) = max[0, min(M,
1
2
(1+κ)r+

1
2
(1−κ), (2+α)r)]+min[0, max(α, −αr)]

(2.62)
where M ≥ 1 and α ∈ [−1,−κ] ∩ [−1, 0]. Clearly, the case with parameters
−1 ≤ κ ≤ 0 and α = 0 is identical to (2.60).

A class of piecewise linear limiters commonly used in the literature [47] is

ΨΦ(r) = max[ 0, min(Φr, 1), min(r, Φ) ], 1 ≤ Φ ≤ 2 (2.63)

This so-called Sweby Φ-limiter class is not κ-dependent. Special members are
Minmod (Φ = 1) and Superbee (Φ = 2) limiters.

The classes of limiters presented so far are piecewise linear. The next two
classes of limiters are the so-called rational κ-based (R-κ) limiters which are
more smooth. The R-κ limiter is given by

Ψκ(r) =




(r + |r|) (−r2 + (3 + κ)r − κ)/(1 + r)2, r ≤ 1, −1 ≤ κ < 0

((2 + κ)r − κ)/(1 + r), r ≥ 1, −1 ≤ κ < 0

(r + |r|) ((1 + κ)r + 1− κ)/(1 + r)2, 0 ≤ κ ≤ 1
(2.64)

and has been proposed in [68, 70]. For κ = 0 in (2.64) the resulting scheme is
identical to the Van Leer’s Harmonic limiter, discussed, for example, in [18], and
to HLPA [65]. With κ = 1

2 the ISNAS limiter, as presented in [69], is obtained
which is identical to NOTABLE [32]. An alternative is the MR-κ limiter that
may improve the accuracy of the numerical solution, by making use of condition
(2.59), and is given by

Ψκ(r) =




r + |r|, r ≤ 1
3

((8 + 9κ)r2 + (2− 12κ)r + 2 + 3κ)/(3(1 + r)2), 1
3 ≤ r ≤ 1, −1 ≤ κ ≤ 1

((2 + κ)r − κ)/(1 + r), r ≥ 1, −1 ≤ κ < 0

((8 + 9κ)r2 + (2− 12κ)r + 2 + 3κ)/(3(1 + r)2), r ≥ 1, 0 ≤ κ ≤ 1
(2.65)

A class of symmetric rational limiters that satisfy the monotonicity require-
ments (2.61) has been proposed in [62]:

ΨM(r) = M
r2 + r

r2 + (M − 1)r + 1
, 1 ≤M ≤ 3

2
(2.66)

M = 1 recovers the Van Albada limiter, discussed, for example, in [18], and
M = 3

2 gives the OSPRE limiter, recently proposed in [62].
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In conclusion, all limiters mentioned above are nonlinear. Therefore, a lim-
ited scheme is implemented in a defect correction manner:

φi+1/2 = φLOS
i+1/2 + (φHOS

i+1/2 − φLOS
i+1/2)

o (2.67)

where φLOS
i+1/2 stands for the approximation by a lower order scheme, for example,

first order upwind, and φHOS
i+1/2 is the higher order approximation. The term in

brackets is evaluated explicitly using the values from the previous time step,
which is indicated by the superscript ‘o’.

2.3 Time integration

Since the equations to be solved are time-dependent it is necessary to use some
time-integration scheme. Deft allows for three integration schemes, all of them
based on the so-called θ method.

Suppose one wants to solve the ordinary differential equation:

dc

dt
= f(x, t), (2.68)

then the θ method can be written as:

cn+1 − cn

∆t
= θf(x, tn+1) + (1− θ)f(x, tn) (2.69)

where n denotes the time level and ∆t the time-step. θ must be chosen in the
range 0 ≤ θ ≤ 1.
For θ = 0 the method reduces to the classical explicit Euler method, for θ = 1
to the implicit Euler method. θ = 1

2 corresponds to the Crank Nicolson scheme.
Explicit methods require a time-step restriction, since the method becomes un-
stable if the time-step is too large. At this moment θ = 0 has not been imple-
mented. Fully implicit methods (θ ≥ 1

2 ), are unconditionally stable and hence
any time-step may be used. However, an implicit scheme requires the solution
of a system of linear equations at each time-step and as a consequence they are
much more expensive per time-step than the explicit schemes.
The Crank Nicolson scheme is second order accurate and is preferred if a time-
accurate method is required. However, a clear disadvantage of Crank Nicolson is
that high frequency perturbations are not damped. For that reason a transient
may be always visible if Crank Nicolson is applied. In order to damp the effect
of the transient frequently values of θ greater than 0.5 are used. For example
θ = 0.55 is very popular.
The Euler implicit scheme may be less accurate but disturbances are damped
very rapidly. Hence, if one is only interested in a stationary solution, this method
is the one to use.
A disadvantage of the θ-method is the fixed θ. It could be advantageous to
combine a number of different θ’s per time step in such a way that second order
accuracy is accomplished, and some damping is ensured as well. Two methods
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that offer this opportunity are the fractional θ-method and the generalized θ-
method. The latter is a generalization of the fractional θ-method, so we will
restrict ourselves to the description of the generalized θ-method. We rewrite
equation ( 2.69) as follows, letting Σk =

∑k
i=1 θi:

cn+Σ2 = cn + ∆t
(
θ1f(x, tn) + θ2f(x, tn+Σ2)

)
cn+Σ4 = cn+Σ2 + ∆t

(
θ3f(x, tn+Σ2 ) + θ4f(x, tn+Σ4)

)
...

...
cn+Σ2k = cn+Σ2k−2 + ∆t

(
θ2k−1f(x, tn+Σ2k−2) + θ2kf(x, tn+Σ2k)

)

There are two necessary conditions:

1. Σ2k = 1 for a k-stage method. This gives a first order method, and is only
a scaling requirement.

2.
∑k

i=1 θ2
2i−1 =

∑k
i=1 θ2

2i to guarantee second order accuracy.

A third condition is optional, but guarantees some damping:

1. θ2i−1 = 0 for at least one i ∈ 1, . . . , k.

This condition includes at least one Implicit Euler step per time step.

The generalized θ-method is a 3-stage method, and is therefore 3 times as expen-
sive as the Crank-Nicolson method. However, one may choose ∆tgenθ = 3·∆tCN

to accomplish similar results for both methods. A common choice for the gen-
eralized θ-method is the following ‘optimum’ for k = 3:

θ1 = θ5 =
α

2
, θ3 = 0,

θ2 = θ6 = α

√
3

6
, θ4 = α

√
3

3

α =
(

1 +
2√
3

)−1

.

A common choice for the fractional θ-method is the following:

θ1 = θ5 = βθ, θ3 = α(1− 2θ),
θ2 = θ6 = αθ, θ4 = β(1− 2θ),

α =
1− 2θ

1− θ
, β = θ

1−θ ,

θ = 1− 1
2

√
2.

With respect to the solution of the momentum equations coupled with some
transport equations and or the turbulence equations, the situation is somewhat
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more complex. In our present code we decouple the solution of momentum equa-
tions and transport equations. This means that in each time-step we start with
the solution of the momentum equations coupled with the continuity equation.
If coefficients depend on unknown variables at the new time level, the values
at the previous time-level are used. After computing the velocity and pressure,
the first transport quantity is computed, then the second and so on. Finally the
turbulent quantities first k than ε or ω.
A consequence of this de-coupling is that the stability of the global system may
be influenced. So due to the de-coupling it is possible that a smaller time-step
may be necessary than one would expect if all equations would be solved simul-
taneously.

The turbulence equations may act on a much smaller time scale than the momen-
tum equations. If that is the case the time step is limited due to the turbulence
equations and a much smaller time step is required than one would need for the
momentum equations itself.
In order to avoid a large overhead it is possible to perform a sub-stepping for
the turbulence equations. This means that the turbulence equations are solved
with a time step that is a fraction of the global time step. This sub-stepping is
only implemented in combination with the Euler implicit scheme.

2.4 Aspects with respect to the incompressibil-
ity condition

One of the main problems of the incompressibility condition is that the continu-
ity equation does not contain the pressure, where the equation itself is strongly
related to the pressure computation. As a consequence the solution of the cou-
pled momentum equations with the continuity equation is in general everything
but simple. In fact it is always necessary to take precautions in order to be able
to solve the coupled equations.
For time-dependent problems the pressure-correction method is one of the most
popular methods to solve the problem with the continuity equation. At this
moment it is the only method available in Deft.

Pressure-correction may be considered as type of splitting method. In the first
step the velocity is estimated using the pressure at the previous time-level. In
the next step the computed velocity is projected onto the space of divergence-
free vector fields. In this step a type of Poisson equation for the pressure is
solved and the velocity is adapted.

An important aspect of pressure correction is that during the time-stepping
algorithm a term of the order of the truncation error in the time-integration
scheme is neglected. Practical computations have shown that the time-step
should be chosen relatively small if the solution changes rapidly, for example in
case of a transient. Although, the pressure-correction method is stable if the
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time-integration method is stable, the numerical solution may behave strangely
if the gradient of the actual solution in time is large. The consequence is that
the time-integration explodes (or the linear solver does not converge). The only
remedy to solve this problem is to use small time-steps. However, once the
solution becomes smooth in time, much larger time-steps are allowed.

The pressure correction method as described above is applied such that for
each time step only one prediction and one correction step is carried out. Usu-
ally this is accurate enough, and if not, the time-step should be decreased.
However, in some applications, it might be wise to perform more than one it-
eration per time step. Such an option is available in Deft, see the keyword
TIME INTEGRATION.

2.5 Aspects with respect to compressible flows

In this section certain aspects of the calculation of compressible flow, that re-
quire special attention, are explained.

boundary conditions

Care should be taken with the application of boundary conditions for compress-
ible flow to have a well posed problem. We will only give an overview and refer
to chapter 19 of [18] for a more elaborate discussion. We can distinguish five
cases found in most common applications, where the application of the following
boundary conditions leads to a well posed problem:

1. Sub-sonic inflow boundary: momentum, enthalpy prescribed

2. Supersonic inflow boundary: momentum, enthalpy and pressure prescribed

3. Sub-sonic outflow boundary: pressure, Neumann boundary condition for
enthalpy prescribed

4. Supersonic outflow boundary: none prescribed

5. Solid wall boundary: freeslip or noslip for momentum, Neumann boundary
condition for enthalpy prescribed

Upwind discretization of convective terms

In the case of compressible flow with discontinuities it is essential to use an
upwind scheme for the convective terms in the momentum equation to avoid
wiggles. This upwind scheme can be applied to m, as it where a convected
quantity, or to the product of the quantities U and m as is commonly done in
colocated schemes. It is found that the latter option gives better resolution of
discontinuities.
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Scaling of the unknowns

To be able to solve the equations uniformly in Mach a scaling is applied to the
pressure [2]. The pressure in the computational process is effectively the scaled
perturbation of the outflow pressure:

p =
p∗ − p∗out

ρ∗0w∗2∞
(2.70)

where p∗ and p∗out denote the dimensional pressure and outflow pressure respec-
tively and ρ∗0 and w∗

∞ the stagnation density at the inflow and the velocity at
the inflow boundary.

Furthermore all other quantities are non-dimensionalised with respect to the
inflow quantities at stagnation condition [2]. These scaled quantities should be
specified as boundary and initial conditions:

(ρu)1∞ =
(

1 +
γ − 1

2
M2

∞

)− 1
γ−1

cos(α∞) (2.71)

(ρu)2∞ =
(

1 +
γ − 1

2
M2

∞

)− 1
γ−1

sin(α∞) (2.72)

h∞ =
(

1 +
γ − 1

2
M2

∞

)−1

(2.73)

pout = 0 (2.74)
where (2.75)

M∞ = Mach number at inflow (2.76)

γ =
cp

cv
(2.77)

α∞ = angle of inflow with normal at inflow boundary (2.78)

Only for postprocessing purposes a reference pressure, density and velocity can
be specified, which will scale the computational values back to the physical ones.
If the Mach number is higher than 0.3 in the whole flow domain the scaling can
be dropped and all initial and boundary conditions should be specified in a
consistent dimensional form.

Density Bias

In the case of high Mach flow, it is essential that in the case of shocks the
discretization will respect both the Rankine-Hugoniot jump relations and the
entropy condition. The former is achieved by using a conservative discretization.
For the latter it is necessary to introduce irreversibility in the flow. In the
momentum equation this is accomplished by choosing a ( higher order) upwind
scheme, in the continuity equation by choosing a form of density upwind bias.
In the case of Mach-based density bias, the density is upwinded when the Mach
number exceeds 0.9. If the unconditional density bias is chosen, the density
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is always upwinded. When a higher order (limited) upwind discretization is
applied to the momentum equation, the gradient based density bias should be
chosen to achieve second order accuracy away from steep gradients. All types of
density bias can be applied in an implicit or explicit manner. When the implicit
version is applied, the pressure correction equation becomes more expensive
to solve. Hence for steady state calculations the explicit version is the proper
choice.

2.6 Stationary problems

At this moment Deft does not contain any special methods to compute station-
ary solutions. If one wants to solve a time-independent problem, the only way
is to solve the instationary Navier-Stokes equations and to choose the final time
so large that steady state has been reached. Whether a stationary solution has
been reached can be tested in Deft with the following stopping criterion:

‖un+1 − un‖max ≤
1− λ

λ

(
relacc‖un+1‖2 + absacc

)
, (2.79)

with

λ =
‖un+1 − un‖2
‖un − un−1‖2

.

The values of relacc (relative accuracy parameter) or absacc (absolute accuracy
parameter) can be defined by the user, the default value is zero.
It is advised to use the implicit Euler scheme in this case, since this allows for
the largest time-steps. Unfortunately the combination with pressure correction
may prevent the use of too large time-steps, since the solution may explode in
case of a transient. The only way to solve this problem is to start with a small
time-step and to enlarge the time-step after some time.

2.7 Linear solvers

After discretization of the incompressible Navier-Stokes equations various sys-
tems of linear equations have to be solved: the momentum and pressure equa-
tions and if necessary the transport and turbulence equations. In Deft these
systems are always solved by iterative solution methods.

The data structure used and the structured grid are very well suited for it-
erative solution methods of Krylov subspace-type. In order to solve the system
Ax = b such a method searches for an element xk ∈ {b, Ab, ..., A(k−1)b} such
that ‖rk‖ = ‖b − Axk‖ is minimized in some norm. An attractive feature of
these methods is that only matrix vector multiplications and basic linear alge-
bra operations (inner products, vector updates etc. ) are used.

If A is symmetric and positive definite, one of the best Krylov subspace methods

31



is the Conjugate Gradient method. However, all matrices which are used in the
Deft package may be non-symmetric. For this class of matrices various Krylov
subspace methods are known, where each method is optimal for a certain class
of problems. For this reason several Krylov subspace methods are implemented
to investigate which method should be used for a certain system.

Section 2.7.1 consists of an overview of the various Krylov subspace methods
and their behaviour. In general the solver, which is used as default is robust
and efficient. If a better method becomes available the default is changed.

It is well known that the Conjugate Gradient method only works well if a pre-
conditioner is used. A preconditioner is a matrix P such that P ≈ A but P−1b
is much cheaper to evaluate than A−1b. In general P should be such that the
number of iterations of the original iteration method decreases considerably.
The same observation holds for the other Krylov subspace methods. Therefore
various preconditioners are implemented, which are discussed in Section 2.7.2.
For background information we refer to [58], [55], [57].

2.7.1 Solvers

The momentum, pressure, transport, and turbulence equations are solved by
iterative methods of Krylov subspace-type. Below we give references and prop-
erties of the methods implemented.

LSQR [30]
The easiest way to circumvent the non symmetry of the coefficient matrix is to
solve the normal equations AT Ax = AT b by the Conjugate Gradient method.
However this leads in general to an unstable and slow convergent method. LSQR
is a stable version of the Conjugate Gradient method applied to the normal equa-
tions. For Poisson-like equations (pressure, or diffusion dominated-momentum,
-transport, or -turbulence equation), LSQR is in general slow, but for convec-
tion dominated equations, which are discretized with central differences, this
method can be fast. At this moment only a limited number of preconditioners
are available for LSQR.

BI-CGSTAB: Bi-Conjugate Gradient Stabilized [49]
A generalization of the Conjugate Gradient method for non symmetric prob-
lems is the Bi-CG method. In this method two sequences of search directions
are used, which are bi-orthogonal to each other. In CGS [43] one of these se-
quences is removed and the rate of convergence is (for many practical) examples
two times as fast as Bi-CG. A more stable variant of CGS is the Bi-CGSTAB
method proposed by [49]. Both methods are implemented. In general we prefer
the Bi-CGSTAB method, so the CGS-method is mainly used for research rea-
sons. An advantage of these methods is that only a limited amount of memory
is required, and that no parameters have to be chosen.
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GMRES-like methods Another generalization of the Conjugate Gradient
method are GMRES-like methods. These methods have the same optimal
properties with respect to the norm of the residual as the Conjugate Gradi-
ent method. However, due to the non-symmetry of the matrices all previous
search directions should be stored in memory.

GMRES: Generalized Minimal Residual [36]
The first method in this class is the original GMRES method. Since the amount
of memory increases linearly with the number of iterations it is necessary to stop
the method after some iterations (in the sequel we call this number the restart
value), form the approximate solution and restart the GMRES method. If the
number of iterations is less than the restart value, GMRES is a very robust
method. When the method is restarted, it can lose its fast convergence be-
haviour. A drawback is that the convergence depends critically on the restart
value, so choosing the restart value too small leads to non convergence of GM-
RES.

GCR: Generalized Conjugate Residuals [14]
GCR is mathematically equivalent with GMRES. However, when unrestarted,
it uses more memory than GMRES. If restarting is necessary it is possible to
use other techniques (truncation) in GCR, which leads in general to a faster
convergence than that of restarted GMRES. This alleviates the main drawback
of GMRES.

GMRESR: GMRES-Recursive [50]
This method consists of an inner and an outer loop. The outer loop resembles
GCR, whereas originally the inner loop consists of GMRES. Other iterative
methods may be used in the inner loop. The properties of GMRESR are be-
tween that of GMRES and Bi-CGSTAB. It is a robust method and converges
fast without requiring large amounts of memory. Note that GMRESR with
GMRES(1) in the inner loop is equal to GCR. Finally this method is not very
sensitive to variations in the restart value or the number of iterations in the
inner loop. So the default values are reasonable for a wide range of problems.

Directions of use
For robustness the default solver is restarted GMRES for all equations. If the
method is not convergent, the most robust choice is unrestarted GMRES. An-
other way to circumvent non convergence is to enlarge the maximal number of
iterations and/or to lower the required accuracy. In many occurrences of non
convergence, it appears something is wrong with the boundary conditions, co-
efficients or the time step used. For the pressure equation it is possible that
Bi-CGSTAB is faster and/or uses less memory than the default choice. Finally
the stopping criteria for the iterative methods are a compromise between effi-
ciency and accuracy. Decreasing the required accuracy can save a considerable
amount of CPU time.
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2.7.2 The preconditioners

It appears that Krylov subspace methods are only fast converging when they
are combined with a preconditioner. In this section a description is given of the
preconditioners that are implemented in the Deft package. The requirements for
a preconditioner P are: P ≈ A and P−1b is cheap to evaluate. The description
starts with a very simple preconditioner P , namely P is the main diagonal of
A, and finishes with a complicated preconditioner P which is an incomplete LU
decomposition of A.

There are two different ways to use a preconditioner P . Firstly apply the method
to

P−1Ax = P−1b,

which will be called preconditioning, and secondly

AP−1y = b, x = P−1y,

which will be called postconditioning. The convergence properties of the re-
sulting preconditioned Krylov methods are approximately the same for both
choices. However, when preconditioning is used the termination criterion is
based on ‖P−1(Axk − b)‖2, whereas if postconditioning is used the termination
criterion is based on ‖Axk − b‖2. For this reason postconditioning is preferred,
because then the termination criterion does not depend on the matrix P . We
have observed examples where preconditioning needs less iterations than post-
conditioning, but the quality of the approximate solution was less than one may
expect from the termination criterion. For background information see [58],
[55], [57]. Below the implemented pre/postconditioners are specified.

Diagonal
If a diagonal preconditioner is used the matrix P is equal to the main diagonal
of the original matrix A.

ILUD
The preconditioner P is an incomplete LU decomposition of the original ma-
trix. Only the diagonal elements are adapted, the other elements of L and U
are taken from the original matrix A. There are several methods to compute
the diagonal elements. The original ILUD method can be modified (MILUD)
in such a way that Pv = Av for v = [1, 1, ..., 1]T . MILUD is fast if the solution
x is slowly varying. At this moment we use

RILUD = αILUD + (1− α)MILUD

where α is a given parameter.
The choice preconditioner = RILUD is implemented in the following way: sup-
pose P is given by LLT , the iterative method is applied to

L−T AL−1y = L−T b, x = AL−1y.
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This enables us to use the efficient Eisenstat implementation.

ILU
The preconditioner is again an incomplete LU decomposition of the original
matrix. Only the non-zero elements of the original matrix are adapted, so L
and U have the same sparsity pattern as the original matrix. Again we use

RILU = αILU + (1− α)MILU

where α is a given parameter. This preconditioner cannot be used for the cou-
pled momentum equations.

ILU fill
This preconditioner consists of an incomplete LU decomposition with fill in. The
parameter fill in gives the number of diagonals allowed to become nonzero. In
general the number of iterations decreases when fill in increases, however every
iteration becomes more expensive. For the case that the allowed fill in is equal
to the bandwidth a full LU decomposition is made and the method converges
in one iteration. This preconditioning can only be used for 2 dimensional prob-
lems. It cannot be used for the coupled momentum equations.

Multigrid
The multigrid method is implemented as a preconditioner. This increases its ro-
bustness, whereas the extra costs for the Krylov acceleration is negligible. The
method consists of a multigrid V-cycle with alternating line Jacobi as smoother.
This preconditioner can be used for every number of gridpoints, so it is not nec-
essary that these numbers are multiples of 2. Multigrid preconditioning is not
available for the coupled momentum equations.

Directions of use
The default preconditioners are a compromise between efficiency and robustness.
For the momentum equations an MILUD preconditioner is used. Although this
slightly influences the termination criterion, it is more efficient since we can use
the efficient Eisenstat implementation [13]. In the other equations RILU is used
as postconditioner. In the pressure equation the optimal choice of α depends
on the boundary conditions of the momentum equations. If Dirichlet boundary
conditions are used everywhere the default choice α = 0.975 is optimal, but if
on some parts of the boundary other conditions are used, then choosing α closer
to one may lead to a faster convergence. For the transport and turbulence equa-
tions MILU postconditioning is the default.
For a large grid-size the multigrid post conditioner can lead to a considerable
decrease of CPU time for the pressure equation.

2.8 Multi-block methods

In order to solve the incompressible Navier-Stokes equations on a complicated
spatial domain it is a good idea to decompose the domain into a number of
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smaller subdomains. The solution on the subdomains depend on each other.
It is the task of the multi-block (domain decomposition) method to couple the
solutions of the different subdomains in such a way that the correct solution on
the whole domain is obtained. This leads to an iterative algorithm that requires
the repeated of problems in the subdomains.

The multi-block algorithm is motivated above by geometrical reasons. Other
reasons to use a multi-block approach are: parallelization or reduced memory
requirements. A number of choices should be made to implement a multi-
block algorithm. Below we give more details about the various choices. For
background information we refer to [4].

2.8.1 Basic multi-block algorithm

In our algorithm we use non-overlapping blocks. To couple the subdomain
solutions we use a Dirichlet-Dirichlet coupling. Special care is needed to handle
the staggered arrangement of the unknowns. For the basic algorithm better
couplings are available [4, 7]. Since we always combine the algorithm with a
Krylov acceleration (where the influence of the coupling conditions is negligible)
we have not implemented other coupling conditions.

The multi-block algorithm can be interpreted algebraically as a Block Gauss-
Jacobi or Block Gauss-Seidel method. When the Dirichlet boundary conditions
are obtained from the previous iteration we have Block Gauss-Jacobi and when
the values are copied from one subdomain to another one obtains the Block
Gauss-Seidel algorithm. In every multi-block iteration all subdomains are solved
by an iterative method. To save CPU time it is a good idea to build the
preconditioner only once and reuse it in the following multi-block iterations.

2.8.2 Subdomain solution

Two choices can be made: solve the subdomain problems accurately or inaccu-
rately. When the subdomain problems are solved accurate enough the multi-
block iteration can be applied to the interface equations. This leads to a large
reduction of the vector lengths. However, this method is sensitive to the re-
quired subdomain accuracy. When the accuracy is too low the approximations
do not converge to the exact solution.

When the subdomain problems are solved inaccurately the iteration vectors
have the same length as the solution vector on the whole domain. In general
this choice is robust and more efficient than accurate solution. A special case is
the so-called ILU method. Then only one iteration is done per subdomain.

2.8.3 Acceleration method

From many experiments it appears that the basic multi-block algorithm is not
robust. In some applications it costs many iterations or does not converge at
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all. To enhance this the basic multi-block method is accelerated by a Krylov
subspace method: GCR [14, 50, 6]. We choose GCR because this Krylov method
can be used in combination with a variable preconditioner (multi-block) [60].

Since the amount of work and memory increases with the number of GCR
iterations it is necessary to restart or truncate the method. For truncation
we use the Jackson-Robinson technique and by restarting we use an optimized
version of GCR [56]. To speed up convergence further it is a good idea to reuse
search directions of previous time-steps. For the pressure equation this leads to
a large reduction of CPU time [61].

2.8.4 Parallelism

The decomposition of the global domain into subdomains leads in a natural way
to a number of problems which can be solved in parallel. A parallel implemen-
tation of the accurate multi-block algorithm is presented in [5]. Also a parallel
implementation of the inaccurate method is available [15].

To compare the results on one and more computers it is a good idea to use
the Block Gauss-Jacobi method also on one processor, otherwise the number of
iterations are different. The default (Block Gauss-Seidel) is implemented such
that on each processor Block Gauss-Seidel is used, but that of course over the
various processors the Block Gauss-Jacobi method is used.

2.9 Restart

In many practical applications it is necessary to write the computed solution to
a file for a later restart. Reasons to do this are for example:

• The necessary computation time is so long that it makes sense to save
intermediate results in case of an abort.

• The user wants to change the time-integration method, for example he
wants to use a different value of θ. A typical example is the flow around a
cylinder in which the user wants to start with one time-step Euler implicit
in order to suppress the transient and after that wants to resume with a
generalized θ-method or with θ = 0.5.

• The user has made a computation with a set of physical constants and
wishes to perform the same type of computation with a different set. In
that case the solution of the preceding set might be a good initial guess.

• The user has made a computation with a coarse grid and wants to do
the same computation on a fine grid. The solution on the coarse grid
interpolated to the fine grid may be a nice starting value, improving the
convergence considerably.

37



The Deft program has its own ”data-base” to store such set of solutions.
Solutions of a specific run may be identified by a so-called session identifier. At
this moment this identifier is restricted to an integer number.

38



Chapter 3

The global structure of an
Deft session

In general the Deft session consists of four parts, which can be run separately.
The four parts are

• Grid generation

• Pre-processing (reading and translation of the input file)

• Computation (solution of the flow problem)

• Post-processing (output of the results: plots and prints)

The sequence of the session is always:

grid generation followed by
pre-processing followed by
computation followed by
post-processing

In the Sections 3.1, 3.2, 3.3 and 3.4 the various stages are treated separately.
The syntax of the input files is described in Section 3.7.

3.1 Grid generation

The first stage of an Deft job is to generate a grid. In that stage the user must
decide whether he wants to use a single block approach or if multi block is
necessary. Furthermore in the grid generation part it is also necessary to mark
boundaries for example by a name or number in order to identify them in the
pre-processing part. The reason for this is that boundary conditions must be
prescribed at items that are known by some name.

Grid generation may be performed with any available package. However, Deft
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requires a special file format to be made by this grid generator and hence some
”file translator” may be necessary.

The present version of the Deft incompressible pre-processor expects that the
grid has been made by the SEPRAN mesh generator SEPMESH, using the
special option ”isnas” or alternatively by the two-dimensional grid generator
Liss.

In Section 3.1.1 the usage of SEPMESH is described.

3.1.1 Usage of SEPMESH

The generation of the mesh is performed by the program SEPMESH. At this
moment only a batch version is available, which requires a file with data. This
file must be created by the user for example with a text editor.

Program SEPMESH creates output in two ways:

• SEPMESH writes to the standard output device (usually the display from
which you start the program, or a standard output file). This output
consists of a copy of the input file, error messages if the input is incorrect
and some messages from submesh generators.

• If the input is error-free and a mesh has been generated, then this mesh
is written to a file named finvol.new. This file is used by the Deft pre-
processor and the Deft main programs.

Chapter 4 describes how a mesh is generated.

SEPMESH must be used as follows:

sepmesh inputfile

or

sepmesh inputfile > outputfile

The inputfile is the file created by the user using the text-editor. If no outputfile
is specified all information (including error messages) is written directly to the
screen.
The output file may have any name except meshoutput, finvol.new and sepplot.∗∗
∗, where ∗ is any digit.

Example: sepmesh pipe.msh > pipe.out.

Remark: besides the file finvol.new sepmesh also creates files sepplot.001, sep-
plot.002, etc. which contain plot information.

So sepmesh creates output in 3 ways:

• a file finvol.new containing the complete description of the mesh;
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• files sepplot.001, sepplot.002, etc. containing information of the plots to
be made;

• output written to the screen or the outputfile (for example mesh.out).
This output contains a hard copy of the input, error messages (if any) and
some information about the mesh.

How the plot information may be translated into a plot is described in Section
3.5.

3.2 Pre-processing

Once the grid has been created, the physical, mathematical and solution param-
eters of the problem must be specified. This means for example specification
of the viscosity, the density, the boundary conditions, the type of linear solver,
time integration and the turbulence model.
This specification must be given with a text file. The Deft pre-processor reads
this input file and interprets it. A number of possible errors in the input file is
recognized by the pre-processor and in that case error messages are given. The
pre-processor uses not only the input file but also the file finvol.new created by
the grid generator. The Deft pre-processor has the name ISNASPRE.

Program ISNASPRE creates output in two ways:

• ISNASPRE writes to a file isnaspre.out. At the end of the run the tail of
this file is echoed to the screen. The output file consists of a copy of the
input file, and error messages or warnings if the input is incorrect.

• If the input is error-free ISNASPRE creates a so-called intermediate file
isnasinp.cmp. This file contains a translation from the input file to a data
structure recognized by the Deft main programs. For a description of the
file isnasinp.cmp consult the Deft Programmers Guide [40].

Chapter 5 describes the isnas inputfile.

ISNASPRE must be used as follows:

isnaspre inputfile

‘inputfile’ must have been created by the user.

3.3 Computational part of Deft

If the pre-processing phase has been completed successfully, which means that
also the grid has been generated, the Deft main program can be run. Depending
on the input file used in the pre-processing part, the computational part may
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take a large amount of computing time. It is also possible to run the Deft main
program parallel at several computers provided the parallel environment PVM
is available. Whether or not the parallel version will be used is specified in the
input file.

For simple problems Deft provides a standard command: ISNASEXE. If the
problem to be solved fits within the frame-work of ISNASEXE, there is no
need to create or link your own main program. However, as soon as function
subroutines are required to describe coefficients or boundary conditions, or if
the grid is too fine to be solved by the standard program ISNASEXE it will be
necessary to create and link a local program ISNASEXE.

After that type:

isnasexe

ISNASEXE uses the files finvol.new and isnasinp.cmp created by the grid gen-
erator and the pre-processor respectively. ISNASEXE creates output in two
ways:

• Two files sepcomp.inf and sepcomp.out that will be used by the SEPRAN
post-processor ISNASPOST.

• Output is written to the file isnasexe.out containing information about
the problem run as well as possible error messages and warnings. At the
end of the run the tail of this file is echoed to the screen.

If in some way ISNASEXE is not adequate it is necessary to create your own
main program. How this must be done is described in Chapter 6.

In case of a parallel environment, where the program ISNASEXE must run on
several processors, the pre-processing and computational part are combined into
one step. The command isnasmpi must be used to run both the preprocessor
and ISNASEXE. The syntax is:

isnasmpi input_file

where input_file is the file otherwise used by ISNASPRE.

3.4 Post-processing

Once the solution has been computed, it must be post-processed in order to
print or plot the results. In the present version of Deft only the SEPRAN post-
processor ISNASPOST is available.

The usage of ISNASPOST is described in Section 3.4.1
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3.4.1 Usage of ISNASPOST

In the postprocessing part of SEPRAN, the mesh created by SEPMESH is read
from the file finvol.new and from the files sepcomp.inf and sepcomp.out. These
files have been created in the computational part. In this section the results are
produced for the user in a more suitable form: prints, plots, integrals etc. The
postprocessing part is performed by the program ISNASPOST. For a description
of its possibilities the reader is referred to Chapter 7.

ISNASPOST is used in the same way as SEPMESH, i.e. the user creates a text
input file and then runs ISNASPOST.
ISNASPOST is used as follows:

isnaspost inputfile > outputfile

or

isnaspost inputfile

‘inputfile is’ the file created by the user. If no outputfile is specified all infor-
mation (including error messages) is written directly to the screen.
ISNASPOST uses also the file created by SEPMESH (finvol.new) and those
created by the Deft computational program (sepcomp.inf and sepcomp.out).
ISNASPOST does not produce plots directly but produces files named sep-
plot.001, sepplot.002, etc. containing plot information. Since this name is the
same as for the plot files produced by SEPMESH these files will be destroyed.
How the plot information is translated into a plot is described in Section 3.5.

Example: isnaspost pipe.pst > pipe.out

3.5 Display of SEPRAN plots

The SEPRAN mesh generation part or the postprocessing part may generate
plot files named sepplot.001, sepplot.002, sepplot.003, etc.

In SEPRAN there are two ways of displaying these plots: you can make a pic-
ture at the screen, or you make a plot onto a laser printer or plotter.

To display the plot on the screen use the command:

sepdisplay

This interactive program tells you how many plots are available and asks you
which one you want to see. sepdisplay is completely self explaining and should
is by typing
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sepdisplay [RETURN] .

If your computer has several ways to display plot output, use the option choose
plotting device to change the default plotting device into your own choice. This
option gives you also the opportunity to choose the hard-copy output device.
At present SEPRAN is able to produce both HPGL output (which can be used
on many types of plotters and on laser printers that have an HPGL emulator
build in), or Postscript output. Postscript can be used on Postscript printers
only.
If you use the option hard copy, in fact SEPDISPLAY does not make a hard copy
but produces a file sephpgl.xxx or sepposc.xxx containing HPGL or Postscript
code respectively. xxx stands for 001, 002 etc. For each new hard copy com-
mand the sequence number is increased. As soon as sepdisplay has been started
it removes files with names sephpgl.xxx or sepposc.xxx.
If you want to plot or print the hard copies, you have to send the files seph-
pgl.xxx or sepposc.xxx to the plotter or the printer. How this should be done
depends on the local installation of your computer. Consult your system man-
ager on this issue.

For a UNIX environment under X-Windows there is a windows based alterna-
tive for SEPDISPLAY, the program SEPVIEW. The command SEPVIEW is
activated by typing:

sepview

or

sepview sepplot.xxx

where sepplot.xxx is the file to be plotted.
If sepview is used without file name, the file may be selected by the option file.
Once a file is selected all files with the same basename and extension .001, .002,
... may be viewed. The first file is the file selected.
SEPVIEW has the following options:

Zooming in Press the left mouse button down and move the cursor upwards
while pressing the button. Release the mouse button if the created rect-
angle is large enough. The picture within the rectangle will be drawn in
the full window.

Zooming out Zooming out means displaying the previous window. Zooming
out is done by moving the cursor downwards while creating a rectangle.

Panning Panning is done by pushing and releasing the left mouse button on
the same place in the picture. The picture is panned towards the mouse
position. How much the picture is panned depends on the distance be-
tween the mouse button and the middle of the picture.

Hardcopy Pressing the ’Hardcopy’ button will show you a pull down menu
with two possible choices. ’Postscript’ produces an encapsulated postscript
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file <name> <nn>.eps from the current view. An HPGL file <name> <nn>.hpgl
is generated if you press the ’HPGL’ button.
<name> is the name of the Sepran plot file and <nn> is a sequence
number. It will be increased each time a new file is generated.

Play / Stop / Previous / Next At the lower right corner of the plot win-
dow, there are three buttons, a left arrow, a right arrow and a push button
labelled ’Play’ or ’Stop’.

The name of a SEPRAN plot file is of the form nnnplot.xxx, where nnn is
an arbitrary name, usually sep and xxx is a number. This number can be
used to select a previous/next plot file of the same set with a higher/lower
number, using the right and left arrow. If there is no plot file with a
higher/lower number, the right/left arrow is disabled.
To show a set of plot files as an animation, you can use the ’Play’ but-
ton. As soon as SEPVIEW has started playing, the label on the button
is changed to ’Stop’ to stop the animation. As soon as the last file in the
set is shown, the animation is reversed.

Defaults Sepview understands all of the OSF/Motif resource names and classes
as well as the ones defined below. The class name for the SEPVIEW
resources is ”Sepview”.

highlightThickness Specifies the thickness of the highlighting rectangle around
the buttons and text areas.
Default: 0

background Specifies the default background colour for drawing.
Default: medium turquoise

drawArea∗background Defines the drawing areas background colour.
Default: turquoise

An example resource for Sepview is shown below:

Sepview*background: white
Sepview*drawArea*background: blue

3.6 An overview of simple Deft commands

In this section we give an overview of some of the available Deft and SEPRAN
commands.

The following Deft/SEPRAN commands are available:

• sepmesh (creates a grid, see Section 3.1.1)
• isnaspre (reads and interprets the Deft input file, see Section 3.2)
• isnasexe (performs the computational part of Deft, see Section 3.3)
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• isnaspost (performs the SEPRAN postprocessing, see Section 3.4.1)
• sepdisplay (displays SEPRAN plot files to the screen or produces files with hard copies,

see Section 3.5)
• sepview (Plot SEPRAN files under X, see Section 3.5)

If you want to use the Deft/SEPRAN commands in a UNIX operating sys-
tem, it is necessary to add the Deft and SEPRAN bin directory to your path.
Consult your local system officer on this issue.

3.7 Syntax of input files

The ASCII input files that are used by Deft and also by SEPRAN have to satisfy
syntax rules. In this section we shall explain these rules, we will use them in
the following sections without explanation.
The Deft and SEPRAN input files provide the following features:

record A record consists of at most 80 characters. All characters behind col-
umn 80 are neglected. An input file consists of records.
In Deft the division into records does not have a special meaning, hence
whether items are placed in one or more records does not alter the mean-
ing. However, to increase readability it is recommended to put each com-
mand or data item in a new record. This also simplifies maintenance.
In SEPRAN it is usually necessary to start each command at a new line.

separator All characters except letters, digits and the underscore sign ( ) will
be regarded as separator between items. This includes also a space and
end of line character.

keyword A keyword is defined as a set of characters consisting of letters and
the underscore sign ( ) only. The input is in case insensitive, except for
strings used in output.
It is not always necessary to type the complete keyword. In most cases only
a limited number of characters is significant. The significant characters
are written in capitals in this manual. In the input file they may be in
lower case. However, it is recommended not to restrict yourself to the
significant characters, since this may reduce readability.

comment record Each record with a ∗ sign in the first column will be regarded
as a comment record. It will be skipped when the input file is processed.

comment character It is also possible to provide a comment within a record.
The hash sign(#) is then used as comment character. All information
behind # is treated as comment.

number Numbers in records are represented in the same way as FORTRAN
constants, for example: 1.0, 1.0D0, 1.0E-1, 1, .01 ; they may
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not contain any spaces. The first character of a number must be a digit,
minus sign or a point.

special characters In some cases the opening and closing brackets ( and )
have a special meaning. If this is the case, this is explicitly remarked in
the description of the input file.

SET COMMANDS With the use of the so-called SET commands the user
may give special information to the program reading the input file. These
SET commands may be placed anywhere in the input file. They are active
from the moment they are read.
For Deft the following SET commands may be useful:

SET OUTPUT OUT Once this set command is read all input read from the
input file is not echoed anymore, until set output on is read.

SET OUTPUT ON Reactivates the echoing of the input file.

SET SKIP ON All input read after this command is skipped, which means
that it is treated as comment that is not echoed. Reading is presumed in
the standard way as soon as set skip off is read. This command may for
example be used to prepare input files for a complete job without actually
carrying out all commands.

SET SKIP OFF Reactivates standard reading of the input file.
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Chapter 4

Grid generation

The first stage of an Deft job is to generate a grid. In that stage the user must
decide whether he wants to use a single block approach or if multi block is
necessary. Furthermore in the grid generation part it is also necessary to mark
boundaries for example by a name or number in order to identify them in the
pre-processing part. The reason is the prescription of boundary conditions at
items that are known by some name.

Grid generation may be performed with any available package. However, Deft
requires a special file format to be made by this grid generator and hence some
”file translator” may be necessary.

The present version of the Deft incompressible pre-processor expects that the
grid has been made by the SEPRAN grid generator SEPMESH, using the special
option ”isnas”, see Section 4.1 or alternatively by the grid generator Liss.

4.1 Grid generator SEPMESH

4.1.1 General remarks

Before the grid may be created the user must keep in mind that an Deft grid
consists of one or more blocks. Each block will be mapped homeomorphically
onto a rectangle (2D) or a rectangular hexahedron (3D). This means that the
mapping is continuous with continuous inverse. As a consequence a block in 2D
has four sides and four vertices, although each side itself may contain several
subsides. In R3 the grid must be restricted to a single block, since multi block
has not yet been implemented for R3. A block can not contain any holes.

The sides of the 2D block or the surfaces of the 3D block may not degenerate to
a quantity of lower dimension (point, side). Furthermore opposite sides in the
”rectangle” must have different points although co-ordinates may coincide.
Consider for example the region in Figure 4.1.1 with four sides C1 to C4. It is
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not allowed that curve C4 reduces to a single point. The curves C1 and C3 are
identical in the sense that they have the same co-ordinates. However, with re-
spect to the grid generation they are completely different. They will be treated
as independent curves. Identification of these curves in the computational pro-
gram is only possible by defining periodical boundary conditions at the curves
C1 and C3.

There are no limitations in the ways blocks may be coupled. Hence one side of

C1

C4

C2

C3

Figure 4.1.1: C-type region with four sides C1 to C4

a block may be coupled to (parts of) sides of two other blocks. Of course in
that case it is necessary to divide such a side into subsides since, if tow different
blocks have a common side or subside, they should have the same name in order
to be able to identify them as common. At this moment it is not allowed that
the number of blocks that coincide in one point is more than four.

The generation of the single block grids may be done by a standard SEPRAN
sub grid generator, by a user written sub grid generator or by input from the
standard input file. In this manual only the first possibility is considered. For
the other cases see the SEPRAN Users Manual.
The only sub grid generators allowed for Deft are RECTANGLE for two-dimensional
grids and BRICK for three-dimensional grids.

4.1.2 Definition of points, curves, surfaces and volumes

For the generation of grids we define the following quantities:

Points, Curves, Surfaces and Volumes

Points form the basis for all other components. The user must define the main
points necessary for the generation of curves. These points must be numbered
sequentially from 1 onwards. After the generation of the grid they are connected
to nodal point numbers. The corresponding nodal point numbers are generally
not equal to the point numbers defined by the user.

Curves form the one-dimensional quantities of the grids. For example lines and
arcs are curves. The initial and end points of any curve must already have been
defined as points. Curves have an orientation, defined by the initial and end
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points, hence line C3 = ( P3, P4 ) is different from line C4 = ( P4, P3 ).

Surfaces form the two-dimensional quantities of the grid. The boundaries of
the surfaces must already have been defined as curves. The boundary of a sur-
face must be closed in itself. Whenever in a description of a surface a curve is
needed in the opposite direction of which it was defined, then its number must
be preceded by a minus sign. (See Figure 4.1.4).

Volumes form the three-dimensional quantities of the grid.

All points, curves, surfaces and volumes must be numbered sequentially, each
starting with number one. The outer and inner boundaries as defined in 2.2
must consist of points (in R1), points and curves (in R2), and points, curves
and surfaces (in R3).

The sub grids as defined in 2 must coincide with curves (in R1), surfaces and
sometimes curves (in R2), or with volumes and sometimes curves and surfaces
(in R3).

Anywhere in the manuals where curves, points and surfaces are men-
tioned, the curves, points and surfaces generated by the grid gener-
ator are meant. Nodal points of the grid must be coupled with these
points, curves and surfaces.

Examples

Consider the regions in Figure 4.1.2 and 4.1.3. In Figure 4.1.4 the points, curves
and surfaces for these regions are defined. Points are indicated by Pk (k=1 ,2
,,,), curves by Cl (l=1 ,2 ,,,) and surfaces by Sm (m=1 ,2 ,,,). The corresponding
commands are POINTS, CURVES and SURFACES.
The right upper region in FIGURE 4.1.2 is not allowed in Deft, because subblock
II degenerates into a triangle.
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I

(i)

III

I

II

(ii)

III

(iii)

I

(iv)

Figure 4.1.2: Examples of regions consisting of 1 (i),(iv) 3 (ii) and 2 (iii) subre-
gions

I

6 outer boundaries

III

I

II

5 outer boundaries
2 inner boundaries

III

8 outer boundaries
2 inner boundaries

I

4 outer boundaries
1 inner boundary

Figure 4.1.3: Examples of inner and outer boundaries each provided with a
direction
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4.1.3 Generation of the curves

First the user must define all points, secondly all curves and finally all surfaces.
For the definition of curves, the user may specify both the number of nodal
points on a curve, and the distribution of these points.
For the definition of the curves the following FUNCTIONS are available:

LINE< cell type >: generates a straight line from point Pi to Pj.
ARC< cell type >: generates an arc from point Pi to Pj; the centroid Pc must be given.
USER< cell type >: the user gives all coordinates of the nodal points on the line.
CURVES: generates a curve consisting of the subsequent curves Ck, Cl, Cm.

For other functions see Section 4.1.6.
< cell type > is an integer which defines the type of cells along the curves to
be created. In Deft only cell type = 1 is permitted.

The FUNCTIONS LINE, ARC, USER and CURVES have the following shape:

c1 = line <cell_type> ( p1,p2,nelm=n,ratio=r,factor=f )
c2 = arc <cell_type> ( p1,p2,pc,nelm=n,ratio=r,factor=f )
c3=user <cell_type> ( p1,p2,p3, . . . , pn )
c6 = curves ( ck, cl, cm, . . )

with n the number of cells in the curve.

The distribution of the nodal points is given by the parameters RATIO and
FACTOR:

r=0: equidistant grid size (default)
r=1: the last cell is f times the first cell
r=2: each consecutive cell is f times the preceding cell

4.1.4 Generation of surfaces

Each surface must coincide with a subgrid (in two-dimensional problems). For
the generation of nodal points and cells in the surface, a number of so-called
surface generators are available. Of these surface generators only one treated
in this manual. For the other ones the user is referred to the SEPRAN users
manual.

The surface generator described in this manual is RECTANGLE.

RECTANGLE has the following characteristics:

The function RECTANGLE has the following shape:

S1 = RECTANGLE <cell_type> ( C1, C2, C3, C4)

< cell type > is an integer which defines the type of cells in the surfaces to
be created. In Deft only cell type = 5 is permitted, indicating that the grids
consists of four-point quadrilaterals.
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4.1.5 Input for program SEPMESH from standard input

The input for SEPMESH must be opened by the COMMAND mesh1D, mesh2D
or mesh3D, depending on whether the problem is one-, two- or three-dimensional,
and must be closed by the COMMAND END.

COMMAND and DATA records.

The records must be given in the order as specified.
An option is indicated like this [ option ].

ISNAS (mandatory)
COMMAND record: indicates that an Deft output file finvol.new must
be created. If omitted only the SEPRAN output file meshoutput will be
generated.

MESHnD (mandatory)
COMMAND record: opens the input for SEPMESH, and defines the di-
mension of the space NDIM. (NDIM = n).
After the command MESHnD a number of optional commands may be
given. These commands must be given between MESHnD and the manda-
tory command POINTS. Their mutual sequence is arbitrary.

MAXPOINTS = mp (optional)
mp defines the maximum number of user points that are allowed in the
grid. The default value is 1000. If a smaller value is used, some arrays may
be smaller, but in general this has no effect on the total space. In fact,
this option is meant for those cases that 1000 user points do not suffice.

MAXCURVES = mc (optional)
mc defines the maximum number of curves that are allowed in the grid.
The default value is 1000. Compare with MAXPOINTS.

MAXSURFACES = ms (optional)
ms defines the maximum number of surfaces that are allowed in the grid.
The default value is 1000. Compare with MAXPOINTS.

MAXVOLUMES = mv (optional)
mv defines the maximum number of volumes that are allowed in the grid.
The default value is 500. Compare with MAXPOINTS.

POINTS (mandatory)
COMMAND record: defines the points. Must be followed by data records
of the type:

P1 = ( x_1 , y_1 , z_1 )
P2 = ( x_2 , y_2 , z_2 )
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.
Pi = ( x_i , y_i , z_i )

with i the point number and x i, y i and z i the co-ordinates of point i.
For one-dimensional problems only xi is required, etc. Default values for
the co-ordinates: 0.

Remark: The sequence in which the points are given is arbitrary. If points
are skipped, they get the co-ordinates (0,0,0) automatically. The largest
number i used in Pi = . . . defines the maximal number of user points.
If the user wants, he may also give the co-ordinates in polar co-ordinates
instead of Cartesian co-ordinates. In that case the input is

PDi = (ri, φi, zi), with φ in degrees or

PRi = (ri, φi, zi), with φ in radians

instead of Pi = (xi, yi, zi).

These co-ordinates are automatically transformed into Cartesian co-or-
dinates.

CURVES (mandatory)
COMMAND record: defines the curve. Must be followed by data records
of the type:

Ci = LINE <cell_type> ( P1, P2, NELM=n [, RATIO=r, FACTOR=f ] )
Ci = ARC <cell_type> ( P1, P2, P3, NELM=n [, RATIO=r, FACTOR=f ])
Ci = USER <cell_type> ( P1, P2, P3, . . . , Pn )
Ci = PARAM <cell_type> ( P1, P2, NELM=n [,INIT=t_0] [,END=t_1]

[, RATIO=r, FACTOR=f ] )
Ci = SPLINE<cell_type> ( P1, P2, ... ,Pm, NELM=n [, RATIO=r, FACTOR=f ]

[,TYPE=t [,tang=Pk, tang=Pl ] ] )
Ci = CURVES ( Ck, Cl, Cm, . . )
Ci = TRANSLATE Cj ( P1 [,P2, P3, . . . ] )
Ci = ROTATE Cj ( P1, P2, P3 [,P4, P5, . . . ] )
Ci = REFLECT Cj ( AXIS = P1, P2; P3 [,P4, P5, . . . ] )

Curves that have not been defined explicitly, will be treated as non-existing
curves. These curves are not available in the SEPRAN programs.
For an explanation of the various possibilities, see Section 4.1.6.

SURFACES (mandatory)
COMMAND record: defines the surfaces. Must be followed by data
records of the type:
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Si = RECTANGLE<cell_type> (C1, C2, C3, C4 [, SMOOTH = i ] )

with Si the surface number.
Surfaces that have not been defined explicitly, will be treated as non-
existing surfaces. These surfaces are not available in the SEPRAN pro-
grams.
For an explanation of RECTANGLE see section 4.1.7.

VOLUMES (optional)
COMMAND record: defines the volumes. Must be followed by data
records of the type:

Vi = BRICK<cell_type> ( S1, S2, S3, S4, S5, S6 )

with Vi the volume number.
< cell type > is an integer which defines the type of cells in the volumes
to be created. In Deft only cell type = 13 is permitted, indicating that
8-point hexahedra must be created. Volumes that have not been defined
explicitly, will be treated as non-existing volumes. These volumes are not
available in the SEPRAN programs.
For an explanation of BRICK see section 4.1.8.

PLOT (optional) COMMAND record: indicates that the points, curves, the
surfaces and the grid must be plotted, each on a new picture. This com-
mand record may contain data. In that case it has the following shape:

PLOT ( PLOTFM = l, YFACT = y, JMARK = j, NUMSUB = n, CURVE = c,
NODES = no, USERP = u, COLOUR = cl,
SUPPRESS = su, ROTATE = r, EYEPOINT = (x_e,y_e,z_e) )

with PLOTFM = l the length of the plot in centimeters.
Default value: depending on the computer installation, usually 15 or 20.
Instead of PLOTFM = l, the user may set SCALE = s. In that case the
size of the plot of the grid and sub grids is not fixed, but determined by
the co-ordinates of the grid and sub grids.
Hence the length in the x-direction is given by s dx and the length in
the y-direction by s dy, where dx is the maximal difference of the x-co-
ordinates in the grid or sub grid, and dy the same for the y-co-ordinates.

YFACT = y: Scale factor; all y-co-ordinates are multiplied by y before
plotting the grid. y 6= 1 should be used when the co-ordinates in x and y
direction are of different scales, and hence the picture becomes too small.
Default value: 1.

JMARK = j: Indication of how the plot of the grid must be made. Pos-
sibilities:
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0,3 Each nodal point will be marked with a star and its nodal point
number.

1,4 Each nodal point will be marked with a star. Nodal point numbers
will not be plotted.

2,5 Nodal points will not be marked and nodal point numbers will not
be plotted.

When JMARK < 3 all cell numbers will be plotted in the centroid of the
cells, when JMARK ≥ 3 no cell numbers will be plotted.

Default value: 5

NUMSUB = n: The sub grids with numbers ≤ NUMSUB are not plotted.
Default value: 0.

CURVE = c: This parameter indicates if the curves must be plotted in a
separate picture. Possible values:

0 Curves are not plotted.

1 Curves are plotted without curve number.

2 Curves are plotted provided with curve number.

Default value: 2.

NODES = no: This parameter indicates if nodes along the curves must
be plotted in the picture containing the curves. So this parameter makes
only sense for c > 0. Possible values:

0 Nodes are not plotted.

1 Each node is indicated with a star-symbol (×).

> 1 Each node is indicated with a symbol from the symbol table. The
sequence number on the symbol table is equal to no− 1.
Which symbols are stored in the symbol table depends on your plot-
ting package.

Default value: 0.

SUPRESS = su: This parameter indicates if pictures must be provided
with texts (su = 1) or not (su = 0).
Default value: 1.

ROTATE = r: This parameter indicates whether plots must be rotated
over 90 degrees or not. Possibilities:

0 The plots are made such that the plotting paper used is minimal.

1 The plot is not rotated.

2 The plot is always rotated over 90 degrees.
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Default value: 0.

EYEPOINT = (xe, ye, ze): This command makes only sense in case of a
3D region. The use of EYEPOINT indicates that a final 3D grid is plotted
with hidden lines. In the case that there are many cells this plot may take
much time. (xe, ye, ze) defines the point where the observer is positioned.
Remark: EYEPOINT must be written as one word.

In case of a 3D grid only the sub grids are plotted, without the removal
of hidden lines, except when EYEPOINT is given. For a final plot of the
complete region with hidden lines removed, one may use PLOTMESH.

END (mandatory)
End of the input for SEPMESH.

Remark:

The input must be given in the sequence:
ISNAS
MESH record
optional commands
POINTS
CURVES
SURFACES
VOLUMES
PLOT
END

4.1.6 Curve generators

In this section the various curve generators will be treated. These curve gen-
erators are activated by the command CURVES in the input for the program
SEPMESH. The following types of curve generators are available:

LINE
ARC
USER
PARAM
SPLINE
CURVES
TRANSLATE
ROTATE
REFLECT

These curve generators have the following global functions:
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LINE generates a straight line between two end points.

ARC generates an arc from begin point to end point; the centroid must be
given.

USERi the user gives all coordinates of the nodal points on the line.

SPLINE A curve is defined by a spline through a number of points.

PARAM The user defines a curve by a function subroutine FUNCCV using a
parameter representation.

TRANSLATE Copy a curve and translate it over a fixed distance.

ROTATE Copy a curve and translate and rotate this new curve.

REFLECT Make a reflection of a curve with respect to a given line.

CURVES Create a new curve by combining old curves.

The following options have a global meaning for each of the curves, where they
may be used:

NELM=n gives the number of cells that must be created along the curve
(linear or quadratic depending on the value of j).

RATIO=r indicates the options for distribution of the nodal points. Possibil-
ities:

r=0: equidistant grid size (default)

r=1: the last cell is f times the first one.

r=2: each next cell is f times the preceding one.

r=3: the last cell is 1/f times the first one.

r=4: each next cell is 1/f times the preceding one.

FACTOR=f the factor to be used when r >1. Default: f=1.

INIT=t0 gives the starting value of the parameter t along the curve. This
parameter t is used in the call of subroutine FUNCCV (See the SEPRAN
Users Manual 2.3.1).
Default value: t0 = 0.

END=t1 gives the end value of the parameter t along the curve.
Default value: t1 = 1.

Extended description of the various curve generators

LINE The input for LINE must be given in the following way:

Ci = LINE 1 ( P1, P2, NELM=n [, RATIO=r, FACTOR=f ] )
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This means that a straight line is generated from point P1 to point P2,
with a division of cells as indicated by the options.

ARC The input for ARC must be given in the following way:

Ci = ARC 1 ( P1, P2, P3, NELM=n [, RATIO=r, FACTOR=f ])

When ARC is used an arc is generated from point P1 to P2 with centre
P3.
In R2 the sign of P3 indicates the direction of the arc. When P3 is given the
arc is created counter clockwise, when -P3 is given it is created clockwise.
In R3 the smallest arc from point P1 to point P2 is chosen. If the angle
is exactly 180◦, that is if the points P1, P2 and P3 are positioned on
a straight line, then the direction of the arc is undefined. The arc is
positioned in the plane through P1, P2 and P3.

Remark: The user may give the centroid of an arc in an inaccurate way.
The centroid is computed as the projection of the centroid given by the
user on the line orthogonal to the line through the two end points of the
arc and going through the midpoint of these two points. See Figure 4.1.5.
Of course this is only possible when initial point and end point of the arc
are essentially different points.

PC

P P12

c

Figure 4.1.5: Computation of the centroid of an arc

USER The input for USER must be given in the following way

Ci = USER 1 ( P1, P2, P3, . . . , Pn )

The curve is defined by the points P1, P2, P3, . . . , Pn in that sequence.

SPLINE: The input for SPLINE must be given in the following way:
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Ci = SPLINE 1 ( P1, P2, ... ,Pm, NELM=n [, RATIO=r, FACTOR=f ]
[,TYPE=t [,tang=Pk, tang=Pl ] ] )

When SPLINE is used, the curve is defined by a cubic spline through the
points P1, P2, P3, . . . , Pm. At least 3 points are required. The curve
passes through all points P1, P2, .... Pm and has continuous derivative
and curvature. None of the internal points P2, P3, ... Pm-1 is necessarily a
nodal point. These points are not connected to nodal points either, so they
can not be used in later stages of SEPRAN programs. In each sub interval
[Pi, Pi+1] the curve is a polynomial of the third degree. In SEPRAN the
following SPLINE types are accessible by the option TYPE=t:

t=1 The tangent of the curve is zero in the end points P1 and Pm.

t=2 In [P1,P2] and [Pm− 1,Pm] the curve is a polynomial of degree 2.

t=3 The spline is a closed curve, i.e. there is no begin or end point: P1
and Pm must be the same point!

t=4 The spline is defined by the points P1, P2, . . . , Pn with derivatives
prescribed in both begin and end point of the curve. The user must
give the direction and magnitude of these derivatives by the phrase
tang = Pk, tang = Pl. It is assumed that the vector Pk - P1 is
the derivative in the initial point P1, and the vector Pl - Pm in the
end point Pm. Hence the points Pk and Pl must have been defined
already in the section points. Note that Pk is connected with the
starting point and Pl with the end point.

If TYPE = t is omitted, t=1 is assumed.

The division of cells on the curve is defined by the parameter i, NELM=n,
and (optional) RATIO=r, FACTOR=f .

PARAM The input for PARAM must be given in the following way:

Ci = PARAM 1 ( P1, P2, NELM=n [,INIT=t_0][,END=t_1]
[, RATIO=r, FACTOR=f ] )

PARAM generates a user defined curve. The user must give the co-
ordinates x, y and z as function of a parameter t with the aid of a user
written subroutine FUNCCV. The parameter t goes from t0 to t1. The
initial point is given by P1 and the end point by P2.
In this case, the length of the cells is created according to the rules de-
fined by the parameters NELM, RATIO and FACTOR. As a consequence,
the parameter t does not have to be distributed according to these same
rules. Therefore, during the generation of the curves it is necessary for
the program to compute the length of the curve and hence the function
FUNCCV is called far more times then may be expected beforehand.
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It is also permitted to give the distribution of the t-values over the inter-
val. To that end 5 negative values of RATIO = r are permitted, with the
following meaning:

r=-1: equidistant distribution of t, compare with r=0.

r=-2: the last t-value is f times the first one, compare with r=1.

r=-3: each next t-value is f times the preceding one, compare with r=2.

r=-4: the last t-value is 1/f times the first one, compare with r=3.

r=-5: each next t-value is 1/f times the preceding one, compare with
r=4.

TRANSLATE The input for TRANSLATE must be given in the following
way

Ci = TRANSLATE Cj ( P1 [,P2, P3, . . . ] )

When TRANSLATE is used, the curve Ci is a copy of curve Cj translated
over a distance ∆x = ((P1i − P1j)x, (P1i − P1j)y , (P1i − P1j)z) with
P1i the first point on Ci and P1j the first point on Cj. j must be smaller
than i.
If the points P2, P3, P4, ... are given, these points correspond to the sec-
ond, third etc. user points on Cj in that sequence. When these user points
have co-ordinates (0,0,0), they get the new co-ordinates as computed by
the translation, otherwise it is checked whether these points have the cor-
rect co-ordinates, that is if these points are indeed positioned on Ci. The
point numbers i of Pi may not exceed the maximal number of user points.
For most applications it is necessary that both the initial and end point of
a curve are identified with user points. However, if the curve to be copied
consists of many user points, defining the end point of the new curve re-
quires a large number of (possibly unnecessary) user points on this new
curve. For that reason the user may identify the last user point at the
new curve by preceding the point number by a minus sign.
So

TRANSLATE Cj ( P1, -P5 )

indicates that the begin point on curve Cj is the user point P1 and the
end point is user point P5. If more user points are defined on the new
curve, then the negative point must always be the last one in the row.

ROTATE The input for ROTATE must be given in the following way:

Ci = ROTATE Cj ( P1, P2, P3 [,P4, P5, . . . ] )

When ROTATE is used, the curve Ci is a copy of curve Cj translated and
rotated, such that the first three user points at Ci (P1, P2 and P3) are the
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copies of the corresponding user points at Cj. For two-dimensional grids
it suffices to give two points only. If a straight line has to be translated
and rotated in 3D it also suffices to give two user points on the curve Ci.
These user points define the translation as well as the rotation. ROTATE
may only be used for curves in a plane. j must be smaller than i.
If the points P4, P5, P6, ... are given, these points correspond to the
fourth, fifth etc. user points on Cj in that sequence. When these user
points have co-ordinates (0,0,0), they get the new co-ordinates as com-
puted by the rotation, otherwise it will be checked whether these points
have the correct co-ordinates, that is if these points are in fact positioned
on Ci. The point numbers i of Pi may not exceed the maximal number
of user points.
In the same way as for TRANSLATE the last user point in the case of
ROTATE may be identified by a minus sign.

REFLECT The input for REFLECT must be given in the following way:

Ci = REFLECT Cj ( AXIS = P1, P2; P3, P4[, P5, . . . ] )

When REFLECT is used, curve Ci is a reflection of Cj with respect to
the reflection line P1 - P2. At least two user points P3 and P4 have to
be given. If the points P5, P6, ... are given, these points correspond to
the third, fourth etcetera user points on Cj in that sequence. When these
user points have co-ordinates (0,0,0), they get the new co-ordinates as
computed by the reflection, otherwise it is checked whether these points
have the correct co-ordinates, that is if these points are indeed positioned
on Ci. The point numbers i of Pi may not exceed the maximal number
of user points.
In the case that a curve has to be reflected in R3 instead of R2 AXIS =
P1, P2; should be replaced by RPLANE = P1, P2, P3; since in the three-
dimensional space a reflection plane is required.
In the same way as for TRANSLATE the last user point in the case of
REFLECT may be identified by a negative sign.

CURVES The input for CURVES must be given in the following way:

Ci = CURVES ( Ck, Cl, Cm, . . )

When CURVES is used a curve is defined by the subsequent curves Ck,
Cl, Cm, ... When the sign of the curve number is positive, the positive
direction will be used, otherwise (negative sign), the reversed direction of
the curve will be used. The curve numbers Ci must be larger than Ck, Cl,
and Cm.

4.1.7 Surface generator RECTANGLE

The surface generator RECTANGLE is called by the program SEPMESH. The
user may activate RECTANGLE by data records of the type:
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Si = RECTANGLE 5 ( C1, C2, C3, C4 [, SMOOTH = i] )

with Si the surface number, 5 the shape number of the cells created in this
surface, and C1, C2, C3 and C4 the curves enclosing Si.

Characteristics of RECTANGLE:

Generates a subgrid that can be homeomorphically mapped onto a rectangular
grid. The number of curves along the boundary must be exactly equal to four
and it is assumed that N is equal to the number of cells at the first curve and
M equal to the number of cells at the second one. Of course it is necessary that
the number of points at the third curve is equal to the number of points at the
first curve and the number of cells at the fourth curve is also equal to M.
If sub curves are used, the curves along the boundary must be packed by the
curve generator CURVES, which creates curves of curves.

With the parameter SMOOTH it is possible to define a kind of smoothing in the
grid. First the grid is generated by a algebraic method and then, if i > 0, the
grid is smoothed by a so-called potential smoother. The smoothing is stopped
if the relative difference between two steps in the smoothing process is less than
10−i. If SMOOTH is not given i = 0 is assumed and no smoothing takes place.
Smoothing may be especially useful if the grid is used for a boundary fitted
finite volume or finite difference program. Figure 4.1.6 shows the grid in an
l-shaped region using the non-smooth grid generated by the following input:

mesh2d
isnas
points

p1=(0,0)
p2=(1,0)
p3=(1,3)
p4=(4,3)
p5=(4,4)
p6=(0,4)

curves
c1 = line1(p1,p2,nelm=16)
c2 = line1(p2,p3,nelm=16)
c3 = line1(p3,p4,nelm=16)
c4 = line1(p4,p5,nelm=16)
c5 = line1(p5,p6,nelm=16)
c6 = line1(p6,p1,nelm=16)
c7 = curves(c2,c3)
c8 = curves(c5,c6)

surfaces
s1 = rectangle5(c1,c7,c4,c8)

plot
end
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Also in Figure 4.1.6 the result is shown once the record with RECTANGLE is
replaced by:

mesh2d
isnas
points

p1=(0,0)
p2=(1,0)
p3=(1,3)
p4=(4,3)
p5=(4,4)
p6=(0,4)

curves
c1 = line1(p1,p2,nelm=16)
c2 = line1(p2,p3,nelm=16)
c3 = line1(p3,p4,nelm=16)
c4 = line1(p4,p5,nelm=16)
c5 = line1(p5,p6,nelm=16)
c6 = line1(p6,p1,nelm=16)
c7 = curves(c2,c3)
c8 = curves(c5,c6)

surfaces
s1 = rectangle5(c1,c7,c4,c8,smooth=2)

plot
end

Remark

In R3 subgrid generator RECTANGLE may only be applied in a plane.
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Figure 4.1.6: grid in L-shaped region without and with smoothing.

Examples of regions that may be subdivided by RECTANGLE

Actual grids

4.1.8 Volume generator BRICK

The volume generator BRICK is called by program SEPMESH. The user may
activate BRICK by data records of the type:

Vi = BRICK 13 ( S1, S2, S3, S4, S5, S6 )

with Vi the volume number and S1, S2, . . . the surfaces enclosing Vi. The
volume must be enclosed by exactly 6 surfaces. If sub surfaces are required
the user must define surfaces of surfaces. See the SEPRAN Users Manual for a
description.

Characteristics of BRICK:

Generates a sub mesh that can be mapped onto a rectangular (three-dimensional)
grid. This rectangular region is plotted in Figure 4.1.7.
The region is defined by the 6 surfaces. These surfaces must each be tri-
angulated by the surface generator RECTANGLE. The surfaces must be
given in the sequence S1, S2, . . . , S6, where

S1 is defined by the face 1,2,3,4,

S2 is defined by the face 1,2,6,5,
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1
N

NM(M-1)N+1

Computational grid

N = 3, M = 5

Number of cells along the boundary:

2 (N + M)

S3 is defined by the face 2,3,7,6,

S4 is defined by the face 4,3,7,8,

S5 is defined by the face 1,4,8,5,

S6 is defined by the face 5,6,7,8.

The numbers refer to the points in Figure 4.1.7. These surfaces must each
be generated in the way as indicated above, hence S1 must start with
point 1, then point 2, point 3 and point 4, etc.
The parameters N, M and L correspond to the number of elements to be
created along the surfaces in the following way:

Curves (1,2), (5,6), (4,3), (8,7): n elements.

Curves (1,4), (2,3), (5,8), (6,7): m elements.

Curves (1,5), (2,6), (3,7), (4,8): l elements.

The surfaces may be curved and do not have to be part of a plane. The
number of elements to be created is equal to αnml where α=1 for hexa-
hedral elements and α=6 for tetrahedral elements.

Remark

Instead of the surface generator RECTANGLE also the surface generators COONS
and PARSURF may be used to generate the surfaces, provided the number of
nodes is the same at opposite curves. In fact in these cases the underlying sub
mesh generator is RECTANGLE. See the SEPRAN Users manual for details.
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Figure 4.1.7: Rectangular region with 6 sides
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Chapter 5

Input for the computational
part

In this chapter we shall give a complete description of the Deft input file to
be read by program ISNASPRE. This input file is a simple ASCII text file
satisfying the rules described in Section 3.7. In contrast to SEPRAN files,
newline characters have no special meaning except that they act as separator.
Nevertheless the use of indents and newlines improves the readability and is
therefore strongly recommended.
Keywords in the Deft input file may be abbreviated. It is advised, however,
to use full names. The significant characters are set in capitals in this manual.
The input file itself is case insensitive which means that there is no difference
between capitals and lower case letters.

All keywords between the square brackets [ and ] may be considered as optional
and hence may be neglected. In that case default values are used.

In Section 5.1 the general structure of the input file is described. The description
of the sub blocks is postponed to subsequent sections.

5.1 Global description of the Deft input file

The Deft input file contains a number of so-called main keywords which control
the global flow of the program. Some of these main keywords define parameters,
others denote the beginning of a sub block. These sub blocks define a special
sort of parameters, for example all parameters associated with the linear solver
or all parameters corresponding to the coefficients.

Some of the main keywords are mandatory others are optional. If optional
keywords are neglected, default values are used instead.

The main keywords are given in the following list:
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Keyword Default value mandatory

NUMBER_OF_TRANsport_equations = n 0 no
NUMBER_OF_COMPuters = n 1 no
TIMEON / TIMEOFF off no
OUTPut_level = n 0 no
POSTTYPe = n 0 no
STATionary time-dependent no
DISCRETization no
TIME_integration yes
BOUNdary_conditions yes
COEFficients yes
LINEar_solver no
INITial_conditions yes
TURBulence none no
MULTI_BLOCK no
COMPRESSIBLE no
FULLY_COMPRESSIBLE no
CAVITY no
COLLOcated_grid staggered_grid no
STAGGered_grid staggered_grid no
MULTI_PHase_gas_flow standard flow no
FREE_SURFACE_FLOW none no
NO_TIME_LOOP time-dependent no
MAIN_STRUCTURE none no
PROFILE_INPUT none no
FREQUENT_OUTPUT none no
END_input no

Meaning of these keywords:

NUMBER OF TRANSPORT EQUATIONS = n defines the number of
transport equations that must be solved simultaneously with the momen-
tum equations. Turbulence equations like the k and ε equations should
not be included in this number since their presence is dealt with in the
part treated by TURBULENCE. Transport equations are solved taking
all dependent variables at the old time level.
The default value for n is 0, which means that only the momentum equa-
tions, including the pressure and possibly the turbulence equations are
solved.

NUMBER OF COMPuters = n defines the number of processors that may
be used in parallel. If this option is used, it is supposed that you have the
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possibility to use several computers or processors in parallel and that the
MPI message passing system has been installed on your computer.
If n = 1, only one computer is used and the standard serial algorithm is
applied.
For n > 1, parallel computing is applied at the n processors available.
The default value for n is 1.

TIMEON / TIMEOFF These keywords indicate whether the CPU time must
be printed after each main subroutine (on) or not (off).

OUTPUT LEVEL = n Defines the amount of output to be produced.
The following values of n may be used:

n = -1: almost all output is suppressed,

n = 0: standard amount of output,

n > 0: extra information, depending on the value of n. At this moment
n < 3 is allowed.

The default value is n = 0.

POSTTYPE = n Defines how the unknowns in the centroid are translated
to the vertices. This parameter makes only sense for post processing
purposes, since it is applied before writing the results to the output file(s).

n = 0: Interpolation is performed in physical space. A Newton process
is applied to detect the position of a vertex with respect to its four
surrounding centroids. This approach is accurate but more expensive
than the interpolation in computational space.

n = 1: Interpolation is performed in computational space. In case of
non-smooth grids this approach is inaccurate.

The default value is n = 0.

STATIONARY means that the solution to be computed is stationary. If
omitted it is assumed that the solution is time-dependent.
If this keyword is given it is checked if the stationary stop criterion is
satisfied and if so, the computation is stopped.
However, the computation performed is instationary, hence the stationary
solution is reached by a time-stepping process.

DISCRETIZATION This keyword indicates that the user wants to give some
extra information about the space-discretization. This keyword must be
followed by subkeywords containing this extra information. If omitted the
standard discretization is used.
See Section 5.2

TIME INTEGRATION This keyword must be followed by subkeywords
containing information about the time-integration to be applied. Also
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information as initial time, end time and time-step should be given in this
part. For that reason the keyword time integration is mandatory.
See Section 5.3

BOUNDARY CONDITIONS This keyword must be followed by subkey-
words containing information about the boundary conditions at the ex-
ternal boundaries. This keyword is mandatory.
See Section 5.4

COEFFICIENTS This keyword must be followed by subkeywords contain-
ing information about the coefficients of the various differential equations
(momentum and transport equations) but not of the turbulence equations.
This keyword is mandatory.
See Section 5.5

LINEAR SOLVER This keyword must be followed by subkeywords contain-
ing information about the linear solver for the various differential equa-
tions (momentum, pressure, turbulence and transport equations). It con-
cerns questions like which linear solver to use, which accuracy is required,
what type of pre-conditioner and so-on. If omitted the default values are
used. See Section 5.6

INITIAL CONDITIONS This keyword must be followed by subkeywords
containing information about the initial conditions for the various equa-
tions. If omitted the default values are used, which means that all degrees
of freedom are initialized to zero, except the turbulence quantities, which
are set to 10−4 See Section 5.7

TURBULENCE This keyword must be followed by subkeywords containing
information about the type of turbulence modeling and if necessary about
the coefficients to be used. If omitted a laminar flow is assumed. See
Section 5.8

MULTI BLOCK This keyword must be followed by subkeywords contain-
ing information about the multi block process for the various differential
equations (momentum, pressure, turbulence and transport equations). It
concerns questions like which type of algorithm to use, which accuracy is
required and so-on. If omitted the default values are used. See Section
5.9

COLLOCATED GRID Indicates that the momentum equations must be
solved on a collocated grid instead of a staggered grid.

STAGGERED GRID Is in fact superfluous, but has been added as opposed
to COLLOCATED GRID. It indicates that the momentum equations are
solved on a staggered grid, which is in fact the default.

COMPRESSIBLE This keyword must be followed by subkeywords contain-
ing information about the compressible flow computation. If omitted the
default values are used. See Section 5.10
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FULLY COMPRESSIBLE This keyword must be followed by subkeywords
containing information about the compressible flow computation. If omit-
ted the default values are used. See Section 5.10
The only difference with compressible is that not the pressure correction
method will be used but that the continuity equation, the momentum
equation and the energy equation are solved in a time-dependent semi
implicit way. This option has not yet been implemented in Deft.
The keywords COMPRESSIBLE and FULLY COMPRESSIBLE are mu-
tually exclusive.

CAVITY This keyword must be followed by subkeywords containing informa-
tion about the cavity model. If omitted the default values are used. See
Section 5.11

MULTI PHASE GAS FLOW means that the multi phase gas flow equa-
tion is solved instead of the standard equation.

FREE SURFACE FLOW When this keyword is found it is assumed that
at least one of the boundaries is a free-surface boundary with adapted
boundary conditions. The coordinates of this boundary may change in
time.
The keyword may be followed by subkeywords defining information about
the way the boundary must be changed in time. See Section 5.12

NO TIME LOOP If this keyword is found the solution is not only assumed
to be stationary, but also a stationary solver is used. This means that no
time-stepping algorithm is applied.
The keywords no_time_loop and stationary are mutually exclusive.

MAIN STRUCTURE This keyword is meant to have some influence on the
structure of the main time-stepping subroutine. This keyword is meant
for specialists only.
The keyword may be followed by subkeywords defining information about
the structure of the main program. See Section 5.13

PROFILE INPUT This keyword is meant to define some information with
respect to a flow around a (two-dimensional) profile.
At this moment it is only implemented in the unstructured finite volume
program, not yet in Deft.
The keyword may be followed by subkeywords defining information about
the profile. See Section 5.14

FREQUENT OUTPUT This keyword is meant to define which quantities
must be written in each time step to a special file.
This is especially useful if some quantities must be followed in time. It
concerns a limited number of quantities, complete fields are only written
at the time-steps indicated by tout.
At this moment it is only implemented in the unstructured finite volume
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program, not yet in Deft.
The keyword may be followed by subkeywords defining information about
which quantities must be written. See Section 5.15

END INPUT defines that the end of the input has been reached. If this
keyword is not available all information until the end of the file is read.

Input with respect to the restart file must be given in the part INITIAL CONDITIONS
(reading from the restart file) and TIME INTEGRATION (writing to the restart
file).

5.2 The keyword DISCRETIZATION

The keyword DISCRETIZATION indicates that the user wants to give some
extra information about the space discretization. This keyword must be followed
by subkeywords containing this extra information. If omitted the standard
discretization is used.
The keyword may be followed by the following subkeywords:

MOMentum_equations
TRANSport_equation iseq
TURBulence_equation iseq

These subkeywords indicate to which equations the next subsubkeywords refer.
In case of a transport equation or turbulence equation, the keyword must be
followed by iseq.
iseq denotes either a number i or the keyword ALL. If a number is given this
means that the information is restricted to the corresponding equation, if ALL
is given it refers to all transport or turbulence equations.
These subkeywords itself may be followed by subsubkeywords that indicate
whether these equations or part of it are skipped and which type of discretization
is used. The following subsubkeywords are recognized:

Keyword Default value mandatory

SKIP/NOSKIP noskip no
SKIP_CONTINUITY_EQUATION noskip no
COUPLED/DECOUPLED depends on grid type no
CONVection/NOCONVection convection no
LIN_CONVection = type Newton no
DISCR_METhod = type classical no
UPWind = type no no
DIFFusion = type standard no
PRINT_MATrix no no
PRINT_GMATrix no no
PRINT_PMATrix no no
PRINT_VECtor no no
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PRINT_PVECtor no no
PRINT_STeps = (itime1,itime2,itstep) (1,1,1) no
CONSERVATIVE no no
AXIsymmetric no no
PRESSURE_Grad = type path_six no
CONTR_VOL = type two_half_tr no
NO_TIME_DERIV no no
NO_PRES_GRAD no no
CONSISTMOM no no

SKIP/NOSKIP If SKIP is used the complete equation is skipped.
NOSKIP is the opposite of SKIP.

SKIP CONTINUITY EQUATION This keyword may only be used for the
momentum equations. If SKIP CONTINUITY EQUATION is used the
continuity equation is skipped and the pressure and density do not change
in time.
This keyword is for example useful if only the momentum equations must
be tested. See for an example the Burgers Equation in Section 9.10.

COUPLED/DECOUPLED If COUPLED is used the momentum equations
are solved as coupled system of equations. If decoupled is used the momen-
tum equations are solved one at a time. At this moment only the combi-
nations STAGGERED GRID and COUPLED, or COLLOCATED GRID
and DECOUPLED are allowed.
If a staggered grid is used the default value is COUPLED, in case of a
collocated grid the default is DECOUPLED.

CONVECTION/NOCONVECTION If NOCONVECTION is used, the
convective terms in the momentum equations are neglected.

LIN CONVECTION defines the type of linearization to be applied with re-
spect to the convective terms. The following two values for type are avail-
able:

NEWton
PICard

In the case of upwinding only Picard linearization is allowed except in
combination with cavity.

AXiSYMMETRIC defines that axi-symmetric coordinates (r,z) are used in-
stead of Cartesian coordinates.

DISCR METHOD defines the type of discretization. The following values of
type are available:
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CLAssical
WESBeek
REDUCed
BILInear_interpolation

The keyword CLASSICAL indicates that the classical Deft discretization
as described in report 91-09 [51] for staggered grids is used. WESBEEK
refers to the improved Wesseling and van Beek scheme either for staggered
grids as explained in [48], or for collocated grids. In the latter case, a lack
of accuracy may appear due to the too simple expression of the pressure
gradient on non-smooth grids.
The keyword REDUCED implies that the cross derivatives in the stress
term are eliminated using the incompressibility condition. This is only
allowed if the viscosity is constant, no turbulence model is used and the
flow is incompressible. This option makes it possible to compare the re-
sults with a Cartesian code and is available for staggered grids.
The keyword BILInear interpolation indicates that bilinear interpolation
is used to get quantities at the cell face center of the control volumes. At
this moment, it is used for collocated grids only, to evaluate accurately
the gradients and the divergences, in combination with the Wesseling and
VanBeek scheme which allows to calculate the stress term and the Lapla-
cian in the pressure-correction equation. The method is explained in [27].

UPWIND defines the type of upwinding applied. The following values of type
are available:

NONe
FIRst_order
HYBrid
HIGher_order, KAPpa = kappa
TVD
LUDs
FROmm
CUI
QUIck
MINmod
SOUcup
SUPerbee
VAN_Leer
HARmonic
HLPa
ISNas
NOTable
VAN_Albada
OSPre
DAVis
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BSOu
MUScl
KORen
SMArt
UMIst
NFIRst_order
STREAM_FIRst, method = g
OLD_NONe
OLD_FIRst_o

Mark that if upwind is applied only Picard linearization of the convective
terms may be utilized, except in combination with cavity.

The keyword NONE indicates that no upwinding is applied, hence the
standard central difference scheme is used.
The keyword FIRST ORDER indicates that the standard first order up-
wind scheme is used.
The keyword HYBRID indicates that the standard hybrid central/upwind
scheme is used.
With the keyword HIGHER ORDER a higher order upwind scheme is ac-
tivated. The keyword KAPPA defines the parameter κ which must be in
the range [-1,1] and defines the type of scheme used. For example κ = 1

2
gives the QUICK scheme and κ = 0 the Fromm’s scheme. If omitted the
default value κ = 1

2 is used.
In order to get a higher order upwind scheme which preserves monotonic-
ity of the solution, the keyword TVD must be chosen. This keyword must
be followed by a subkeyword which specifies a flux limiter:

LIMiter = limtype

where limtype may take one of the following values:

sweby_phi_limiter [,phi=phi]
r_kappa_limiter [,kappa=k]
mr_kappa_limiter [,kappa=k]
symm_ratio_limiter [,mbound=m]
pl_kappa_limiter [,kappa=k, mbound=m, alpha=a]
mplone_kappa_limiter [,kappa=k, mbound=m, alpha=a]
mpltwo_kappa_limiter [,kappa=k, mbound=m, alpha=a]
symm_pl_kappa_limiter [,kappa=k, mbound=m]

The keyword SWEBY PHI LIMITER indicates that one of the limiters of
this type, which is specified by the parameter PHI, is used. For example
Φ = 1 defines the Minmod limiter.
If omitted the default value Φ = 1 is used.

The keyword R KAPPA LIMITER indicates that one of the limiters of
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this type, which is specified by the parameter KAPPA, is used. For ex-
ample κ = 1

2 defines the ISNAS limiter.
If omitted the default value κ = 1

2 is used.

The keyword MR KAPPA LIMITER indicates that one of the limiters of
this type, which is specified by the parameter KAPPA, is used. With this
class a more accurate solution may be obtained.
If omitted the default value κ = 1

2 is used.

The keyword SYMM RATIO LIMITER indicates that one of the limiters
of this type, which is specified by the parameter MBOUND, is used. For
example M = 1 defines the Van Albada limiter.
If omitted the default value M = 1 is used.

The keyword PL KAPPA LIMITER indicates that one of the limiters of
this type, which is specified by the parameters KAPPA, MBOUND and
ALPHA, is used. For example κ = 1

2 , M = 4, α = 0 gives the SMART
scheme.
If omitted the default values κ = 1

2 , M = 2 and α = 0 are used.

The keywords MPLONE KAPPA LIMITER and MPLTWO KAPPA LIMITER
indicate that one of the limiters of these types, which is specified by the
parameters KAPPA, MBOUND and ALPHA, is used. With these classes
a more accurate solution may be obtained.
If omitted the default values κ = 1

2 , M = 2 and α = 0 are used.

The keyword SYMM PL KAPPA LIMITER indicates that one of the lim-
iters of this type, which is specified by the parameters KAPPA and MBOUND,
is used. For example κ = 1

2 , M = 2 gives the UMIST limiter.
If omitted the default values κ = 1

2 and M = 2 are used.

The keywords LUDS, FROMM, CUI, QUICK, MINMOD, SOUCUP, SU-
PERBEE, VAN LEER, HARMONIC, HLPA, ISNAS, NOTABLE, VAN ALBADA,
OSPRE, DAVIS, BSOU, MUSCL, KOREN, SMART and UMIST are the
well-known and frequently used schemes or limiters in the literature. For
details and further references, see Section 2.2.2.

The keyword NFIRST ORDER stands for a first order upwind approach
for tudfinvol (unstructured finite volume solver). The keyword STREAM FIRST
is obsolete.
The keywords OLD NONE and OLD FIRST O are are only available for
tudfinvol (unstructured finite volume solver). They stand for respectively
central interpolation and first order upwind using an old approach to these
interpolation schemes. For more information, see the manuals for tudfin-
vol.

DIFFUSION defines whether the diffusion terms in the transport and tur-
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bulence equations are discretized in the standard way or by a special
monotonous scheme. The following values of type are available:

STandard
HALF_Monotonous
MOnotonous

The keyword STANDARD indicates that the standard central difference
scheme is applied, MONOTONOUS that an adapted scheme is used to
get a monotonous scheme even if the cells are skewed, see [67]. How-
ever, this scheme is one-sided and thus first-order accurate. The keyword
HALF Monotonous gives second-order accurate scheme which is under
certain circumstances monotone, see the thesis of Demirdzic [11].

Remarks:

• At this moment all the upwind schemes mentioned above, except
the hybrid upwind scheme, can be used in the case of momentum
equations.

• In order to employ the upwind schemes for the momentum equations,
Picard linearization should be used (see the keyword LIN CONVECTION).

• At this moment monotonous schemes with respect to diffusion are
only possible for transport and turbulence equations.

• The default discretization for the convective terms in the momen-
tum equations is the central difference scheme and in the turbulence
equations is the hybrid upwind scheme.

PRINT MATRIX indicates that the standard matrix must be printed. The
matrix is printed for all steps indicated by PRINT STEPS. Mark that in
general the matrix is large and hence printing of the matrix produces a
large amount of output.
This option is only meant for debug purposes. If a row of the matrix is
completely zero this row will not be printed.
The layout of the print may be influenced by the isnas.dbg file.

PRINT GMATRIX indicates that the gradient matrix must be printed. This
option makes only sense for the momentum equations.

PRINT PMATRIX indicates that the pressure matrix must be printed. This
option makes only sense for the momentum equations.

PRINT VECTOR indicates that the standard right-hand side must be printed.
The right-hand side is printed for all steps indicated by PRINT STEPS.

PRINT PVECTOR indicates that the pressure right-hand side must be printed.
This option makes only sense for the momentum equations. The right-
hand side is printed for all steps indicated by PRINT STEPS.
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PRINT STEPS indicates that the printing defined by the options PRINT
(P)VECTOR or (G/P)MATRIX must be carried for the time steps ITIME1,
ITIME1+ITSTEP, ITIME1+2×ITSTEP, ... , ITIME2

CONSERVATIVE indicates that a conservative discretization of the convec-
tive terms must be used. This option is only available in 2D for the
classical discretization.
At this moment a conservative discretization usually does not improve
the computations except in the combination of upwind and discontinuous
coefficients.

PRESSURE GRAD gives the user the opportunity to compute the pressure
gradient using distinct methods (only for tudfinvol). The following values
of type are available:

PATH_Six
PATH_Three
AUXLine
FOURPoint
CONTINt

Keyword PATH SIX indicates that the ordinary path-integral method us-
ing six surrounding pressure points is used. Keyword PATH Three indi-
cates that the path-integral method using a three point stencil is used.
Keyword AUXLINE indicates that auxiliary points, between the stencil
points, are used. Keyword FOURPOINT indicates that the four quadrant
method is used. Keyword CONTINT indicates that the pressure gradient
is computed using the contour integral approach.

CONTR VOL gives the user the opportunity to use different control volume
for the momentum equation (only for tudfinvol). The following values are
available:

TWO_WHOLE_TR
TWO_HALF_TR

Keyword TWO WHOLE TR indicates that the control volume for a cer-
tain face consists of the two adjacent triangles. Keyword TWO HALF TR
indicates that the control volume for a certain face consists of the half of
the two adjacent triangles.

NO TIME DERIV indicates that the time derivative is omitted.

NO PRES GRAD indicates that the pressure gradient in the momentum
equation is omitted.

CONSISTMOM indicates that the consistency of a term in the momentum
equation is investigated.
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5.3 The keyword TIME INTEGRATION

The keyword TIME INTEGRATION indicates that the user wants to define
information about the time-integration process. This keyword must be followed
by subkeywords containing this information.
The following subsubkeywords are recognized:

Keyword Default value mandatory

METHOD = n THETA no
TINIT = t0 0 no
TEND = (t1,t2,t3,...,tl) 1 no
THETA = (theta1, theta2,...) 1 no
TSTEP = (dt1,dt2, ... ) 0.1 no
TOUTInit = t t1 no
TOUTEnd = t t1 no
TOUTStep = DT dt no
TOUTStep = DT dt no
ABS_STATIONARY_ACCURACY = eps 0 no
REL_STATIONARY_ACCURACY = eps 0 no
OUTSESSION = sessionname 1 no
RINIT = t0 TOUTEND no
REND = t1 TOUTEND no
RSTEP = tstep TOUTSTEP no
FORCE_DELETION = n NO no
RESTART = n NONE no
OUTPUT = n DUMP no
NORM = type LTWO no
NSUBSTEPS_TURBULENCE = n 1 no
PRESS_CORR_TIME_ITERATION no no
ABS_PRESS_CORR_ACCURACY = eps 1d-4 no
RELAXATION_PRESS_CORR = r 0 no

METHOD = n defines the type of time-integration method to be used. The
following values of n are available:

THETA
FRACTIONAL_STEP
GENERALIZED_THETA

THETA The classical θ-method with exactly one value of θ is used. For
θ = 1, this is the classical Euler implicit method and for θ = 1

2 the
Crank-Nicolson scheme. Only values of θ in the range [0.5, 1] are
allowed. In this case the default value of θ is 1.

FRACTIONAL STEP defines the fractional step method defined in
Section 2.3. The fractional step method uses three fractional steps
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consisting of six values of θ. The default values for θ are:

θ1 = θ5 = βθ, θ3 = α(1−2θ), θ2 = θ6 = αθ, θ4 = β(1−2θ) (5.1)

with

α =
1− 2θ

1− θ
, β =

θ

1− θ
, θ = 1−

√
2

2
(5.2)

GENERALIZED THETA defines the generalized θ method defined in
Section 2.3. The number of steps used in this method is implicitly
defined by the input after THETA. The number of θ-values given
must be equal to two times the number of steps. If no θ-values are
given the default number of three steps with the following θ-values
are used.

θ1 = θ5 =
α

2
, θ3 = 0, θ2 = θ6 = α

√
3

6
, θ4 = α

√
3

3
(5.3)

with

α =
(

1 +
2√
3

)−1

. (5.4)

TINIT = t0 defines the initial time.

TEND = t1 defines the end time of the integration.
If the user wants to use various time-steps ∆t, for each new time-step
a separate end time must be given. The number of time-steps and the
number of end times must be equal.
Of course it is necessary that t1 < t2 < t3...

TSTEP = ∆t defines the time step of the integration.
If the user wants to utilize different time steps for different time intervals
he may give a number of time steps and a number of end times provided
these numbers are equal.
For example TEND = t1, t2, t3; TSTEP = ∆t1, ∆t2, ∆t3 means that in
the interval [t0, t1] time step ∆t1 is used, in the interval [t1, t2] time step
∆t2 and in the interval [t2, t3] time step ∆t3.

THETA = θ defines the parameter in the θ method.
In case of the fractional θ method the user must give exactly six θ-values,
unless the default values are used.
In case of the generalized θ-method the user must give 2 × NFRAC θ-
values, where NFRAC is the number of fractional steps, unless the default
values are used.

TOUTINIT = t defines the first time at which output of all solutions to the
output file is written. If this parameter is not defined only the last time-
step is written.
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TOUTEND = t defines the last time at which output of all solutions to the
output file is written. The default value is TEND.

TOUTSTEP = DT defines the frequency with which output of all solutions
to the output file is written. The default value is ∆t1, which means that
all time-steps from TOUTINIT to TOUTEND are written.

ABS STATIONARY ACCURACY = ε1 indicates that the solution is as-
sumed to be stationary and that the process stops as soon as steady state
has been reached. This is the case when

‖uk+1 − uk‖ <
1− λ

λ
(ε1 + ‖uk‖ε2), (5.5)

where λ is the computed speed of convergence,
ε1 is the ABS STATIONARY ACCURACY given and
ε2 the REL STATIONARY ACCURACY .
uk is the vector of all unknowns at the kth time-step.
In any case the process stops if t reaches TEND.

REL STATIONARY ACCURACY = ε2 defines the relative accuracy part
of the stationary stopping criterion. If neither the absolute nor the relative
stationary accuracy are given, the solution is assumed to be instationary.

OUTSESSION = sessionname sets the name of the session to be written to
the restart file. If sessionname is a new name of a session in the restart
file, then if ’RESTART = overwrite’ the last session in the restart file will
be overwritten. If ’RESTART = append’ the session will be appended to
the restart file.
If sessionname is an existing name of a session in the restart file, then if
’RESTART = overwrite’ the session in the restart file will be overwritten.
If ’RESTART = append’ the session will be appended to the restart file
from the time given by RINIT.
At this moment sessionname is restricted to numbers.

RINIT = t0. The first solution will be written to the restart file at t = t0.

REND = t1. The last solution will be written to the restart file at t = t1.

RSTEP = tstep. Solutions will be written at times tk = t0 + k × tstep.

FORCE DELETION = n. When inserting a new session in the restart file,
all sessions following that session will be deleted. n = yes indicates that
this is allowed, n = no means not allowed. With n = no, the Deft program
will print an error message and stop execution.

RESTART = n. Indicates if and how the solution is written to the restart file
(isnasback). The following values for n are available:
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append
overwrite
none

append means that the solution must be appended to the specified ses-
sion. Append can only be used if the current job is restarted from
the same session that we want to append to. Also, the numbers of
degrees of freedom must be the same. Specifically, if the input job
(INSESSION) is laminar, the output job cannot be turbulent.

overwrite means that the indicated session must be overwritten if it
already exists. Otherwise, it is appended to the restart file.

none means that no restart file will be written.

The default value is none

If there are any other sessions in the restart file after the indicated session,
these will be deleted if the FORCE DELETION option is present. Oth-
erwise the Deft program will print an error message and stop execution.

OUTPUT = n indicates in which form the solution is written to the restart
file.
The following values for n are available:

dump
Cartesian

dump means that the computed solution is written without applying any
transformation. This option is only useful if the solution is reused
with exactly the same grid. In that case it is also the most accurate
one.

Cartesian implies that the velocity components are transformed from
contravariant (is computational) ones into Cartesian (is physical)
components. This option is less accurate than the option dump and
requires an extra transformation. However, if the solution must be
interpolated to a different grid (for example a refined mesh), it is nec-
essary to make this transformation since the contravariant solution
is grid dependent.

NORM = type indicates what type of norm is used to compute the stopping
criterion. Possible values for type are:

ltwo
max

ltwo The L2 norm is used.

max The max norm is used.
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Default value: L2 norm.

NSUBSTEPS TURBULENCE = n indicates the number of sub-steps the
time integration for the turbulence equations is subdivided into. This
means that in each time step, the turbulence equations are solved with a
time-step equal to ∆t

n .
The reason to use sub-steps is that the time scale of the turbulence equa-
tions may be much smaller than that of the momentum equations. Hence
for stability reasons it may be necessary to use a smaller time step. If an
overall smaller time step is used, more work per time step must be carried
out.
Default value: 1

PRESS CORR TIME ITERATION indicates that an iteration per time
step is performed in order to make the pressure correction method implicit.
Hence in each time step several pressure correction steps are carried out.
In this way the continuity equation could be satisfied more accurately.

ABS PRESS CORR ACCURACY = ε defines to which accuracy the pres-
sure correction iteration must be carried out (infinite norm).

RELAXATION PRESS CORR = α defines a relaxation parameter for the
update of the pressure during the iteration. The pressure is updated in
the following way:

pnew = pold + (1 − α)δp (5.6)

Default value α=0; (−0.5 ≤ α ≤ 0.5)

5.4 The keyword BOUNDARY CONDITIONS

The keyword BOUNDARY CONDITIONS must be followed by a description
of the boundary conditions. This means that both the types and values of the
boundary conditions must be prescribed and the sub-faces where the boundary
condition is imposed. This description in general looks like:

[subface description] [boundary conditions for velocity] [boundary conditions for
each transport equation] [boundary conditions for turbulence quantities]

All items in this sequence have to be in this order!
The description of the the set of subfaces where the boundary condition must
be imposed is different depending on the type of grid generation used.

If the SEPRAN grid generator is used, the concept of curves and surfaces is
applied. In this case the keyword curves or surfaces is used to describe
subfaces. See Section 5.4.1 for a description.

Besides SEPRAN, Deft also supports the LiSS grid generator. In this case it is
necessary to describe the set of subfaces using the keywords BLOCK, FACE and
SUBFace keywords as described in Section 5.4.2.
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5.4.1 Using CURVE to describe subfaces

The following types of curve description are recognized when SEPRAN grid
generation is used:

CURVE i TO j
CURVE i

CURVE i TO j means that the boundary conditions refer to all SEPRAN curves
i, i+1, i+2, ... ,j.
CURVE i means of course that the boundary conditions is restricted to curve i
only.

5.4.2 Using BLOCK, FACE and SUBFACE to describe
subfaces

The BLOCK keyword describes the blocks at which the boundary condition
must be imposed. Blocks may be described as follows:

BLOCK i TO j
BLOCK i

The first means blocks i to j and the second means only block i. The BLOCK
keyword is optional for single block context. After describing the blocks, the
faces must be described. Not doing so will result in an error from the prepro-
cessor. Faces are described as follows:

FACE i TO j
FACE i

After describing the face number, the SUBFACE numbers may be specified as
follows:

SUBFace i TO j
SUBFace i

If the subface numbers are not specified, the entire face is assumed. A subface
may only be prescribed once the face number has been prescribed.

Examples:

• A single block problem, the block keyword is optional:

face 1: inflow 1.0
face 2: outflow
face 3 to 4: noslip

• Boundary conditions may be specified in any order so
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block 1:
face 1: noslip
face 2: outflow

block 2:
face 3: noslip

is equivalent to

block 1:
face 1: noslip

block 2:
face 3: noslip

block 1 face 2 : outflow

• A subface may only be specified after the face has been specified, so

block 1 face 2 subface 3: noslip
block 2 subface 2: outflow

gives an error because a face for block 2 has not been specified.

5.4.3 Boundary condition types and values

Boundary conditions for the velocity

In case of staggered grid, for the velocity the following types of boundary con-
ditions may be given:

NOSLip
INFlow umax
OUTFlow
PARALlel_outflow
FREESlip
UN = g
UT = g
UX = g
UY = g
UZ = g
SIGMANN = g
SIGMANT = g
WALL_Functions = s [, ROUGHness = h]
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PERIODIC i
U_LEN = g
ANGLE = g
SUPEROUTFLOW

Meaning of the various boundary conditions:

NOSLIP The boundary condition NOSLIP effectuates the noslip boundary
condition un = 0, ut = 0.

INFLOW The boundary condition INFLOW prescribes a parabolic velocity
profile in the normal direction and a zero tangential velocity. The param-
eter UMAX defines the maximal value of the inward normal component.

OUTFLOW The boundary condition OUTFLOW prescribes the least restric-
tive outflow boundary condition, viz. stress equals zero at the boundary
(σnn = 0, σnt = 0). In most applications this boundary condition may be
interpreted as pressure zero and no restriction to the tangential velocity
component.

PARALLEL OUTFLOW The boundary condition PARALLEL OUTFLOW
prescribes an alternative outflow boundary condition, tangential compo-
nent of the velocity zero and normal component of the stress zero (ut = 0,
σnn = 0). In most applications this boundary condition may be inter-
preted as a parallel outflow with zero pressure.

FREESLIP The boundary condition FREESLIP prescribes a boundary con-
dition that may be used for example for free slip boundaries. In fact the
actual boundary condition is normal component of the velocity is zero and
the shear stress is zero (un = 0, σnt = 0)

UN, UT The boundary condition UN = g prescribes the normal component
of the velocity. With normal we mean the outward directed normal. This
boundary condition may only be used in combination with the boundary
condition UT = g.

Here and in the rest of this section the parameter g may take one of the
forms:

number
FUNC = i
TIME_FUNC = i

where number indicates the value of the component and FUNC=i as well
as TIME FUNC=i refers to a user function subroutine usfunb (6.3), which
is called by the ISNAS program in the following way:

value = USFUNB ( i, x, y, z, t )
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If TIME FUNC is used it is assumed that the boundary condition is time-
dependent, which means that the boundary condition is computed in each
time-step again. All other boundary conditions are assumed to be time-
independent and are computed only once.

The boundary condition UT = g prescribes the tangential component
of the velocity. The tangential direction in R2 is defined as the direction
perpendicular to the normal direction in the counter clockwise sense. This
boundary condition may only be used in combination with the boundary
condition UN = g.

UX, UY, UZ The boundary conditions UX = g, UY = g and UZ = g prescribe
the Cartesian component of the velocity in the indicated direction. If one
of them is given, the other ones should be given also, except in R2 where
there is no reason to prescribe UZ.

SIGMANN, SIGMANT The boundary conditions SIGMANN = g and SIG-
MANT = g prescribe the normal stress and the shear stress at the bound-
ary respectively. The definition of normal and tangential vector is the
same as for the velocity. If one of these boundary conditions is used at a
boundary, the other one should be used also.

PERIODIC The keyword PERIODIC is used to indicate that a periodical
boundary condition must be satisfied. This boundary condition must be
given in the form:

CURVE i = PERIODIC j

meaning that the curves i and j are coupled through periodical boundary
conditions and hence are actually the same boundary, or

SURFACE i = PERIODIC j

In this case the surfaces i and j are the same and have periodical boundary
conditions.
Mark that CURVE i = PERIODIC j also implies that the boundary condi-
tions CURVE j = PERIODIC i must be given. The same is true for sur-
faces. The reason is that Deft requires boundary conditions on each side.

If periodical boundary conditions are prescribed for the velocity, they are
also automatically prescribed for the turbulence quantities, but not for
the transport equations.
Periodical boundary conditions have not yet been implemented in combi-
nation with faces.

WALL FUNCTIONS The boundary condition WALL FUNCTIONS = s de-
fines a law of the wall boundary condition for the momentum equations
in case of turbulent flows. The parameter s in WALL FUNCTIONS may
take one of the forms:
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SMOOTH
ROUGH

In the last case the roughness must be given by

ROUGHNESS = h

where h is the average roughness height of a rough wall.
In this case the boundary conditions for the velocities at the wall are given
as follows:

un = 0 and σnt = τw, where τw is computed with a log-law based wall
condition depending on smoothness or roughness of the boundary. The
user defines only the roughness or smoothness.

U LEN,ANGLE The boundary condition U LEN = g, ANGLE = g prescribes
the the velocity vector. With U LEN we intend u, and with ANGLE we
intend the angle, in degrees, between the x-axis and the direction of the
flow, the angle being positive in counterclockwise direction. For profile
flow, ANGLE is usually called angle of attack.

SUPEROUTFLOW At supersonic outflow boundary nothing with respect to
the momentum equation is prescribed; usually only a Neumann condition
for the transport equations is given. In order to identify supersonic outflow
boundaries the keyword SUPEROUTFLOW must be used.

In case of a collocated grid, the momentum equation is written in a decoupled
way at this moment. The primitive variables are used. Only Dirichlet boundary
conditions are available, for the time being. Boundary conditions are given by:

U_MOMentum = DIrichlet = g
V_MOMentum = DIrichlet = g

The parameter g can take one of the forms previously described.

Restriction:
The velocity requires exactly one boundary condition for the normal and one
for the tangential direction (2D) or two for the tangential direction in 3D.

Boundary conditions for the transport equations

For the transport equation the following types of boundary conditions may be
given:

TRANSport a = description

with description:
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DIrichlet = g
NEumann = g
ROBbins: ALPha=g, H=g
MIxed: ALPha=g, H=g
WALL_Temperature = g
PERIODIC i

where g may take one of the forms < number > or FUNC=i as described for
the velocity boundary conditions and a is the sequence number of the transport
equation.
These boundary conditions have the following meaning:

DIRICHLET The Dirichlet boundary condition prescribes the transport quan-
tity T at the corresponding part of the boundary by T = g.

NEUMANN The Neumann boundary condition prescribes the flux of the
transport quantity T at the corresponding part of the boundary by κijni

∂T
∂xj

=
g

ROBBINS, MIXED The Robbins or mixed boundary condition prescribes a
linear combination of the flux of the transport quantity T and T itself at
the corresponding part of the boundary by αT + κijni

∂T
∂xj

= h

WALL TEMPERATURE prescribes the Dirichlet boundary condition for
the temperature T at the corresponding part of the boundary by T =
g. Only meant for turbulent flows with heat transfer in which the wall
temperature must be provided in order to compute the heat flux at the
wall using wall functions.

PERIODIC indicates that a boundary has periodical boundary conditions in
exactly the same way as for the velocity.

Boundary conditions for the turbulence quantities

For the turbulence quantities the following types of boundary conditions may
be given:

K_DIrichlet = g
K_NEumann = g
EPS_DIrichlet = g
EPS_NEumann = g
EPS_ASYmptote
OMEGA_DIrichlet = g
OMEGA_NEumann = g
OMEGA_ASYmptote

K DIRICHLET prescribes a Dirichlet boundary condition for k, which means
k given at the corresponding part of the boundary.
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K NEUMANN prescribes a Neumann boundary condition for k, which means
∂k
∂n given at the corresponding part of the boundary.

EPS DIRICHLET prescribes a Dirichlet boundary condition for ε, which
means ε given at the corresponding part of the boundary.

EPS NEUMANN prescribes a Neumann boundary condition for ε, which
means ∂ε

∂n given at the corresponding part of the boundary.

EPS ASYMPTOTE prescribes the asymptotic behaviour of ε near the wall.
Only meant for low-Reynolds-number modeling, in which ε must asymp-
tote to the nonzero value at the wall in order to keep the equation of
turbulent energy in balance.

OMEGA DIRICHLET prescribes a Dirichlet boundary condition for ω, which
means ω given at the corresponding part of the boundary.

OMEGA NEUMANN prescribes a Neumann boundary condition for ω, which
means ∂ω

∂n given at the corresponding part of the boundary.

OMEGA ASYMPTOTE prescribes the asymptotic behaviour of ω near the
wall, which is given by

ω =
Nων

Y 2
, Y + < 5.0 (5.7)

where

Nω =




6/β, without viscous corrections

2/β∗, with viscous corrections
(5.8)

The correction can be made by the subkeyword VISCOUS CORRECTIONS
as prescribed in the keyword TURBULENCE. It should be noted that grid
refinement near the wall must be such that the wall-coordinate Y +, for
the point nearest to the wall, must not exceed 5.0. If this ever happens,
an error will occur and the run will be terminated.

If for the velocity a law of the wall has been used then the boundary conditions
for k and ε, are respectively

∂k

∂n
= 0 (5.9)

ε =
c
3/4
µ k3/2

κY
(5.10)

and no explicit boundary conditions should be given.

Remark: it is necessary to give boundary conditions for the external subfaces
only. Internal boundaries are treated by the multi block process.
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5.5 The keyword COEFFICIENTS

The keyword COEFFICIENTS starts the block with information about the
coefficients. This block is mandatory.
The keyword may be followed by the following subkeywords:

MOMentum_equations
TRANSport_equation i

These subkeywords indicate to which equation the next subsubkeywords refer.
In case of a transport equation the keyword must be followed by a number in-
dicating the sequence number of the transport equation.
These subkeywords itself may be followed by subsubkeywords that define the
coefficients.
The following subsubkeywords are recognized after the keyword MOMENTUM EQUATIONS:

Keyword Default value mandatory

MU = g 1 no
RHO = g 1 no
FORCE1 = g 0 no
FORCE2 = g 0 no
FORCE3 = g 0 no
MASS_FRaction = g 0 no
INTERFAce_drag = g 0 no
C_1 = g 0 no
C_2 = g 0 no
C_3 = g 0 no

These coefficients have the following meaning: g may take one of the forms
< number > or FUNC=i as described for the velocity boundary conditions.
If FUNC = i is used a user written function subroutine is called depending on
the parameter i, in the following way:

0 < i < 100 the function subroutine usfunc (6.4) is called:

value = USFUNC ( i, x, y, z, t ).

100 < i < 200 the function subroutine usfunc1 (6.5) is called:

value = USFUNC1 ( i-100, x, y, z, t, soluts, ndegfd ).

1000 < i < 10000 the subroutine usfilc (6.6) is called:

call usfilc ( i-1000, coefs, ncoefs, icoef, ni, nj, nk, ndim,
nvirtual, coor, solut, ndegfd, t )

i > 10000 corresponds to special values.
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i = 10000 The user may fill a series of time and space dependent coefficients
in one call of subroutine usfilcsp (6.7). Internally all coefficients have
a sequence number. In case of the momentum equations the sequence
numbers are:

1. µ

2. ρ

3. f1

4. f2

5. f3

6. ε

7. β

8. C 1

9. C 2

10. C 3

The coefficients are filled according to this sequence. If the user uses for
one of the coefficients the value g = 10000, he may fill a series of coeffi-
cients himself by subroutine USFILCSP. However, if for these coefficients
also another input is defined (except 0), the sequence of the coefficients is
important, with respect to overwriting. The best is way is to define only
one coefficient with g = 10000 and to skip all coefficients that are filled by
subroutine USFILCSP.
The user is supposed to fill the coefficients in all cell centers in one call.
The input consists of the number of cells in the various directions, the
co-ordinates, the Cartesian velocity components in the vertices at the pre-
vious time level, as well as all solution vectors at the previous time level.
The call is:

call USFILCSP ( coefs, ncoefs, ni, nj, nk, ndim, nvirtual,
coor, solut, ndegfd, t, veloc )

i = 10001 This possibility is especially meant for the construction of the right-
hand side of the energy equation in case of compressible flow.
A user written subroutine USFILSRC is required.
See (6.12) for a description.
The user is supposed to fill the coefficient in all cell centers in one call.
The call is:

call usfilsrc ( coefs, ni, nj, nk, ndim, nvirtual,
+ coor, solut, ndegfd, time, eddy, axisym )
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i = 10002 This possibility is especially meant to compute the viscosity as func-
tion of other parameters.
A user written subroutine USCOMPVISC is required.
See (6.13) for a description.
The user is supposed to fill the coefficient in all cell centers in one call.
The call is:

call uscompvisc ( coefs, eddy, ni, nj, nk, nvirtual,
+ ndim )

MU defines the dynamical viscosity µ of the fluid. If omitted the default value
1 is used.

RHO defines the density ρ of the fluid. If omitted the default value 1 is used.
In case of compressible ρ is an unknown and for that reason it is necessary
to give the coefficient RHO the value 1 (the default value), or no value at
all.

FORCE1, FORCE2, FORCE3 define the external body forces for the fluid
in the Cartesian directions. For each one omitted the default values 0 is
used.

MASS FRAC is only used in combination with multi phase gas flow.
In that case it defines the mass fraction ε.

INTERFACE DRAG is only used in combination with multi phase gas flow.
In that case it defines the interface drag coefficient β.

C 1, C 2, C 3 are at this moment only used in combination with multi phase
gas flow.
These coefficients define the zero-th order term in the equations, i.e. the
ui equation gets the extra term +Ciui in the equation. This option is
only implemented for Cartesian grids, where the contravariant direction
is identical to the Cartesian direction.

The keyword TRANSPORT EQUATION a may be followed by the following
subkeywords:

Keyword Default value mandatory

CAPacity = g 1 no
DIFFusion = g 1 no
DIFXX = g 1 no
DIFXY = g 0 no
DIFYY = g 1 no
DIFXZ = g 0 no
DIFYZ = g 0 no
DIFZZ = g 1 no
SOURCE = g 0 no
CONStant = g 0 no
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The meaning of these coefficients is implicitly defined by the differential equa-
tion:

c∗
DT

Dt
+ div kgradT + CT = F, (5.11)

CAPACITY defines the capacity c∗.

DIFFUSION defines the diffusion k, assuming it is a scalar.

DIFFXX, DIFFXY, DIFFXZ, DIFFYY, DIFFYZ, DIFFZZ define the
diffusion, assuming it is a tensor quantity.

SOURCE defines the source F .

CONSTANT defines the constant C.

5.6 The keyword LINEAR SOLVER

The keyword LINEAR SOLVER indicates that the user wants to give some ex-
tra information about the solution of the linear systems. One may for example
think about termination criteria, type of linear solver, type of preconditioner
and so on.
This keyword must be followed by subkeywords containing this extra informa-
tion. If omitted the standard discretization is used.
The keyword may be followed by the following subkeywords:

MOMentum_equations
TRANSport_equation iseq
PRESsure_equation
TURBulence_equation iseq

These subkeywords indicate to which equations the next subsubkeywords refer.
In case of a transport equation or turbulence equation, the keyword must be
followed by either a number or the keyword ALL. If a number is given this
means that the information is restricted to the corresponding equation, if ALL
is given it refers to all transport or turbulence equations.
These subkeywords itself may be followed by subsubkeywords that contain infor-
mation about the linear solvers. The following subsubkeywords are recognized:

Keyword Default value mandatory

SOLVER = s GMRES no
MAXITer = n 200 no
ABSAccuracy = abs 0 no
RELAccuracy = rel dependent no
CONDAccuracy = con 0 no
DIVAccuracy = div 1e-4 no
PREConditioner = pre dependent no
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POSTConditioner = post dependent no
POLYPREConditioner = n 0 no
AMOUnt_of_output = out 0 no
ERRORoccurance = err STOP no
GMREStart = n 40 no
ORTHogonal = n dependent no
MODIFY = alpha dependent no
STARTVector = start dependent no
RITZvalues = n 0 no
PRINT_SOLution no no
PRINT_STeps (1,1,1) no
CG_RELax = omega 0.7 no
CG_INNer = n 1 no
NEUMayer neumayer no
NO_NEUMayer neumayer no
MAXLEvel = n 0 no
SMOOTH_steps = n 0 no
FILL_IN = n 8 no

Meaning of the various subsubkeywords:

SOLVER defines the type of solver. Available types for s are:

CGS
GMRES
GCR
CGSTAB
MULTIgrid

Explanation:

CGS means standard Conjugate Gradients Squared method.

GMRES means GMRES method or GMRESR(m) method. GMRESR(m)
is used if Polypreconditioner is used, where m is equal to the param-
eter n read.

GCR means the special case of GMRESR(1), which for efficiency reasons
has been programmed separately. GCR may be regarded as a version
of GMRES which allows for both restart and truncation.

CGSTAB means the standard CGSTAB method of Sonneveld and v.d.
Vorst.

MULTIGRID means that the linear equations are solved by multigrid.
This option has not yet been implemented.

MAXITER defines the maximum number of iterations

ABSACCURACY defines the absolute accuracy, if 0 (default value) a relative
accuracy is used
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RELACCURACY defines the relative accuracy, default values are:
1d-4 for the transport, turbulence and momentum equations and
1d-6 for the pressure equation.
The relative accuracy is measured by measuring the decrease of the resid-
ual. This does not necessarily mean that the relative error of the solver
is identical to this number. If both the absolute and relative accuracy are
given, the sum of the two is used as termination criterion.

CONDACCURACY makes only sense in the case of the GMRES method.
It overrules the options ABSACCURACY and RELACCURACY. In this
case the factor con means relative accuracy in the common sense.

DIVACCURACY defines a truncation criterion for the pressure equations
only. It is only used if div > 0. In that case the linear pressure solver
stops if

‖Ri‖ < rel ∗ ‖R‖+
div ∗ ‖u‖

dt
(5.12)

If rel = 0, we have: ‖divu‖
‖u‖ < div

PRECONDITIONER defines the type of preconditioner. Available values
for pre are:

NONE
DIAGonal
ILUD
ILU
ILU_FILL
TEST

Explanation:

in the case of diagonal only a diagonal scaling is used

ILUD uses an ILU decomposition with only the diagonal D updated.

ILU uses the standard ILU(0) preconditioning, where all non-zero ele-
ments are adapted.

ILU FILL uses the an ILU preconditioning, where all non-zero elements
are adapted extended with a n extra diagonals. The number of extra
diagonals n is given by FILL_IN = n

TEST means a user written preconditioner only meant for research pur-
poses.

Default values are:
In case of the momentum equation: ILUD.
In case of the transport or turbulence equations: ILU.
In case of the pressure equation: ILU.
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POSTCONDITIONER defines that a postconditioner is used instead of a
preconditioner. The possibilities PREConditioner and POSTConditioner
exclude each other. For postconditioner the same values as for precondi-
tioner are available.

MODIFY = α is only used if an ILU or ILUD preconditioner is used. It
defines whether a classical ILU(D) preconditioner is used or the modified
one of Gustafsson, or some convex combination of those two. The factor
α defines the weight factor in the following sense:

Preconditioner = α∗ ILU + (1− α)∗ MILU,

hence α = 0 means standard method, α = 1 means Modified ILU.
Default values are:
In case of the momentum equation: α = 1.
In case of the transport or turbulence equation: α = 1.
In case of the pressure equation: α = 0.975.

POLYPRECONDITIONER defines the degree of the polynomials to be
taken if a polynomial preconditioner is used.
0 means no polynomial preconditioning If n > 0 an outer and an inner
loop is used. The resulting method is called GMRESR. n defines the max-
imal number of iterations in each inner loop. The iteration method to be
used in the inner loop is defined by PRECONDITIONER, MODIFY and
SOLVER.

At this moment only GMRES is implemented for the inner loop.

Suggestion: POLYPRECONDITIONER should only be used if GMRES
is used as inner iteration method. The question whether to use polypre-
conditioning or not is not simple to answer. A rough rule that could be
used is the following:
First try to run the problem without polypreconditioner. Use amount of
output to get information about the number of iterations of GMRES. If
more than 20 iterations are used by GMRES, it is advised to use polypre-
conditioning, otherwise do not use it. For more detailed information con-
sult C. Vuik [50]. If polypreconditioning is used n=5 is a good value

AMOUNT OF OUTPUT defines the amount of output (−1 ≤ n ≤ 2)

ERROROCCURANCE defines how to react in case of an error. Possible
values for err are:

STOP
RESUME

STOP means stop if an error occurs.

RESUME means resume the computation if possible if an error occurs .
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GMRESTART defines after how many steps the GMRES or GCR method
restarts. In the case of polypreconditioning it defines after how many
steps the outer loop of GMRESR restarts.

ORTHOGONAL defines after how many vectors truncation is carried out in
GCR or in the case of polypreconditioning it defines after how many steps
the outer loop of GMRESR truncates. Remark: if n(ortho) > n(gmrestart)
no truncation is carried out.

STARTVECTOR = start defines how the start vector for each iteration must
be created. At this moment this possibility is meant for research possibil-
ities only. The following values for start are available:

ZERO
EXPLicit
PREC
LINear

start = ZERO means start with the null vector.
start = EXPLICIT means start with an explicitly given vector.

This possibility has not yet been implemented

start = PREC means start with the solution at the preceding multi-block
iteration (or time level in the first multi-block iteration). In the case
of the pressure equation this means start with the pressure correction
of the preceding time level.

start = LINEAR means start with a linear extrapolation between the
last two time-steps.

Default values are:
In case of the momentum equation: PREC.
In case of the transport equation: PREC.
In case of the pressure equation: PREC.

Remark: in the case of a pressure equation in combination with LINEAR,
the start vector is made equal to α∗ (p(n)−p(n−1)) where α is computed
by the solver in such a way that a fast, convergence can be achieved.

RITZVALUES = n, indicates that the linear solver should estimate n Ritz
values after the solution has been computed. These values give insight in
the solution process as well as in stability properties of the discretization.
At this moment this parameter is meant for research purposes only.

Suggestion: approximately 50 Ritz values give sufficient insight.

PRINT SOLUTION indicates that the solution must be printed in all time
steps indicated by PRINT STEPS. The solution is printed as stored in the
program, that is in a staggered way and in the contravariant components
that are used.
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PRINT STEPS indicates that the printing defined by the option PRINT SOLUTION
must be carried for the time steps ITIME1, ITIME1+ITSTEP, ITIME1+2×ITSTEP,
... , ITIME2

CG RELax = ω, defines the minimum value of the normed inner product
between search direction and residual vector in the Bi-cgstab process.
During the iteration a division by this inner product is performed. Once
the value is too small the residual may grow to unacceptable values and
loss of figures may be the result. This behaviour is visible in the famous
peaks in many of the pictures showing the convergence behaviour of Bi-
cgstab. Sleijpen and van der Vorst [42] propose to repair it by defining a
minimum value for the inner product. This value must be between 0 and
1, and the default value is 0.7.

CG INNer = n, defines the number of GMRES steps in the Bi-cgstab(l) pro-
cess. The standard Bi-cgstab process consists of a Bi-CG outer loop and
a GMRES(1) inner loop. According to [41] for problems with large advec-
tion Bi-cgstab(2) performs much better. l must be smaller than 16, the
default value is 1.

NEUMayer Neumayer [42] defined an improvement of the original CGS algo-
rithm, which is more stable. It does not suffer so much from the erratic
behaviour one often sees in the convergence pictures of CGS. The default
is to use the Neumayer improvement in CGS.

NO NEUMayer If No Neumayer is given as keyword, the standard CGS pro-
cess is performed.

FILL IN = n, defines the number of extra diagonals used to compute the ILU
preconditioner in case of ILU FILL preconditioning.

MAXLEVEL = n, defines the maximum number of levels in the case of multi-
grid preconditioning. If n=0 this number is computed in a suitable way.

SMOOTH STEPS = n, defines the number of smoothing steps in the case of
multigrid preconditioning. If n=0 this number is computed in a suitable
way.

5.7 The keyword INITIAL CONDITIONS

The keyword INITIAL CONDITIONS indicates that the user wants to give
initial conditions for some unknowns explicitly. For unknowns that have not
been given any initial conditions, the initial condition 0 is assumed. In order to
define the initial conditions the following subkeywords may be used:

Keyword Default value mandatory

RESTart = t none no
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INSESSION = sessionname none no
U_MOMentum = g 0 no
V_MOMentum = g 0 no
W_MOMentum = g 0 no
TRANsport a = g 0 no
PRESsure = g 0 no
K_TURBulence = g 1e-4 no
EPS_TURBulence = g 1e-4 no
OMEGA_TURBulence = g 1e-4 no
REFINE = n none no
LAMTURB = t none no

g may take one of the forms number or FUNC=i as described for the velocity
boundary conditions. However, instead of a function subroutine USFUNB, the
function subroutine usfuni (6.2) is used, which is called by the ISNAS program
in the following way:

value = USFUNI ( i, x, y, z )

INSESSION = sessionname, indicates that the computation must be re-
sumed with the results of the session named sessionname, in order to
distinguish between various sessions.
At this moment sessionname is restricted to integer numbers.

RESTART = t, indicates that the starting vector will be read from the restart
file. The parameter t indicates the time at which the computation is
resumed.

U/V/W MOMENTUM = g defines the initial condition for u, v and w
velocity component (in Cartesian co-ordinates) respectively.

TRANSPORT a = g defines the initial condition for the ath transport quan-
tity.

PRESSURE = g defines the initial condition for the pressure.

K TURBulence = g defines the initial condition for the turbulent kinetic
energy k.

EPS TURBulence = g defines the initial condition for the ε.

OMEGA TURBulence = g defines the initial condition for the ω.

REFINE = t assumes that the solution of a coarse grid has been stored in the
restart file. Furthermore the mesh has been refined one times since then.
The solution on the coarse grid will be interpolated to the fine grid.
The parameter t has the same meaning as in RESTART = t.

LAMTURB = t assumes that the solution of a laminar problem has been
stored in the restart file. This laminar solution is used as starting value
for the turbulent equations. The parameter t has the same meaning as in
RESTART = t.
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5.8 The keyword TURBULENCE

The keyword TURBULENCE indicates that a turbulence model will be used.
If omitted the flow is assumed to be laminar.
TURBULENCE may be followed by the following subkeywords:

Keyword Default value mandatory

MODEL = m K_EPS no
LES_MODEL = l SMAGORINSKY no
VISCOUS_CORRECTIONS = v NO no
ANISOTROPY = a NONE no
KAPPA = k 0.41 no
E = e 9.0 no
C_MU = c 0.09 no
SIGMA_K = s 1.0 no
SIGMA_EPS = s 1.3 no
CONE_EPS = c 1.44 no
CTWO_EPS = c 1.92 no
C_D = c 0.08 no
SIGMA_T = s 2.0 no
A = a 26.6 no
E_ROUGH = e 33.0 no
ETA_Zero = e 4.38 no
BETARNG = b 0.012 no
C_S = c 0.1 no
ALPHA = a 0.556 no
BETASTAR = b 0.09 no
BETA = b 0.075 no
SIGMA = s 0.5 no
SIGMASTAR = s 0.5 no
MOD_PRODUCTION = s 0.0 no
CTHREE_EPS = c 0.05 no
CTAU_ONE = c 0.0 no
CTAU_TWO = c 0.0 no
CTAU_THREE = c 0.0 no
MAX_WINDOWS = m 20 no
TIME_INTERVAL = t 1 no

Usually the subkeyword MODEL, defining the type of turbulence model should
be sufficient. The default closure constants used are those that are commonly
accepted in the literature. However, the user has the option to use his own
constants in the turbulence models.

MODEL defines the type of turbulence model to be used. It must be followed
by the type of model required. The following models are available:

none
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algebraic
K_EPS
RNG_K_EPS
K_OMEGA
LES
EXT_K_EPS

none no turbulence model is used, i.e. laminar flow is assumed.

algebraic has not yet been implemented.
K EPS defines the standard k − ε model.

RNG K EPS defines the RNG k − ε model.
K OMEGA defines the Wilcox k − ω model.

LES means that a large eddy model is used.
If the keyword LES MODEL is used this is the default value.

EXT K EPS defines the extended k − ε model.

LES MODEL defines the type of LES turbulence model to be used.
This keyword may only be used if no turbulence model is given or if the
turbulence model is set equal to LES.
The following models are available:

SMAGORINSKY

SMAGORINSKY the SMAGORINSKY model is used.

VISCOUS CORRECTIONS = v indicates whether viscous corrections must
be used or not in the vicinity of a solid wall. The meaning of this sub-
keyword depends on the choice of the model. In the case of standard k-ε
model, low-Reynolds-number effects are incorporated to reproduce the
law-of-the-wall correctly. In the case of k-ω model, viscous corrections
are employed for the special boundary condition for ω (see also keyword
BOUNDARY CONDITIONS). The following values for v are available:

YES
NO

YES the equations of k-ε model will be modified using the Lam-Bremhorst
damping functions, or the asymptotic behaviour of ω near a wall,
which is employed as a boundary condition for k-ω model, will be
corrected.

NO the standard k-ε model without any viscous damping functions will
be employed, or the asymptotic behaviour of ω near a wall will not
be corrected.

ANISTROPY defines the type of anisotropic form of the eddy-viscosity con-
cept to be used. The following models are available:
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none
SPEziale
RUBinstein_barton
NISizima_yoshizawa
MYOng_kasagi

none no anisotropic model is used, i.e. the Boussinesq hypothesis is em-
ployed.

SPEZIALE defines the nonlinear model of Speziale.
RUBINSTEIN BARTON gives the Rubinstein-Barton model arises

from the RNG theory.
NISIZIMA YOSHIZAWA means the Nisizima-Yoshizawa model based

on the DIA approach.
MYONG KASAGI defines the Myong-Kasagi model.

C MU, SIGMA K, SIGMA EPS, CONE EPS and CTWO EPS are the
empirical constants, which should be used for the standard k-ε model,
RNG based k-ε model as well as the extended k-ε model. Details on the
determination of these constants can be found in [24], [64] and [17], re-
spectively. The values mentioned above are associated with the standard
k-ε model. In case of the RNG model, the following values should be used:

C_MU = 0.085
SIGMA_K = 0.7179
SIGMA_EPS = 0.7179
CONE_EPS = 1.42
CTWO_EPS = 1.68

In case of the extended model, the following values should be used:

C_MU = 0.09
SIGMA_K = 0.75
SIGMA_EPS = 1.15
CONE_EPS = 1.35
CTWO_EPS = 1.9

The constants will be set according to the above mentioned values as soon
as the RNG or extended model is used.

ETA Zero and BETARNG are also used for the RNG model.

CTHREE EPS is also used for the extended model.
With respect to the Wilcox k-ω model, the following constants must be
employed: ALPHA, BETASTAR, BETA, SIGMA and SIGMASTAR. For
details we refer to [63].
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KAPPA, E, A, C D and E ROUGH are the constants needed for the mod-
eling of turbulent flow near a wall. In case of a smooth wall, the constant
E will be employed, otherwise E ROUGH is used. The reason for speci-
fying these two constants at the same time is, that different type of walls
(smooth as well as rough) may be involved in one fluid problem. All of
these constants, except C D and A, must be given to specify the law of the
wall. The constant C D belongs to the one-equation model used in, for
example, two-layer model. The constant A is needed for the specification
of the so-called Van Driest mixing length. At this moment the two-layer
model and Van Driest mixing length have not been implemented yet. The
constant KAPPA, the so-called Von Karman constant can also be used for
an algebraic model (for example the Prandtl mixing length model).

C S should be used for the LES Smagorinsky model, which has not been im-
plemented yet.

SIGMA T should be used when a transport equation of temperature is in-
volved. The constant SIGMA T is the Prandtl/Schmidt number with
respect to the temperature.

MOD PRODUCTION defines whether the standard expression of produc-
tion term of turbulent energy is used or the Kato-Launder modification, or
some convex combination of those two. The factor MOD PRODUCTION
is the weight factor which lies between zero and unity. Hence, MOD PRODUCTION
= 0 means standard, MOD PRODUCTION = 1 means Kato-Launder cor-
rection. If omitted the default value MOD PRODUCTION = 0 is used.

CTAU ONE, CTAU TWO and CTAU THREE are the closure constants
needed for the nonlinear (anisotropic) stress-strain relationship.

MAX WINDOWS = m defines the maximum number of time-steps used for
the time averaging procedure in the smagorinsky model.
If omitted the default value 20 is used.

TIME INTERVAL = t defines the time interval used for the time averaging
procedure in the smagorinsky model.
Mark that this value together with the present time step define the number
of time steps used for the averaging. This number may not exceed the
value of MAX WINDOWS.
If omitted the default value 1 is used.

Although it is recommended not to tune the empirical constants mentioned
above, it is possible to change the values of these constants provided that the
following bounds on the different constants should be employed:

0.40 ≤ κ ≤ 0.42
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7.45 ≤ E ≤ 10.0
0.01 ≤ cµ ≤ 0.36
0.70 ≤ σk ≤ 1.40
0.70 ≤ σε ≤ 1.40
1.00 ≤ c1ε ≤ 1.55
1.50 ≤ c2ε ≤ 2.00
0.04 ≤ cd ≤ 0.15
0.50 ≤ σT ≤ 4.00
20.0 ≤ A ≤ 30.0
26.0 ≤ Erough ≤ 37.0
2.00 ≤ η0 ≤ 16.0
0.01 ≤ βRNG ≤ 0.015
0.10 ≤ Cs ≤ 0.25
0.10 ≤ α ≤ 1.0
0.04 ≤ β∗ ≤ 0.15
0.01 ≤ β ≤ 0.1
0.50 ≤ σ ≤ 2.0
0.50 ≤ σ∗ ≤ 2.0
0.00 ≤ modprod ≤ 1.0
0.00 ≤ c3ε ≤ 0.40 (5.13)
−5.0 ≤ cτ1 ≤ 5.0 (5.14)
−5.0 ≤ cτ2 ≤ 5.0 (5.15)
−5.0 ≤ cτ3 ≤ 5.0

5.9 The keyword MULTI BLOCK

The keyword MULTI BLOCK indicates that the user wants to give some extra
information about the multi block process. This keyword must be followed by
subkeywords containing this extra information. If omitted the standard multi-
block parameters are used.
The keyword may be followed by the following subkeywords:

SUBDOMAIN_solution = isol
SAVE_PREConditioner
TYPE_OF_ALGorithm = itype
MOMentum_equations
TRANSport_equation i or all
PRESsure_equation
TURBulence_equation i or all
ALL_equations
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SUBDOMAIN SOLUTION = isol defines the way the subdomain solution
is computed/approximated.
The following values for isol are available:

ACCurate
INACCurate
ILU

ACCURATE means that the subdomains are assumed to be solved ac-
curately (enough). The fact that subdomains are solved accurately
means that a reduction of vector length in the acceleration is possible.

INACCURATE means that the subdomains are assumed to be solved
inaccurately. It is advised to lower the subdomain solution accuracy
as much as possible to say 0.1. The algorithm which assumes accurate
solution of subdomains is in general slower. At present, INACCURATE
is the default.

ILU means that the subdomain solution is approximated by applying the
inverse of the subdmain ILU preconditioner to the right-hand side.
This is a special case of the INACCURATE option. This method is
definitely faster on a single machine than the algorithm which uses
accurate solution of subdomains.

SAVE PRECONDITIONER defines that the preconditioner must be built
only once at in the first domain decomposition iteration. This means
that the preconditioner is stored for each block and reused at every next
domain decomposition iteration. The default is not to remember the pre-
conditioner and to rebuild it each domain decomposition iteration. The
default is therefore less efficient but requires less memory.

TYPE OF ALGORITHM = itype defines the type of multi-block algorithm
to be used. The following values for itype are available:

SEQuential
PARallel

SEQUENTIAL means that the sequential algorithm is applied. If this
algorithm is used in the case of parallel computing it means that for
each processor the sequential algorithm is used but that of course
over the various processors the parallel algorithm is used.

PARALLEL means that the parallel algorithm is applied even if only
one processor is available. This algorithm is approximately two times
slower than the sequential algorithm and is in fact only available
because of research purposes.

The default algorithm is the sequential one.
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...EQUATION. defines the type of equation to which the subsequent subsub-
keywords should be applied. The meaning of these subkeywords is obvious.
They may be followed by the subsubkeywords:

Keyword Default value mandatory

METHOD = imethod accelerated no
AMOUnt_of_output = out 0 no
MAXITer = n 100 no
KRYLOV_OUter = n 20 no
TRUNCATION_strategy = strategy JACKSON_robinson no
RELAXation = r 1 no
RELACcuracy = rel 1e-4 no
REUSE_SEarch = n 0 no
REUSE_VAlues = yes no no
ORTHOGONALIZATION = iortho modified no

METHOD = imethod defines the type of domain decomposition algo-
rithm to be used. The following values of imethod are available:

ACCelerated
STAndard

STANDARD means that the standard multi-block algorithm is ap-
plied. In the case of ACCELERATED (default value) the domain
decomposition process is accelerated by a GCR method. This pa-
rameter is mainly meant for research purposes.
METHOD = STANDARD is only applied if the accurate subdomain solu-
tion method is chosen.

AMOUNT OF OUTPUT = out, defines the amount of output. The
following values for out are available:

< 0 : No output
0 : Only fatal errors will be printed
1 : Additional information about the iteration is printed
2 : Gives a maximal amount of output concerning the iteration pro-

cess

MAXITER = n defines the maximum number of multi block iterations.

KRYLOV OUTER = n defines the maximum number of search direc-
tions used in the outer loop of GCR.

TRUNCATION strategy = strategy defines the type of truncation
strategy to be used with the accelerated domain decomposition algo-
rithm. The following values of strategy are available:

JACKSON_robinson
NONE
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JACKSON robinson means that a Jackson and Robinson truncation
strategy is used [19]. NONE means that no truncation is used. The
GCR method is restarted in an optimal way [59].

RELACCURACY = rel defines the relative accuracy to be used for
the solution of the interface equations.

REUSE SEarch = n defines the number of search directions that must
be stored for this equation. These search directions are reused in the
next time-step. n may be less or equal to the number of outer Krylov
iterations.
This gives a much faster solution method for the pressure equation.
For the other equations there is no significant decrease in CPU time.

REUSE VAlues = yes indicates that not only the search directions are
kept and reused but also the corresponding search values (vk = Ask).
This option may only be used if the matrix is constant in time. It
makes only sense in combination with REUSE SEarch > 0.

ORTHOGONALIZATION = iortho indicates the type of orthogonal-
ization scheme to be used in the multi-block process (GCR). Possible
values for iortho are:

modified
reorthogonalized

modified means the modified Gram-Schmidt process is applied.
reorthogonalized the classical Gram-Schmidt process is applied

with reorthogonalization.

Default value: modified

5.10 The keyword COMPRESSIBLE

The keyword COMPRESSIBLE indicates that the user wants solve the com-
pressible Navier Stokes equations. The following subkeywords may be used:

Keyword Default value mandatory

GAMMA = n 1.4 no
MACH = n 0.2 no
VEL_Sound = n 330 no
ALPha = n 0 no
P_V = n 0.89 no
P_OUT = n 0 no
DENS_UPWind = method no_dens_upwind no
NO_DENS_UPWind no_dens_upwind no
NO_ENTHALPY enthalpy no
NO_SCALING no_scaling no
PRES_CORR_METHOD = i 0 no
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P_REF = p 0 no
RHO_REF = rho 1 no
VEL_REF = v 1 no
ENERGY_EQUATION = e enthalpy no
equation_of_state = e perfect_gas no

These keywords have the following meaning:

GAMMA = a gas constant equal to the specific heat at constant pressure
divided by the specific heat at constant volume, in air γ = 1.4.

MACH = the inlet Mach number.

VEL SOUND = speed of sound, in air 330 m/s.

ALPHA = inlet flow angle.

P V = ratio of outlet and inlet pressure: pout−p0
pin−p0

, with p0 a reference pressure.

P OUT = outlet pressure.

DENS UPWIND = method = upwind-biased discretization of the density
in the continuity equation, hence in the pressure correction equation, to
fulfill the entropy condition.
The subkeyword method is used to indicate what kind of upwinding is
applied. Possible values:

GRADIENT_BASED
MACH_BASED
UNCONDITIONAL
EXPLICIT
IMPLICIT

EXPLICIT upwind bias is applied to the continuity equation in an ex-
plicit manner:

ρn+1 − ρn

δt
+ Dσnmn+1 = 0 (5.16)

σn =
ρn

upwind

ρn
central

(5.17)

IMPLICIT upwind bias is applied to the continuity equation in an im-
plicit manner

ρn+1 − ρn

δt
+ Dσn+1mn+1 = 0 (5.18)

σn+1 =
ρn+1

upwind

ρn+1
central

(5.19)

113



GRADIENT BASED means that the density ρ is convected such that
the TVD property is satisfied. The ISNAS scheme is applied.

MACH BASED upwinding is applied as soon as the mach number ex-
ceeds a the value 0.9.

UNCONDITIONAL A first order upwinding is applied in all cases

If method is not given the default mach_based is assumed.

NO DENS UPWIND = density upwinding is switched off.

NO ENTHALPY means that no enthalpy equation is solved. It concerns a
very special version of the compressible flow equations.

NO SCALING the dimensional compressible Euler equations are solved. Non-
dimensionalisation is switched off.

PRES CORR METHOD = i If i = 0, the compressible pressure correction
method is used.
If i = 1, an alternative pressure correction method is used, which better
preserves contact discontinuities.

P REF = p defines a reference pressure. This reference pressure is used to
produce a dimensionalised pressure in the postprocessing file.

RHO REF = ρ defines a reference density. This reference density is used to
produce a dimensionalised density in the postprocessing file.

VEL REF = u defines a reference velocity. This reference velocity is used to
produce a dimensionalised velocity in the postprocessing file.

ENERGY EQUATION = e defines what type of energy equation is used.
This implies also what type of primary variable for the energy is utilized.
Possible values for e are

ENTHALPY means that the enthalpy h is used as primary energy vari-
able.

TOTAL ENTHALPY means that the total enthalpy H is used as pri-
mary energy variable.

INTERNAL ENERGY means that the internal energy e is used as
primary energy variable.

DENS TOT ENTH means that the primary variable is the density
times total enthalpy: ρH (only for tudfinvol).

DENS TOT ENGY means that the primary variable is the density
times total energy: ρE (only for tudfinvol).

EQUATION OF STATE = e = defines what type of equation of state is
used to express the relation between density, pressure and energy.
Possible values for e are
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PERFECT GAS the perfect gas law is used.

USER PROVIDED a user provided equation of state is applied. The
user must supply some user functions related to the equation of state.
These functions are: USDRHODH (6.8), USDRHODP (6.9) and US-
CALCRHO (6.10).
In the case that the internal energy is used as unknown, also a sub-
routine USCOMPINTEN must be supplied to compute the internal
energy from the temperature. In this way the user may give the tem-
perature as initial condition as well as boundary condition, and not
the primary variable e.
USDRHODH computes ∂ρ

∂h , which is used in the pressure correction
equation. h may be either the enthalpy h, the total enthalpy H or
the internal energy e, depending on the choice of energy equation.
The call to this subroutine is:

call usdrhodh(eddy,solut,ni,nj,nk,nvirtual,ndim,ndegfd,drhodh)

USDRHODP computes ∂ρ
∂p , which is used in the pressure correction

equation.
The call to this subroutine is:

call usdrhodp(eddy,solut,ni,nj,nk,nvirtual,ndim,ndegfd,drhodp)

USCALCRHO computes ρ, as function of the previously computed
solution, including the pressure
The call to this subroutine is:

call uscalcrho ( eddy, solut, ni, nj, nk, nvirtual, ndim,
+ ndegfd, ilowloop, iupploop, jlowloop,
+ jupploop, klowloop, kupploop )

USCOMPINTEN computes e, as function of the previously computed
solution, usually the temperature
The call to this subroutine is:

call uscompinten ( eddy, solut, ni, nj, nk, nvirtual, ndim, ndegfd )

5.11 The keyword CAVITY

The keyword CAVITY indicates that the user wants to solve the compressible
Navier Stokes equations combined with a cavity model. This keyword may only
be used in combination with the keyword COMPRESSIBLE. The following
subkeywords may be used:

Keyword Default value mandatory

CLIQUID 1e-6 no
CVAPOUR 1e-6 no
LOWERPRESSTRANSIT 1 no
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UPPERPRESSTRANSIT 2 no
PRESSURE_GAUSS_SEIDEL none no
START_UP none no

These keywords have the following meaning:

CVAPOUR = speed of sound in the vapour phase.

cliquid = speed of sound in the liquid phase

lowerpresstransit = lower transit pressure of phase transition

upperpresstransit = upper transit pressure of phase transition

PRESSURE GAUSS SEIDEL If this keyword is found, the pressure equa-
tion is solved by a non-linear Gauss-Seidel accelerated GMRES method.

START UP If this keyword is found, the cavitation calculation is started with
a modified equation of state. This means that it is assumed that there is
only water no cavitation. This is only necessary in a start up phase.

5.12 The keyword FREE SURFACE FLOW

The keyword FREE SURFACE FLOW indicates that the problem has at least
one free surface boundary. At this moment only one algorithm to update the free
boundary has been implemented. It is restricted to a stationary 2d Cartesian
free boundary.
The following subkeywords may be used:

Keyword Default value mandatory

METHOD = type NONE no
RELAXATION = a 1 no

These keywords have the following meaning:

METHOD = type = defines the type of method that will be used to update
the free boundary after each step.
At this moment the following values for type are available:

NONE
PLAIN

These subkeywords have the following meaning:

NONE means that no free surface flow is computed, hence the boundary
is not updated.
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PLAIN means that the standard method is used to update the free
boundary. At this moment this means that at the free boundary
the boundary condition ∂h

∂t + u∂h
∂x = v is used, with h(x) the height

of the free surface, and u = (u, v) the Cartesian velocity vector. This
boundary condition is discretized using a first order upwind method.
Restriction:

The present implementation is far from general. In fact it is assumed
that we have only one block and that the region is as sketched in
Figure. 5.12.1. So the top boundary is the free surface boundary

free surface

x

y

Figure 5.12.1: Region for free-surface flow

and the grid is generated from left to right and from below to the
top. This means in terms of a SEPMESH input, that C1 is the lower
boundary, C2 the outflow boundary and C3 the free surface bound-
ary. Furthermore it has been assumed that the fluid flows from left
to right.

RELAXATION = ω defines a relaxation factor for updating the free bound-
ary. In order to get convergence it is necessary to define an under-
relaxation parameter independent of the time step used.
In our example ω = 0.1 proved to be a suitable choice.

5.13 The keyword MAIN STRUCTURE

The keyword MAIN STRUCTURE is only meant for those users that want
to experiment with special algorithms. With this keyword it is possible to
influence the structure of the main program. For example one can decide if an
iteration over sets of equations must be carried out, or that sub-stepping for
some equations must be applied. If the keyword MAIN STRUCTURE is not
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found, the structure of the main program is completely defined by the other
input parameters. However, when this keyword is used it may be necessary
to define things like sub-stepping or iteration that otherwise would have been
defined in other input parts.
The following subkeywords may be used:

GLOBAL_LOOP
CLUSTER i

These keywords have the following meaning:

GLOBAL LOOP indicates that information about the global loop is defined.
This keyword must be followed by subkeywords defining this information.

CLUSTER i defines a new cluster of equations. A cluster is a conglomerate
of equations (possibly consisting of one equation), which must be treated
as one system with respect to loops time-stepping and so on.
This keyword must be followed by subkeywords defining the cluster and
containing information about the loops and so on for the cluster.

Subkeywords for GLOBAL LOOP the following subkeywords are allowed

Keyword Default value mandatory

SEQUENCE_OF_EQUATIONS = ( i,j,k,... ) natural sequence no
ITERATE_INITIAL_CONDITION no no
MIN_INITIAL_ITER = m 1 no
MAX_INITIAL_ITER = m 1 no
ABS_INITIAL_ACCURACY = e 0 no
REL_INITIAL_ACCURACY = e 10e-2 no
MIN_STATIONARY_ITER = m 0 no
MAX_STATIONARY_ITER = m 0 no

These keywords have the following meaning:

SEQUENCE OF EQUATIONS = (i, j, k, ...) defines in which sequence
the equations are solved per time step.

ITERATE INITIAL CONDITION If this keyword is found, the pro-
gram runs with the initial time step, however, without increasing the
actual time, until convergence is achieved.
After that the time integration actually starts.

MIN INITIAL ITER = m defines the minimum number of iterations
with respect to the initial condition iteration.

MAX INITIAL ITER = m defines the maximum number of iterations
with respect to the initial condition iteration.

ABS INITIAL ACCURACY = e defines the absolute accuracy with
respect to the initial condition iteration.
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REL INITIAL ACCURACY = e defines the relative accuracy with
respect to the initial condition iteration. The actual accuracy is a
linear combination of both absolute and relative accuracy.

MIN STATIONARY ITER = m must only be used if a stationary
solution must be found. This parameter defines the minimum number
of iterations.

MAX STATIONARY ITER = m must only be used if a stationary
solution must be found. This parameter defines the maximum num-
ber of iterations.

Subkeywords for CLUSTER i the following subkeywords are allowed

Keyword Default value mandatory

EQUATIONS = ( j,k,... ) i no
STATIONARY not no
ABS_STATIONARY_ACCURACY = e 0 no
REL_STATIONARY_ACCURACY = e 0 no
MIN_STATIONARY_ITER = m 0 no
MAX_STATIONARY_ITER = m 0 no
nsubsteps = n 1 no

These keywords have the following meaning:

EQUATIONS = (j, k, ...) defines which equations belong to the cluster.
If omitted it is assumed that only equation i is used.

STATIONARY if this keyword is found it is assumed that the present
cluster must be iterated until a stationary solution is achieved for
each time step.

ABS STATIONARY ACCURACY = e defines the absolute accu-
racy with respect to the iteration for a stationary solution.

REL STATIONARY ACCURACY = e defines the relative accuracy
with respect to the iteration for a stationary solution. The actual ac-
curacy is a linear combination of both absolute and relative accuracy.

MIN STATIONARY ITER = m must only be used if a stationary
solution must be found. This parameter defines the minimum number
of iterations.

MAX STATIONARY ITER = m must only be used if a stationary
solution must be found. This parameter defines the maximum num-
ber of iterations.

nsubsteps = n means that each time-step for the cluster is subdivided
into n subtime-steps. Hence the actual time-step for the cluster is
smaller than the global time step.
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5.14 The keyword PROFILE INPUT

This keyword is meant to define some information with respect to a flow around
a (two-dimensional) profile.
At this moment it is only implemented in the unstructured finite volume pro-
gram, not yet in Deft.
The keyword may be followed by subkeywords defining information about the
profile.
The following subkeywords may be used:

UPPER_PROFILE = Ci
LOWER_PROFILE = Cj

Meaning of these subkeywords:

UPPER PPROFILE = Ci defines the curve number corresponding to the
upper part of the profile. Mark that only one curve number may be used.
This implies that if the upper part of the profile consists of several curves,
these curves must be combined to a new composite curve.
This option is only available if the mesh has been generated by SEPMESH.
Default value: i = 1

LOWER PROFILE = Cj defines the curve number corresponding to the
lower part of the profile. See also the remarks with respect to UP-
PER PROFILE.
Default value: i = 2

With respect to profile flow, the following things must be kept in mind:

• at the inflow boundary, the momentum vector must be prescribed using
keywords U LEN and ANGLE.

• at the outflow boundary, the boundary conditions for momentum must be
SIGMANT, SIGMANN given.

• the leading edge must be positioned in the origin, and the trailing edge
must be positioned at the x-axis, e.g. in (1,0).

• the boundary condition must be constants, i.e. not a function of time
and/or position.

• the upper and lower surface of the profile must each exist of one curve
only.

5.15 The keyword FREQUENT OUTPUT

This is especially useful if some quantities must be followed in time. It concerns
a limited number of quantities, complete fields are only written at the time-steps
indicated by tout.
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At this moment it is only implemented in the unstructured finite volume pro-
gram, not yet in Deft.
The keyword may be followed by subkeywords defining information about which
quantities must be written.
The following subkeywords may be used:

FREQUENCY = f
LIFT
MINMAX_MACHNUMBER
NUMBER_OF_SUPERSONIC_VERTICES
POSITION_SONIC_POINTS
DENSITY_RES_ONE
DENSITY_RES_TWO
DENSITY_RES_INF
MOMENTUM_RES_ONE
MOMENTUM_RES_TWO
MOMENTUM_RES_INF
ENTHALPY_RES_ONE
ENTHALPY_RES_TWO
ENTHALPY_RES_INF

Meaning of these subkeywords:

FREQUENCY = f defines the frequency with which this output is written
to file sepcomp.freq. f ≥ 1 defines the time steps at which the frequent
output is written. If f = 1 each time step information is written, if f = 2
only the odd time steps and so on.
Default value: f = 1

LIFT If this subkeyword is found both the lift and the drag of a profile will be
written to the output file. This keyword makes only sense in combination
with the keyword PROFILE.
If omitted the lift and drag are not written.

MINMAX MACHNUMBER The minimum and maximum Mach numbers
in the region will be written. This keyword makes only sense in combina-
tion with the keyword COMPRESSIBLE.
If omitted the minimum and maximum Mach numbers are not written.

NUMBER OF SUPERSONIC VERTICES The number of supersonic ver-
tices in the region will be written. This keyword makes only sense in com-
bination with the keyword COMPRESSIBLE.
If omitted the number will not be written.

POSITION SONIC POINTS The position of the sonic points along the
profile will be written. Theoretically there are at most 2 sonic points at
each side of the profile, hence 4 positions are written.
In each step 4 coordinates are written defining the relative x-position along
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the profile, where the profile is scaled from x = 0 to x = 1. If during a
step more than 2 sonic points along a side are found, only the first two
found are written. This keyword makes only sense in combination with
the keywords COMPRESSIBLE and PROFILE.
If omitted the positions are not written.

DENSITY RES ONE The quantity ||ρn+1 − ρn||1, with n indicating the
time-level, is written to file. For definitions of the norm, see below.
If omitted this quantity is not written.

DENSITY RES TWO The quantity ||ρn+1 − ρn||2, with n indicating the
time-level, is written to file. For definitions of the norm, see below.
If omitted this quantity is not written.

DENSITY RES INF The quantity ||ρn+1 − ρn||∞, with n indicating the
time-level, is written to file. For definitions of the norm, see below.
If omitted this quantity is not written.

MOMENTUM RES ONE The quantity ||mn+1 −mn||1, with n indicating
the time-level, is written to file. For definitions of the norm, see below.
If omitted this quantity is not written.

MOMENTUM RES TWO The quantity ||mn+1−mn||2, with n indicating
the time-level, is written to file. For definitions of the norm, see below.
If omitted this quantity is not written.

MOMENTUM RES INF The quantity ||mn+1 −mn||∞, with n indicating
the time-level, is written to file. For definitions of the norm, see below.
If omitted this quantity is not written.

ENTHALPY RES ONE The quantity ||hn+1 − hn||1, with n indicating the
time-level, is written to file. For definitions of the norm, see below.
If omitted this quantity is not written.

ENTHALPY RES TWO The quantity ||hn+1−hn||2, with n indicating the
time-level, is written to file. For definitions of the norm, see below.
If omitted this quantity is not written.

ENTHALPY RES INF The quantity ||hn+1 − hn||∞, with n indicating the
time-level, is written to file. For definitions of the norm, see below.
If omitted this quantity is not written.

The following definitions of norms, with u = (u1, u2, . . . , un), are used:

• 1 norm:

||u||1 =
∑n

i=1 |ui|
n

(5.20)

• 2 norm:

||u||2 =

√∑n
i=1 u2

i

n
(5.21)
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• ∞ norm:
||u||∞ = max(|ui|) (5.22)
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Chapter 6

Creating your own main
program

In many applications it is sufficient to use the command ISNASEXE and there
is no need to create a main program. However, sometimes ISNASEXE does not
supply enough flexibility for your purposes. Reasons for creating your own main
program are for example:

• It is necessary to add a function subroutine because one of the boundary
conditions, one of the coefficients or perhaps the initial conditions depend
on space or time.

• The buffer space used by program ISNASEXE is insufficient for your ap-
plication. If this is the case isnasexe returns with a message.

• You are extending, changing or debugging isnasexe. This is only meant
for developers and is described in the Programmers Guide [40].

In Section 6.1 it is described how you make your local main program ISNA-
SEXE.
The function subroutines that must be provided by the user in case of vari-
able coefficients, boundary conditions or initial conditions are described in the
Sections 6.2, 6.3, 6.4, 6.5 and 6.6.

6.1 How to create and run a local program IS-

NASEXE in a serial environment

The creation of a main program in Deft is relatively simple. The name of the
main program may be chosen freely. However, there is one exception. In the
case of a parallel environment, only the name isnasexe may be used, due to some
scripts necessary to use mpi. This restriction is only temporarily. In general
the main program has the following shape:
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program example
implicit none
integer nbuffr
parameter( nbuffr = 5000000 )
integer ibuffr
common ibuffr(nbuffr)

call is_main ( nbuffr )

end

function usfunx ( .... )
end

subroutine usfilx ( .... )
end

The program name ”example” may be replaced by any other suitable name.
The declarations concerning IBUFFR and NBUFFR define the length of the
buffer array to be used by Deft. In this example the default length 5000000 has
been used. However, if the buffer length is insufficient, this number must be
enlarged.
Subroutine IS MAIN is the actual main Deft subroutine. It requires the de-
clared length of array IBUFFR as only parameter.

If function subroutines must be provided, the simplest way is to put them in the
same file as the main program, just behind this main program. Only the sub-
routines actually written by the user should be supplied. The function usfunx
and the subroutine usfilx used in the example above represent these user sub-
routines.

The actual program isnasexe can be put into your directory by the command:

isget isnasexe

This command copies the standard isnasexe program into your directory with
the name isnasexe.f. The next step is to adapt this program for your own
purposes, and add those user subroutines that are required for the application.
It is a good practice to rename the file isnasexe.f to a new name that has
something to do with the application, for example channel.f. It is advised to
use the same name in the program statement.

Once the program has been created it must be compiled and linked. This must
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be performed by the command islink in the following way:

islink isnasexe

where isnasexe stands for the name of the fortran file containing the main pro-
gram, without the extension .f.
The islink commands compiles the program isnasexe including all user subrou-
tines provided in this file. After successful compilation the program isnasexe
is linked with the subroutines provided, all files with the extension .o in the
subdirectory, and of course the Deft libraries. The files with extension .o are
supposed to be compiled before by a FORTRAN or possibly C-compiler. The
file isnasexe.o itself is removed.
The result of the islink command is an executable with the name isnasexe, pro-
vided compilation and linking have been carried out successfully. To run this
executable, simply type its name, for example:

isnasexe

This program will run provided the grid has been generated before and the Deft
pre-processor has been applied and no errors are generated.
If Deft is run in a parallel environment on several computers, then it is necessary
to link isnasexe first and after that run isnasmpi with an input file as described
in Section 3.3. In that case the name of the main program is restricted to
isnasexe.

6.2 Function subroutine usfuni

Description

Only if the initial conditions are not constant throughout the domain
it is necessary to provide the user written subroutine USFUNI.

Heading

function usfuni ( ichoice, x, y, z )

Parameters

integer ichoice

double precision usfuni, x, y, z

usfuni Must get the value of the function in the point x,y,z, de-
pending on the choice parameter ichoice.

ichoice Choice parameter. This parameter may be used to distin-
guish between several initial conditions.
The parameter is set by Deft and gets the value of the param-
eter i in FUNC = i in the input file for the pre-processor.
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x,y,z Co-ordinates of the point in which the initial condition must
be evaluated.

Input

The parameters ichoice, x, y and z have gotten a value by the Deft
program.

Output

The user must explicitly give usfuni some value.

Example

Suppose the initial condition for the u-velocity is u = x2 + y2 and
the initial condition for the pressure is p = sin(xy). Suppose fur-
thermore that u corresponds to ichoice=1 and p to ichoice=2. Then
function subroutine usfuni may have the following form:

function usfuni ( ichoice, x, y, z )
implicit none
integer ichoice
double precision usfuni, x, y, z
if ( ichoice.eq.1 ) then

c --- ichoice = 1, u = x^2 + y^2

usfuni = x**2 + y**2

else if ( ichoice.eq.2 ) then

c --- ichoice = 2, p = sin(xy)

usfuni = sin(x*y)

end if

end

6.3 Function subroutine usfunb

Description

The user written subroutine USFUNB must be provided, if the
boundary conditions are not constant for all space and or time.

Heading
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function usfunb ( ichoice, x, y, z, t )

Parameters

integer ichoice

double precision usfunb, x, y, z, t

usfunb Must get the value of the function in the point x,y,z, de-
pending on the choice parameter ichoice and the time t.

ichoice Choice parameter. This parameter may be used to distin-
guish between several boundary conditions.
The parameter is set by Deft and gets the value of the param-
eter i in FUNC = i in the input file for the pre-processor.

x,y,z Co-ordinates of the point in which the boundary condition
must be evaluated.

t Time at which the boundary condition must be evaluated.

Input

The parameters ichoice, t, x, y and z have gotten a value by the Deft
program.

Output

The user must explicitly give usfunb some value.

Example

Suppose the boundary condition for the u-velocity at some boundary
is u = x2 + y2 and the boundary condition for the v-velocity is
v = sin(t). Suppose furthermore that u corresponds to ichoice=1
and v to ichoice=2. Then function subroutine usfunb may have the
following form:

function usfunb ( ichoice, x, y, z, t )
implicit none
integer ichoice
double precision usfunb, x, y, z, t
if ( ichoice.eq.1 ) then

c --- ichoice = 1, u = x^2 + y^2

usfunb = x**2 + y**2

else if ( ichoice.eq.2 ) then

c --- ichoice = 2, v = sin(t)
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usfunb = sin(t)

end if

end

6.4 Function subroutine usfunc

Description

The user written subroutine USFUNC must be provided, if the co-
efficients are not constant throughout the domain for all time.

Heading

function usfunc ( ichoice, x, y, z, t )

Parameters

integer ichoice

double precision usfunc, x, y, z, t

usfunc Must get the value of the function in the point x,y,z, de-
pending on the choice parameter ichoice and the time t.

ichoice Choice parameter. This parameter may be used to distin-
guish between several coefficients.
The parameter is set by Deft and gets the value of the param-
eter i in FUNC = i in the input file for the pre-processor.
USFUNC is only used if 0 < i < 100. For values of i between
100 and 200 USFUNC1 will be used, whereas for i > 1000
USFUNC must be programmed.

x,y,z Co-ordinates of the point in which the coefficient must be
evaluated.

t Time at which the coefficient must be evaluated.

Input

The parameters ichoice, t, x, y and z have gotten a value by the Deft
program.

Output

The user must explicitly give usfunc some value.

Example

Suppose that the viscosity is a function of the time: µ = sin(t) and
this parameter corresponds to ichoice=1. Then function subroutine
usfunc may have the following form:
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function usfunc ( ichoice, x, y, z, t )
implicit none
integer ichoice
double precision usfunc, x, y, z, t
if ( ichoice.eq.1 ) then

c --- ichoice = 1, mu = sin(t)

usfunc = sin(t)

end if

end

6.5 Function subroutine usfunc1

Description

The user written subroutine USFUNC1 must be provided, if the
coefficients depend on previously computed solutions. In fact US-
FUNC1 is the most simple extension of USFUNC in the sense that
it provides two extra parameters which contain the previously com-
puted solutions in the actual point.

Heading

function usfunc1 ( ichoice, x, y, z, t, soluts, ndegfd )

Parameters

integer ichoice, ndegfd

double precision usfunc1, x, y, z, t, soluts(ndegfd)

usfunc1 Must get the value of the function in the point x,y,z, de-
pending on the choice parameter ichoice, the time t and the
”old” solution.

ichoice Choice parameter. This parameter may be used to distin-
guish between several coefficients.
The parameter is set by Deft and gets the value of the param-
eter i-100 in FUNC = i in the input file for the pre-processor.
USFUNC1 is only used if 100 < i < 200.

x,y,z Co-ordinates of the point in which the coefficient must be
evaluated.

t Time at which the coefficient must be evaluated.

ndegfd Number of ”old” solutions available in the present point.
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soluts In this array of length ndegfd the ”old” solutions in the
present point are stored. The values of these solutions do not
have to be the actual values with which the Deft program com-
putes. For example internally Deft uses so-called contra-variant
velocity components, whereas in soluts only the standard Carte-
sian components are stored. Furthermore it is possible that an
unknown is not present in the actual point. In that case Deft
provides an interpolated value.
The sequence in which the unknowns are stored in soluts is
fixed and corresponds to the standard Deft numbering.
This means that the first ndim positions are occupied by the
Cartesian velocity components, the next one by the pressure,
followed by the NTRANS transport quantities and finally by
the turbulence degrees of freedom.

Input

The parameters ichoice, t, ndegfd, x, y and z have gotten a value by
the Deft program.
Array soluts has been filled by Deft.

Output

The user must explicitly give usfunc1 some value.

Example

Suppose that the viscosity is a function of the temperature: µ =
0.01e−0.03T and this parameter corresponds to ichoice=1.
Let the dimension of space (ndim) be 2 and T be the only transport
quantity. Suppose furthermore that the flow is laminar. In that case
ndegfd = 4 and soluts contains u, v, p and T respectively.
Then function subroutine usfunc1 may have the following form:

function usfunc1 ( ichoice, x, y, z, t, soluts, ndegfd )
implicit none
integer ichoice, ndegfd
double precision usfunc1, x, y, z, t, soluts(ndegfd)
if ( ichoice.eq.1 ) then

c --- ichoice = 1, mu = 0.01 exp(-0.03T)

usfunc1 = 0.01d0 * exp(-0.03*soluts(4))

end if

end
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6.6 Subroutine usfilc

Description

The user written subroutine USFILC must be provided, if the coeffi-
cients depend on previously computed solutions and the user wants
to have a maximum flexibility to fill the coefficient arrays himself.
An important disadvantage of USFILC is that the user must know
exactly how the solution arrays are filled. Also he must know some-
thing about the fluxes used as unknowns. Hence this possibility is
only recommended for users with insight knowledge.
USFILC is called for each coefficient separately.
USFILC is called if the choice parameter for the coefficients (ICHOICE)
is larger than 1000 and less than 10000.

Heading

subroutine usfilc ( choice, coefs, ncoefs, i, ni, nj, nk,
+ ndim, nvirtual, coor, solut, ndegfd, time )

Parameters

integer choice, ncoefs, i, ni, nj, nk, ndim, nvirtual, ndegfd

double precision coefs(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ncoefs)
solut( 1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ndegfd)
coor(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ndim)
time

choice Choice parameter to be used to distinguish between several
possibilities. This parameter is initialized by program ISNA-
SEXE and gets the value of ICHOICE-1000. Compare with
subroutine USFUNC (6.4).

coefs Double precision array, where the first index refers to the ”i”-
direction, the second one to the ”j”-direction and the third one
to the coefficient sequence number. If ndim = 3, of course also
the ”k”-direction must be used.
The user must fill the coefficients himself for the complete field.
Each index refers to a cell center. Only one call to usfilcsp per
time step is performed, hence all coefficients the user wants to
fill with this subroutine must be filled in this call.
Virtual cells do not have to be filled, hence a loop from 1 to ni
and from 1 to nj must be used.

ncoefs Number of coefficients for the equation.

i Sequence number of coefficient for the equation.

ni,nj,nk Number of cells in ”i”, ”j” and ”k” direction.

ndim Dimension of space (2 or 3).
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nvirtual Number of virtual cells in each direction. Is only used for
the declaration.

coor Array containing the co-ordinates of the vertices of the cells.
The 4 vertices of cell (i,j) have sequence numbers (i,j), (i+1,j),
(i+1,j+1), (i,j+1).

solut Array containing all solutions at the previous time step. The
first ndim vectors refer to the contravariant velocity compo-
nents in a staggered grid and are therefore hard to interpret.
The other unknowns are all defined in the cell centers.

ndegfd Number of ”old” solutions available in the present point.

time Time at which the coefficient must be evaluated.

Input

The parameters choice, i, ncoefs, ni, nj, nk, ndim, nvirtual, ndegfd
and time have gotten a value by the Deft program.
The arrays coefs, coor and solut have been filled by Deft.

Output

The user must fill the coefficients in array coefs.

6.7 Subroutine usfilcsp

Description

The user written subroutine USFILCP must be provided, if the co-
efficients depend on previously computed solutions and also on the
Cartesian velocity coefficients In fact USFILCP is at present the
most complex subroutine for the user, since the user is supposed to
fill a set of coefficients in the complete field in one call.

Heading

subroutine usfilcsp ( coefs, ncoefs, ni, nj, nk, ndim,
nvirtual, coor, solut, ndegfd,
time, veloc )

Parameters

integer ncoefs, ndegfd, ndim, ni, nj, nk, nvirtual

double precision coefs(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ncoefs)
solut( 1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ndegfd)
coor(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ndim)
veloc(1:ni+1,1+nj+1,1:ndim), time
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coefs Double precision array, where the first index refers to the ”i”-
direction, the second one to the ”j”-direction and the third one
to the coefficient sequence number. If ndim = 3, of course also
the ”k”-direction must be used.
The user must fill the coefficients himself for the complete field.
Each index refers to a cell center. Only one call to usfilcsp per
time step is performed, hence all coefficients the user wants to
fill with this subroutine must be filled in this call.
Virtual cells do not have to be filled, hence a loop from 1 to ni
and from 1 to nj must be used.

ncoefs Number of coefficients for the equation.

ni,nj,nk Number of cells in ”i”, ”j” and ”k” direction.

ndim Dimension of space (2 or 3).

nvirtual Number of virtual cells in each direction. Is only used for
the declaration.

coor Array containing the co-ordinates of the vertices of the cells.
The 4 vertices of cell (i,j) have sequence numbers (i,j), (i+1,j),
(i+1,j+1), (i,j+1).

solut Array containing all solutions at the previous time step. The
first ndim vectors refer to the contravariant velocity compo-
nents in a staggered grid and are therefore hard to interpret.
The other unknowns are all defined in the cell centers.

ndegfd Number of ”old” solutions available in the present point.

time Time at which the coefficient must be evaluated.

veloc Array containing the Cartesian velocity components in the
vertices at the previous time level.

Input

The parameters ncoefs, ni, nj, nk, ndim, nvirtual, ndegfd and time
have gotten a value by the Deft program.
The arrays coefs, coor, solut and veloc have been filled by Deft.

Output

The user must fill the coefficients in array coefs.

Example

Suppose that the viscosity (coefficient 1) is a function of the tempera-
ture: µ = 0.01e−0.03T and this parameter corresponds to choice=10000.
Let the dimension of space (ndim) be 2 and T be the only transport
quantity. Suppose furthermore that the flow is laminar. In that case
ndegfd = 4 and soluts contains u, v, p and T respectively.
Then subroutine usfilcsp may have the following form:
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subroutine usfilcsp ( coefs, ncoefs, ni, nj, nk, ndim, nvirtual,
+ coor, solut, ndegfd, time, veloc )
implicit none
integer ncoefs, ndegfd, ndim, ni, nj, nk, nvirtual
double precision coefs(1-nvirtual:ni+1+nvirtual,

+ 1-nvirtual:nj+1+nvirtual,1:ncoefs),
+ solut( 1-nvirtual:ni+1+nvirtual,
+ 1-nvirtual:nj+1+nvirtual,1:ndegfd),
+ coor(1-nvirtual:ni+1+nvirtual,
+ 1-nvirtual:nj+1+nvirtual,1:ndim),
+ veloc(1:ni+1,1+nj+1,1:ndim),
+ time
integer i, j
do i = 1, ni

do j = 1, nj
coefs(i,j,1) = 0.01d0 * exp(-0.03*solut(i,j,4))

end do
end do

end

6.8 Subroutine usdrhodh

Description

The user written subroutine USDRHODH must be provided, if the
user provides its own equation of state. This subroutine must return
the value of ∂ρ

∂h in all centers of the internal cells.
h may be either the enthalpy h, the total enthalpy H or the internal
energy e, depending on the choice of energy equation.
To write this subroutine it is necessary to have some knowledge of
the internal data structure of Deft as described in the Programmers
Guide.

Heading

subroutine usdrhodh ( eddy, solut, ni, nj, nk, nvirtual, ndim, ndegfd, drhodh )

Parameters

integer ndegfd, ndim, ni, nj, nk, nvirtual

double precision eddy(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,∗)
solut( 1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ndegfd)
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drhodh(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual)
In R3 of course an extra part 1-nvirtual:nk1+nvirtual+ is
required.

eddy double precision array in which some computed quantities are
stored. The storage of eddy is described in the Programmers
Guide.

solut Array containing all solutions at the previous time step. The
first ndim vectors refer to the contravariant velocity compo-
nents in a staggered grid and are therefore hard to interpret.
The other unknowns are all defined in the cell centers.

time Time at which the coefficient must be evaluated.

ni,nj,nk Number of cells in ”i”, ”j” and ”k” direction.

nvirtual Number of virtual cells in each direction. Is only used for
the declaration.

ndim Dimension of space (2 or 3).

ndegfd Number of ”old” solutions available in the present point.

drhodh In this array the user must store the values of ∂ρ
∂h in all

internal cells.

Input

The parameters ni, nj, nk, ndim, nvirtual and ndegfd have gotten a
value by the Deft program.
The arrays eddy and solut have been filled by Deft.

Output

The user must fill the value of ∂ρ
∂h in array drhodh.

Example

For a perfect gas the equation of state is ρ = γ
(γ−1)

p
h .

So in that case we have ∂ρ
∂h = − γ

(γ−1)
p
h2 The pressure is stored in

solut(.,.,3,1) and the enthalpy in solut(i,j,4,1).
So for a perfect gas the subroutine usdrhodh may look like:

subroutine usdrhodh ( eddy, solut, ni, nj, nk, nvirtual, ndim,
+ ndegfd, drhodh )
implicit none
integer ndegfd, ndim, ni, nj, nk, nvirtual
double precision eddy(1-nvirtual:ni+1+nvirtual,

+ 1-nvirtual:nj+1+nvirtual,*),
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+ solut( 1-nvirtual:ni+1+nvirtual,
+ 1-nvirtual:nj+1+nvirtual,1:ndegfd),
+ drhodh(1-nvirtual:ni+1+nvirtual,
+ 1-nvirtual:nj+1+nvirtual)
double precision gamma, constant
gamma = 1.4d0
constant = -gamma/(1d0-gamma)
integer i, j
do i = 1, ni

do j = 1, nj
drhodh(i,j) = constant*solut(i,j,3,1) / solut(i,j,4,1)**2

end do
end do

end

of course in this case there is no need to supply a subroutine us-
drhodh.

6.9 Subroutine usdrhodp

Description

The user written subroutine USDRHODP must be provided, if the
user provides its own equation of state. This subroutine must return
the value of ∂ρ

∂p in all centers of the internal cells.
To write this subroutine it is necessary to have some knowledge of
the internal data structure of Deft as described in the Programmers
Guide.

Heading

subroutine usdrhodp ( eddy, solut, ni, nj, nk, nvirtual, ndim, ndegfd, drhodp )

Parameters

integer ndegfd, ndim, ni, nj, nk, nvirtual

double precision eddy(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,∗)
solut( 1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ndegfd)
drhodp(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual)
In R3 of course an extra part 1-nvirtual:nk1+nvirtual+ is
required.

eddy double precision array in which some computed quantities are
stored. The storage of eddy is described in the Programmers
Guide.
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solut Array containing all solutions at the previous time step. The
first ndim vectors refer to the contravariant velocity compo-
nents in a staggered grid and are therefore hard to interpret.
The other unknowns are all defined in the cell centers.

time Time at which the coefficient must be evaluated.

ni,nj,nk Number of cells in ”i”, ”j” and ”k” direction.

nvirtual Number of virtual cells in each direction. Is only used for
the declaration.

ndim Dimension of space (2 or 3).

ndegfd Number of ”old” solutions available in the present point.

drhodp In this array the user must store the values of ∂ρ
∂p in all

internal cells.

Input

The parameters ni, nj, nk, ndim, nvirtual and ndegfd have gotten a
value by the Deft program.
The arrays eddy and solut have been filled by Deft.

Output

The user must fill the value of ∂ρ
∂p in array drhodp.

Example

For a perfect gas the equation of state is ρ = γ
(γ−1)

p
h .

So in that case we have ∂ρ
∂p = γ

(γ−1)
1
h The enthalpy is stored in

solut(i,j,4,1).
So for a perfect gas the subroutine usdrhodp may look like:

subroutine usdrhodp ( eddy, solut, ni, nj, nk, nvirtual, ndim,
+ ndegfd, drhodp )
implicit none
integer ndegfd, ndim, ni, nj, nk, nvirtual
double precision eddy(1-nvirtual:ni+1+nvirtual,

+ 1-nvirtual:nj+1+nvirtual,*),
+ solut( 1-nvirtual:ni+1+nvirtual,
+ 1-nvirtual:nj+1+nvirtual,1:ndegfd),
+ drhodp(1-nvirtual:ni+1+nvirtual,
+ 1-nvirtual:nj+1+nvirtual)
double precision gamma, constant
gamma = 1.4d0
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constant = gamma/(1d0-gamma)
integer i, j
do i = 1, ni

do j = 1, nj
drhodp(i,j) = constant / solut(i,j,4,1)

end do
end do

end

of course in this case there is no need to supply a subroutine us-
drhodp.

6.10 Subroutine uscalcrho

Description

The user written subroutine uscalcrho must be provided, if the user
provides its own equation of state. This subroutine must return the
value of ρ in all centers of the internal cells.
To write this subroutine it is necessary to have some knowledge of
the internal data structure of Deft as described in the Programmers
Guide.

Heading

subroutine uscalcrho ( eddy, solut, ni, nj, nk, nvirtual, ndim,
+ ndegfd, ilowloop, iupploop, jlowloop,
+ jupploop, klowloop, kupploop )

Parameters

integer ndegfd, ndim, ni, nj, nk, nvirtual, ilowloop, iupploop, jlowloop,
jupploop, klowloop, kupploop

double precision eddy(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,∗)
solut( 1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ndegfd)
drhodp(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual)
In R3 of course an extra part 1-nvirtual:nk1+nvirtual+ is
required.

eddy double precision array in which some computed quantities are
stored. The storage of eddy is described in the Programmers
Guide.
For this subroutine it is important that ρ must be stored in
eddy(.,.,2)
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solut Array containing all solutions at the previous time step. The
first ndim vectors refer to the contravariant velocity compo-
nents in a staggered grid and are therefore hard to interpret.
The other unknowns are all defined in the cell centers.

time Time at which the coefficient must be evaluated.

ni,nj,nk Number of cells in ”i”, ”j” and ”k” direction.

nvirtual Number of virtual cells in each direction. Is only used for
the declaration.

ndim Dimension of space (2 or 3).

ndegfd Number of ”old” solutions available in the present point.

ilowloop, iupploop, jlowloop, jupploop, klowloop, kupploop
lower and upper bounds for the i, j and k loops with respect to
the filling of ρ in eddy.

Input

The parameters ni, nj, nk, ndim, nvirtual, ndegfd, ilowloop, iup-
ploop, jlowloop, jupploop, klowloop, kupploop have gotten a value
by the Deft program.
The arrays eddy and solut have been filled by Deft.

Output

The user must fill the value of ρ in array eddy (second array).

Example

For a perfect gas the equation of state is ρ = γ
(γ−1)

p
h .

The pressure is stored in solut(.,.,3,1) and the enthalpy in solut(i,j,4,1).
So for a perfect gas the subroutine uscalcrho may look like:

subroutine uscalcrho ( eddy, solut, ni, nj, nk, nvirtual, ndim,
+ ndegfd, ilowloop, iupploop, jlowloop,
+ jupploop, klowloop, kupploop )
implicit none
integer ndegfd, ndim, ni, nj, nk, nvirtual, ilowloop,

+ iupploop, jlowloop, jupploop, klowloop, kupploop
double precision eddy(1-nvirtual:ni+1+nvirtual,

+ 1-nvirtual:nj+1+nvirtual,*),
+ solut( 1-nvirtual:ni+1+nvirtual,
+ 1-nvirtual:nj+1+nvirtual,1:ndegfd)
double precision gamma, constant
gamma = 1.4d0
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constant = gamma/(1d0-gamma)
integer i, j
do i = ilowloop, iupploop

do j = jlowloop, jupploop
eddy(i,j,2) = constant * solut(i,j,3,1) / solut(i,j,4,1)

end do
end do

end

of course in this case there is no need to supply a subroutine uscal-
crho.

6.11 Subroutine uscompinten

Description

The user written subroutine uscompinten must be provided, if the
user uses the internal energy as energy equation in stead one of the
enthalpy equations. This subroutine must return the value of ρ in
all centers of the internal cells.
To write this subroutine it is necessary to have some knowledge of
the internal data structure of Deft as described in the Programmers
Guide.

Heading

subroutine uscompinten ( eddy, solut, ni, nj, nk, nvirtual, ndim,
+ ndegfd, ilowloop, iupploop, jlowloop,
+ jupploop, klowloop, kupploop )

Parameters

integer ndegfd, ndim, ni, nj, nk, nvirtual, ilowloop, iupploop, jlowloop,
jupploop, klowloop, kupploop

double precision eddy(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,∗)
solut( 1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ndegfd)
drhodp(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual)
In R3 of course an extra part 1-nvirtual:nk1+nvirtual+ is
required.

eddy double precision array in which some computed quantities are
stored. The storage of eddy is described in the Programmers
Guide.
For this subroutine it is important that ρ must be stored in
eddy(.,.,2)
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solut Array containing all solutions at the previous time step. The
first ndim vectors refer to the contravariant velocity compo-
nents in a staggered grid and are therefore hard to interpret.
The other unknowns are all defined in the cell centers.

time Time at which the coefficient must be evaluated.

ni,nj,nk Number of cells in ”i”, ”j” and ”k” direction.

nvirtual Number of virtual cells in each direction. Is only used for
the declaration.

ndim Dimension of space (2 or 3).

ndegfd Number of ”old” solutions available in the present point.

ilowloop, iupploop, jlowloop, jupploop, klowloop, kupploop
lower and upper bounds for the i, j and k loops with respect to
the filling of ρ in eddy.

Input

The parameters ni, nj, nk, ndim, nvirtual, ndegfd, ilowloop, iup-
ploop, jlowloop, jupploop, klowloop, kupploop have gotten a value
by the Deft program.
The arrays eddy and solut have been filled by Deft.

Output

The user must fill the value of ρ in array eddy (second array).

Example

For a perfect gas the equation of state is ρ = γ
(γ−1)

p
h .

The pressure is stored in solut(.,.,3,1) and the enthalpy in solut(i,j,4,1).
So for a perfect gas the subroutine uscompinten may look like:

subroutine uscompinten ( eddy, solut, ni, nj, nk, nvirtual, ndim,
+ ndegfd, ilowloop, iupploop, jlowloop,
+ jupploop, klowloop, kupploop )
implicit none
integer ndegfd, ndim, ni, nj, nk, nvirtual, ilowloop,

+ iupploop, jlowloop, jupploop, klowloop, kupploop
double precision eddy(1-nvirtual:ni+1+nvirtual,

+ 1-nvirtual:nj+1+nvirtual,*),
+ solut( 1-nvirtual:ni+1+nvirtual,
+ 1-nvirtual:nj+1+nvirtual,1:ndegfd)
double precision gamma, constant
gamma = 1.4d0
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constant = gamma/(1d0-gamma)
integer i, j
do i = ilowloop, iupploop

do j = jlowloop, jupploop
eddy(i,j,2) = constant * solut(i,j,3,1) / solut(i,j,4,1)

end do
end do

end

of course in this case there is no need to supply a subroutine us-
compinten.

6.12 Subroutine usfilsrc

Description

The user written subroutine usfilsrc must be provided, if the user
defines a coefficient as function with IFUNC = 10001. This sub-
routine must return the value of the corresponding coefficient in all
centers of the internal cells.
To write this subroutine it is necessary to have some knowledge of
the internal data structure of Deft as described in the Programmers
Guide.

Heading

subroutine usfilsrc ( coefs, ni, nj, nk, ndim, nvirtual,
+ coor, solut, ndegfd, time, eddy, axisym )

Parameters

integer ndegfd, ndim, ni, nj, nk, nvirtual, axisym
double precision time

coor(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,ndim)
eddy(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,∗)
solut( 1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,1:ndegfd)
coefs(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual)
In R3 of course an extra part 1-nvirtual:nk1+nvirtual+ is
required.

time Time at which the coefficient must be evaluated.
coor double precision array in which the coordinates in the vertices

are stored.
eddy double precision array in which some computed quantities are

stored. The storage of eddy is described in the Programmers
Guide.
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solut Array containing all solutions at the previous time step. The
first ndim vectors refer to the contravariant velocity compo-
nents in a staggered grid and are therefore hard to interpret.
The other unknowns are all defined in the cell centers.

coefs double precision array in which the coefficient in the cell cen-
tres must be stored by the user.

ni,nj,nk Number of cells in ”i”, ”j” and ”k” direction.

nvirtual Number of virtual cells in each direction. Is only used for
the declaration.

ndim Dimension of space (2 or 3).

ndegfd Number of ”old” solutions available in the present point.

axisym This parameter indicates if the coordinate system is Carte-
sian (0) or axi-symmetric (1)

Input

The parameters ni, nj, nk, ndim, nvirtual, ndegfd, time and axisym
have gotten a value by the Deft program.
The arrays eddy and solut have been filled by Deft.

Output

The user must fill the value of the coefficient in array coefs.

6.13 Subroutine uscompvisc

Description

The user written subroutine uscompvisc must be provided, if the
user defines a coefficient as function with IFUNC = 10002. This
subroutine must return the value of the corresponding coefficient in
all centers of the internal cells.
To write this subroutine it is necessary to have some knowledge of
the internal data structure of Deft as described in the Programmers
Guide.

Heading

subroutine uscompvisc ( coefs, eddy, ni, nj, nk, nvirtual,
+ ndim )

Parameters

integer ndim, ni, nj, nk, nvirtual
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double precision time
eddy(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual,∗)
coefs(1-nvirtual:ni+1+nvirtual,1-nvirtual:nj+1+nvirtual)
In R3 of course an extra part 1-nvirtual:nk1+nvirtual+ is
required.

eddy double precision array in which some computed quantities are
stored. The storage of eddy is described in the Programmers
Guide.

coefs double precision array in which the coefficient in the cell cen-
tres must be stored by the user.

ni,nj,nk Number of cells in ”i”, ”j” and ”k” direction.

nvirtual Number of virtual cells in each direction. Is only used for
the declaration.

ndim Dimension of space (2 or 3).

Input

The parameters ni, nj, nk, ndim, nvirtual have gotten a value by the
Deft program.
Array eddy has been filled by Deft.

Output

The user must fill the value of the coefficient in array coefs.
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Chapter 7

Post-processing

Once the solution has been computed, post-processing must be applied in order
to print or plot the results. In the present version of Deft only the SEPRAN
post-processor ISNASPOST is available. In Section 7.1 the input to ISNAS-
POST is described.

7.1 Post processing with SEPRAN

7.1.1 Introduction

In the post processing part of SEPRAN, the output of the solution and derived
quantities is produced in a readable (visible) form. Integrals over quantities,
integrals over boundaries etc. may be computed and printed or plotted. The
output generated may be produced in either print or plot form. Print output is
both written to the screen or to a file for later reproducing on a printer.

The post processing is performed by the main program ISNASPOST. It requires
two types of input.

First it uses some files produced by the grid generation part (meshoutput) and
the computational part (sepcomp.out and sepcomp.inf).

Secondly it requires input from the standard input file.

The input of ISNASPOST is described in the next sections.

Section 7.1.2 describes the general format of the input, including the so-called
compute commands, the define commands and the reset commands, Section
7.1.3 treats the various print commands, Section 7.1.4 the plot commands
and Section 7.1.5 is devoted to some special commands with respect to time-
dependence.
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7.1.2 General input for program ISNASPOST

The input for the post processing part must be opened with the COMMAND
POSTPROCESSING and must be closed with the COMMAND END.

COMMAND and DATA records.

Options are indicated between the square brackets [ and ].

POSTPROCESSING (mandatory)
COMMAND record: opens the input for program ISNASPOST.
Must be followed by DATA records of the shape:

NAME V0 = velocity

NAME V1 = pressure
.
.
These records identify the vectors V0, V1 and so on, with the names ve-
locity, pressure etcetera. These names are used in the output subroutines,
for example in the heading of the prints. If no names are given, a blank
is printed.

In Deft V0 always corresponds to the velocity, V1 to the pressure, V2 to the
stream function and V3 to V(2+NTRANS) to the NTRANS transport de-
grees of freedom. The vectors V(3+NTRANS) to V(2+NTRANS+NTURB)
correspond to the turbulent quantities in the sequence provided by the
computational program. For example for a k − ε model the sequence is k
followed by ε. The vectors V(3+NTRANS+NTURB) to
V(2+NTRANS+NTURB+3*NDIM) correspond to the following quan-
tities: eddy-viscosity, turbulence intensity, turbulence length scale and
Reynolds stresses u′

iu′
j , in which u′

i represent the Cartesian velocity fluc-
tuations.

The actual post processing records have the following shape:

PRINT Vi . . . . . .

PLOT . . . . . .

COMPUTE Vi . . . . . .

DEFINE . . . . . .

RESET . . . . . .

TIME = . . . . . .

TIME HISTORY . . . . . .
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END (mandatory)
End of the input for program ISNASPOST.

The actual post processing commands may be given in any order, with the
restriction that vectors Vi to be printed or plotted must have been defined
before, for example by a compute statement.

The PRINT commands are treated in Section 7.1.3, the PLOT commands in
7.1.4 and the TIME (HISTORY) commands in 7.1.5.

The SET commands, as treated in Section 3.7, may be used anywhere in the
input. They become activated from the moment they have been read.

DEFINE and RESET commands

The DEFINE and RESET commands are used to set or reset of some defaults
for printing or plotting. Their general syntax is:

define plot parameters = . . .
define colour table = . . .
reset plot parameters
reset colour table

With the define plot parameters statement, the user defines new defaults for
the plot parameters. These defaults remain valid until the user resets plot
parameters with the reset command, or a new ‘define plot parameters’ is read.
For a description of the plot parameters the user is referred to 5.4.
Remark: one of the plot parameters: region = ( xmin, xmax, ymin, ymax )
is also used for the print commands. So if this parameter is also given in the
define plot parameters, it affects the print output.

The statement define colour table defines the colour numbers for coloured plots.
See 7.1.4.

COMPUTE commands

The COMPUTE command is used to define a vector Vi as function of an already
available vector Vj. Using the same number i in a new COMPUTE statement
redefines vector Vi.
The general syntax for the compute statements is:

compute Vi = velocity profile Vj [,degfd=k]
[,origin=(O_x, O_y)] [,angle = a ]

compute Vi = intersection Vj [,degfd=k]
[,origin=(O_x, O_y)] [,angle = a ]

compute Vi = intersection Vj [,degfd=k], [,numbunknowns=n]
plane(ax+by+cz=d)

Meaning of these commands:
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compute Vi = velocity profile Vj defines vector Vi as a function given by
one of the velocity components (degfd=k, default k=1) along the line
with origin (Ox, Oy) (default (0,0)) under an angle of a degrees (default
a=0). This possibility is only permitted for two-dimensional vector fields.
The intersection of the line with the grid is computed and the solution is
interpolated onto this line.

Remark: at this moment the method is sensitive to round off, which means
that if a line coincides with the boundary of the grid, only some parts or no
part at all may be found in the intersection. In that case it is recommended
to shift the line over a small distance.

compute Vi = intersection Vj. If the grid corresponding to Vj is a 2D grid,
solution Vj along the line with origin (Ox, Oy) (default (0,0)) under an
angle of a degrees (default a=0). k is defined by degfd=k (default k=1).
This possibility is only available for functions defined on a two-dimensional
grid. Furthermore this possibility is completely identical to the preceding
one, including the remark given before.

If the grid corresponding to Vj is a 3D grid, solution Vj in the plane
defined by ax+by+cz=d. The 3D region is intersected by the plane and
a new 2D grid consisting of linear triangles is created. The vector Vj is
interpolated on this new 2D grid, and the interpolation is called Vi. With
the function Vi all standard postprocessing commands may be executed
including the intersection with a line. Default values for a, b, c and d are
zero. ISNASPOST also recognizes planes equal to 1 or −1, depending on
the preceding sign. All values a, b, c and d equal to zero is not allowed. k
is defined by degfd=k (default k=1).
numbunknowns = n defines the number of degrees of freedom that are
interpolated. Hence the degrees of freedom k, k + 1, ... , k + n − 1 are
interpolated. The default value is n = 1.

Compute statements only define the vector Vi, which means that the actual
computation is performed only if necessary. At most 26 vectors Vi, including
V0 are allowed in ISNASPOST.

7.1.3 Print commands for program ISNASPOST

The general input for the program ISNASPOST is described in Section 7.1.2.
This paragraph is devoted to the available print commands.

At this moment only two print commands are available. The syntax of the print
commands is:

Options are indicated between the square brackets [ and ].

PRINT Vi [,sequence = (y)] [, region = (xmin, xmax, ymin, ymax)]
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PRINT BOUNDARY FUNCTION Vi [,options] boundary description

The boundary description may take one of the following forms:

CURVES ( C1, C2, C3, C5, ... )

SURFACES ( S1, S2, S3, S5, ... ) and the following options are available

degfd=k

normal component

suppress coordinates

tangential component

sequence = (y)

PRINT Vi prints the complete vector, together with the corresponding nodal
point numbers and the co-ordinates.
If no sequence is given the co-ordinates are ordered in increasing x-sequence
and for constant x-value in increasing y-sequence. If sequence = (y) is
given, then first increasing y-sequence and then increasing x-sequence is
used (2D) or the sequence y, z, x in 3D. Sequence = (z) creates the se-
quence z, y, x (3D only).

If region = (xmin, xmax, ymin, ymax) is given, only the the points with
co-ordinates in the range of xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax are
printed or plotted. If ymin, ymax is omitted, then the complete y-range
is used.

The region to be printed may also be defined with the statement
DEFINE PLOT PARAMETERS region = (......) which affects both plots
and prints.

PRINT BOUNDARY FUNCTION Vi, may be used to print a function
defined along curves (2D and 3D) or surfaces(3d). The option surfaces
may only be used if volume elements are present, the option curves if sur-
face or volume elements exist.
The print along the curves is done in the direction of the curve and in
the sequence given by the user. If negative curve numbers are used, the
corresponding curve is used in reversed direction.
The print along surfaces is sorted with respect to increasing x, y and z
values in the same way as for the command PRINT Vi. In this case the
option sequence = (y) may be used to define a different sequence.
If degfd=k is given the kth degree of freedom is printed; otherwise all de-
grees of freedom are printed.
The standard output is the nodal point sequence number followed by
the co-ordinates of the node followed by the values. If the option sup-
press coordinates is used, the co-ordinates are not printed.
If the option tangential component is used, it is supposed that the function

151



Vi is a vector in the points at the boundary. In that case the tangential
component of this vector is computed and printed. The tangential vector
is defined in the direction of the curve.
In the same way the normal component is computed and printed if the
option normal component is used. The normal is defined as the vector
orthogonal to the tangential vector in clockwise direction.
The options normal and tangential component are available only in R2.

7.1.4 PLOT commands for program ISNASPOST

The general input for the program ISNASPOST is described in Section 7.1.2.
This paragraph is devoted to the available plot commands.

The syntax of the plot commands is:
Options are indicated between the square brackets [ and ].

Contour plots:

PLOT CONTOUR Vi [,degfd = k] [,plot parameters] [,nlevel = n] //
[,levels = (q1,q2,....)] [,minlevel = min] [,maxlevel = max] //
[,smoothing factor = s]

PLOT COLOURED LEVELS Vi [,degfd = k] [,plot parameters] [,nlevel = n] //
[,levels = (q1,q2,....)] [,minlevel = min] [,maxlevel = max]

Vector plots:

PLOT VECTOR Vi [,degfd1 = k_1 ,degfd2 = ksub_2] [,plot parameters]

Function plots:

PLOT FUNCTION Vi [,plot parameters]
PLOT VELOCITY PROFILE Vi [degfd=k] [,plot parameters]//

[origin = (O_x , O_y)] [, angle = a]
PLOT INTERSECTION Vi [degfd=k] [,plot parameters] [origin = (O_x , O_y)]//

[, angle = a]
PLOT BOUNDARY FUNCTION Vi, curves (C1, C2, C3, C5, .. . ,Cn ) //

[,plot parameters] [,degfd=k], [arc_scales = (smin, smax)]

3D plots:

3D PLOT Vi [,plot parameters] [,lindirec=l] [block_mode=m] [intersect_angle=a]//
[,ground_value=g] [,nstep=n] [,transparent]

3D COLOURED PLOT Vi [,plot parameters]

Mesh plots:

PLOT MESH [,skip element groups ( g_1, g_2,... )] [,plot parameters] //
[,renumbered nodes]

PLOT Vj MESH [,plot parameters]
PLOT CURVES [,plot parameters]
PLOT Vj CURVES [,plot parameters]
PLOT POINTS [,plot parameters]
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User plot commands:

PLOT TEXT [,plot parameters]
PLOT POLYGON, coordinates( (x_1, y_1), (x_2, y_2), . . . , (x_n , y_n) )//

[,plot parameters]

Other plot commands:

PLOT FIELD Vi [, plot parameters] [,PSTART = (x,y)] [,BNDPART = (j,k) ]//
[,FLUX = f ][, FROM] [, TOWARDS]

PLOT TRACK Vi [, plot parameters] [,TMAX = t]//
PSTART = (x_1,y_1[,z_1], x_2,y_2[,z_2] ... x_n,y_n[,z_n])//

[,NMARK=m] [,NVIEW=v] [,MESH] [,PRINT TRACK]

Special plot commands:

OPEN PLOT
CLOSE PLOT
PLOT IDENTIFICATION, TEXT = ’ text to be plotted ’

Meaning of these commands:

Contour plots:

PLOT CONTOUR plots contour lines (lines with constant function value)
for the given function.
If degfd=k is given, then the kth degree of freedom in each node is used
as definition of the function, otherwise the first degree of freedom is used.
The user may define the number of contour levels either by prescribing
nlevel = n or by giving the contour levels explicitly through levels =
(q1, q2, . . .). The default number of levels is 5. Besides prescribing the
contour levels explicitly, the minimum and/or maximum level may also be
given. If omitted, they are computed by the program.
The smoothing factor defines the kind of smoothing that must be applied
to the contour lines. The choice s = 0 (default), means no smoothing, the
contour lines are piecewise linear. s = 1, computes a mean value between
three succeeding values to filter some of the possible wiggles (Shuman
filtering). For s = 2, 3, 4 and 5 a smooth spline is used to plot the
contour lines. The higher the value of s, the smoother the spline. Although
these pictures are much nicer for publication, the actual plot is in no way
better than that of the non-smooth contours. Values larger than 5 are not
permitted for s.

PLOT COLOURED LEVELS Vi makes a coloured contour plot of the ar-
ray Vi, where the region between two levels is coloured.
If degfd=k is given, then the kth degree of freedom in each node is used
as definition of the function, otherwise the first degree of freedom is used.
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The user may define the number of contour levels either by prescribing
nlevel = n or by giving the contour levels explicitly through levels =
(q1, q2, . . .). The default number of levels is 5. Besides prescribing the
contour levels explicitly, the minimum and/or maximum level may also be
given. If omitted, they are computed by the program.
The colours used for the plotting are the standard colours defined for your
system. These colours may be changed by the statement define colour
table. See colour table.

Vector plots:

PLOT VECTOR Vi makes a vector plot of two of the degrees of freedom in
each point. These components may be defined by degfd1 = k1, degfd2 =
k2 respectively. If omitted degfd1 = 1, and degfd2 = 2 is assumed.

Function plots:

PLOT FUNCTION Vi, makes a plot of a one dimensional function. At
this moment only vectors defined by COMPUTE Vi = velocity profile
or COMPUTE Vi = intersection, (See Section 7.1.2) may be plotted by
this command. If the solution corresponds to a one-dimensional mesh, the
complete solution is plotted.

PLOT VELOCITY PROFILE Vi combines the commands COMPUTE . . .
= velocity profile Vi . . . as described in Section 7.1.2 and the command
PLOT FUNCTION Vi.

PLOT INTERSECTION Vi combines the commands COMPUTE ... = in-
tersection Vi .... as described in Section 7.1.2 and the command PLOT
FUNCTION Vi.
In fact there is no difference between PLOT VELOCITY PROFILE and
PLOT INTERSECTION.

PLOT BOUNDARY FUNCTION Vi, CURVES ( C1,. . ., Cn ) may be
used to plot a function defined along the curves C1 to Cn, where it is
necessary that the end point of the ith curve, is identical to the initial
point of the (i + 1)th curve. If negative curve numbers are used, the
corresponding curve is used in reversed direction.
If degfd=k is given, the kth degree of freedom is plotted; otherwise the
first one is plotted.

3D plots:

3D PLOT Vi, makes a three-dimensional plot with hidden lines of a function
defined on a two-dimensional mesh. With the parameter LINDIREC the
user indicates in which direction the surface lines are drawn. Possibilities:

LINDIREC=1: parallel to y-axis
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LINDIREC=2: parallel to x-axis

LINDIREC=3: lines are drawn in both directions

LINDIREC=5: A series of three pictures with the options 1, 2 and 3 is made

The default value for LINDIREC is 3. NSTEP=n indicates how many
grid lines are used for the 3D-plot. The number of lines in each direction
is equal to (NSTEP + 1)×√NPOINT , with NPOINT the number of
points in the mesh. The number of grid lines may influence the quality
of the picture, however, the computing time increases considerably for
increasing values of NSTEP. The default value for n is 1.

3D COLOURED PLOT Vi, makes a three-dimensional plot with coloured
faces of a function defined on a two-dimensional mesh. This possibility
may be used only on a display. The three-dimensional surface is plot-
ted from infinity towards the viewer, and because of that, a hidden line
(surface) picture arises automatically. The colour of the surfaces indicate
their distance with respect to the viewer. On a black and white screen,
this option produces a classical hidden line plot, however, due to the fact
that all faces are plotted and filled with a colour (or black) this option is
much faster than the standard hidden line procedure. As a consequence,
3D COLOURED PLOT can not be used on a plotter. For a plot you need
a hard-copy unit.

The position of the viewer may be given by EYE-POINT, the position to
which the user looks is given by PROJECTION-POINT. See PLOT PA-
RAMETERS. By changing these parameter the observer is able to view
of the picture from different angles.

Mesh plots:

PLOT MESH is used to plot a mesh. With the option SKIP ELEMENT
GROUPS (g1, g2,...) the element groups g1, g2,... are excluded from
plotting. The brackets around (g1, g2,...) are essential.
With the option renumbered nodes, the renumbered nodal point numbers
are plotted in stead of the standard nodal point numbers.

PLOT Vj MESH is used to plot a 2D mesh corresponding to the intersection
of a 3D mesh with a plane, defined by
COMPUTE Vj = INTERSECTION Vi, PLANE( ax+by+cz=d ).
In this case there is only one element group and no renumbering takes
place.

PLOT CURVES is used to plot the curves in the mesh. These curves are
defined by the user during the mesh generation.
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PLOT Vj CURVES is used to plot the curves in the 2D mesh corresponding
to the intersection of a 3D mesh with a plane, defined by
COMPUTE Vj = INTERSECTION Vi, PLANE( ax+by+cz=d ).
These curves are created by the intersection program and define the outer
boundary of the intersection.

PLOT POINTS is used to plot the user points in the mesh. These user points
are defined by the user during the mesh generation.

User plot commands:

The user plot commands offer the user the possibility to add extra information
to the standard SEPRAN plots. These commands can only be used in
combination with the commands OPEN PLOT and CLOSE PLOT. A
typical application is:

OPEN PLOT
PLOT CONTOUR V0
PLOT TEXT, TEXT = ’.......’, ORIGIN = (ox, oy) [,plot parameters]
CLOSE PLOT

PLOT TEXT offers the user the possibility to plot a text anywhere in the
picture, provided this command has been preceded by an OPEN PLOT
command and at least one of the standard SEPRAN plot commands. The
command must be succeeded by (if necessary) extra plot commands and
finally the command CLOSE PLOT. PLOT TEXT may never be given
before a SEPRAN plot command is given. The plot parameters TEXT =
’text to be plotted ’ and ORIGIN = (ox, oy) are mandatory. The height of
the letters is defined by the parameter HEIGHT (Default: 0.25 cm). The
origin must be given in user co-ordinates.

PLOT POLYGON may be used to plot a polygon anywhere in the picture.
This command is subject to the same restrictions as the command PLOT
TEXT. Combinations of OPEN PLOT, CLOSE PLOT, several SEPRAN
plot commands and several USER plot commands (like PLOT TEXT and
PLOT POLYGON) are allowed. The polygon to be plotted is defined by
the data coordinates( (x1, y1), (x2, y2), . . . , (xn, yn) ). This defines a
polygon from x1, y1 to x2, y2 , . . . , until xn, yn, where n is at least 2. If
a closed polygon should be plotted, it is necessary to make the first and
last point identical. The co-ordinates must be given in user co-ordinates.
The brackets in the data statement coordinates are essential and may not
be omitted.

Other plot commands:

PLOT TRACK may be used to compute and plot a particle trace in a velocity
field. TMAX indicates the end time for the tracing of particles.
NMARK indicates the number of markers to be placed along a track.
The starting points of the particle trajectories must be given by PSTART
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= ...
If MESH is given, not only the trajectories are plotted, but also the mesh.
If PRINT TRACK is given, the co-ordinates of the trajectories are printed
to the standard output file.
NVIEW defines the type of parallel projection in the three-dimensional
case. Possible values are:

1 projection on (x,z) plane from y = ∞
2 projection on (y,z) plane from z = ∞
3 projection on (x,z) plane from y = −∞
4 projection on (y,z) plane from z = −∞

Special plot commands:

OPEN PLOT is a necessary command if the user wants to plot more than
picture in one plot. All plot commands after this statement are plotted
in the same plot until s CLOSE PLOT is given. OPEN PLOT may be
used to plot several SEPRAN plot commands or to provide SEPRAN plots
with extra information, for example by using PLOT TEXT and/or PLOT
POLYGON. So in this way it is for example possible to get a contour plot
and a vector plot in one picture.

CLOSE PLOT is necessary to close the plot opened by OPEN PLOT.

PLOT IDENTIFICATION may be used to provide all succeeding plots with
the same IDENTIFICATION. This command must always be given to-
gether with the data command: TEXT = ’...’. This text is plotted on
each succeeding picture until a new PLOT IDENTIFICATION command
is read. To suppress the effect of PLOT IDENTIFICATION, use a blank
text: ’ ’. The position of the start of the plot identification must be given
by the user by the function ORIGIN ( ox, oy ). In this special case the
ORIGIN is given in centimeters counted from the origin of the plot.

Plot parameters

The following plot parameters may be used at the place formally indicated by
[,plot parameters]:

angle = α
axis
bold
boundaries
colour = c
contract
elements
eye point = (xe, ye, ze )
factor = f
height = h
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inner
length = l
mark
maxcolour = m2

mincolour = m1

ncolour = n
noaxis
nobold
noboundaries
nocontract
node
noelements
noinner
nomark
nonumber
nonode
norotate
number
number format = ( nx, mx, ny, my)
pict i of n
reference = refval
region = (xmin, xmax, ymin, ymax)
rotate
scales = ( xunder , xupper , yunder, yupper)
steps = ( stepx, stepy )
symbol = s
text = ’ .... ’
textx = ’ .... ’
texty = ’ .... ’
yfact = y

These options may be separated by commas.

angle = α This parameter gives the angle under which the observer sees the
plot.
0 ≤ α ≤ 360

axis This parameter is used to indicate that the plot must be provided with
an axis with scale. It makes only sense for those pictures that do not
plot axis themselves, i.e. all pictures except those indicated by PLOT
FUNCTION type commands. If an OPEN PLOT command is given, the
axis are plotted only once.

bold indicates that outer boundaries to be plotted are plotted by double lines.
bold may be suppressed by nobold. Default: nobold.

boundaries is used in combination with 3D COLOURED PLOT. It indicates
that the boundaries of each face must be plotted in the standard colour.
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For example on a black and white terminal, the combination boundaries
and a black colour gives a classical hidden line plot. Boundaries may be
suppressed by including a parameter noboundaries. Default: boundaries.

colour = c Defines the colour number to be used for line plotting.

contract is used in combination with PLOT MESH. It indicates that the el-
ements are contracted by a factor of 0.8 before plotting. As a result all
common boundaries of elements are plotted twice. contract may be sup-
pressed by nocontract. Default: nocontract.

element indicates that during the plotting of the mesh also the element num-
bers are plotted. element may be suppressed by noelement. Default:
noelement.

eye point = (xe, ye, ze ) defines the point where the observer is positioned.
This point is only used in combination with the option 3D COLOURED
PLOT. The default value is (0,−10,0).

factor = f defines a multiplication factor. In the case of PLOT VECTOR it
defines the multiplication factor of each vector before plotting.
In the case of a function plot, the function is multiplied by f .
Default f=1 in the case of a function plot and automatically scaling in
the case of a vector plot. If factor = 0 (default value), this factor is
automatically computed, otherwise the length of each vector is multiplied
by f before plotting. For the length of the vectors, the physical units are
used, where the unit length is made equal to the geometrical unit length
as indicated by the co-ordinates.

height = h gives the height of the texts to be plotted by commands involving
TEXT = ’...’ in centimeters.

inner indicates that for plots where the boundary of the region is plotted, not
only the outer boundaries are plotted, but also the inner boundaries. inner
may be suppressed by noinner. Default noinner.

length = l gives the length of the plot in centimeters. Instead of length also
plotfm may be used. The default length is machine dependent but usual
values are 20 cm or 15 cm.

mark indicates that during the plotting of the mesh also the node points are
marked with a star. mark may be suppressed by nomark. Default: no-
mark.

maxcolour = m2 gives the last value to be used in the colour table for a specific
plot. The default value is mincolour + ncolour.

mincolour = m1 gives the first value to be used in the colour table for a specific
plot. The default value is 1.
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ncolour = n This parameter defines the number of colours that is used in the
coloured plots. In fact this has the same meaning as nlevel = n, and both
may be interchanged without having any influence. If both are given the
first one read is used.
The default value is 20 for coloured levels, and 10 for plotted lines.

noaxis suppresses the option axis.

nobold suppresses the option bold.

noboundaries suppresses the option boundaries.

nocontract suppresses the option contract.

noelement suppresses the option element.

node indicates that during the plotting of the mesh also the node numbers are
plotted. node may be suppressed by nonode. Default: nonode.

noinner suppresses the option inner.

nomark suppresses the option mark.

nonode suppresses the option node.

nonumber suppresses the option number.

norotate means that the picture is not rotated.
Default: depending on the size of the picture.

number makes only sense in combination with PLOT CURVES or PLOT
POINTS. It indicates that the curves and user points must be provided
with numbers. The default is nonumber.

number format = ( nx, mx, ny, my) defines the number of digits of the num-
bers to be printed along the axis, where nx, ny define the number of digits
in front of the decimal point (zero means floating format) and mx, my the
number of digits behind the decimal point.
Default: if scales is given (0,2,0,2) otherwise computed by the program.

pict = i of n May be used in combination with the records PLOT FUNCTION,
PLOT VELOCITY PROFILE, or TIME HISTORY PLOT. If this state-
ment is used, more than one one-dimensional plot is made in one picture
with axes. Statements of this type must be placed consecutively, without
other type of statements between. The number i must be given in increas-
ing order from 1 to n. n gives the number of curves to be plotted in one
picture.

For example the syntax in the case of n = 3 should be:
PLOT FUNCTION Vk1, ... , pict 1 of 3
PLOT FUNCTION Vk2, ... , pict 2 of 3
PLOT FUNCTION Vk3, ... , pict 3 of 3
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reference = refval is used to define a reference value for the 3D plot of a
function. This reference value defines the reference value for the z-height.
If reference is not given, the maximal function value is used as reference
value.

region = (xmin, xmax, ymin, ymax) is used to define a cut of a two-
dimensional region.

rotate means that the picture is rotated over an angle of 90◦.

scales = ( xunder, xupper , yunder, yupper) define the range of the scales
along the axis of a one-dimensional plot, See Figure 7.1.1. (Default: com-
puted by the program).

x under x upper

y under

y upper

Figure 7.1.1: Definition of xunder etc.

steps = ( stepx, stepy ) defines the number of steps to be used along the
axis.
(default: (10,10) )

symbol = s defines the number of the symbol to be used for plotting a one-
dimensional function (installation dependent).

text = ’ .... ’ defines a text to be plotted. For the commands PLOT IDEN-
TIFICATION and PLOT TEXT, this is the text as described before. For
the other SEPRAN plot commands, except the commands corresponding
to the PLOT FUNCTION type, this text is always plotted at the bottom
of the picture. Use of this option is independent of OPEN PLOT and
CLOSE PLOT. If OPEN PLOT is given the text is plotted only once.
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textx = ’ .... ’, texty = ’ .... ’ define the texts to be plotted along the axes
(default x and y). The part between the quotes is used as text.

yfact = y Scale factor; all y-coordinates are multiplied by y before plotting the
mesh.
y 6= 1 should be used when the co-ordinates in x and y direction are of
different scales, and hence the picture becomes too small. Default value:
1.
y < 0 defines the absolute height of the picture to be | y | cm.

The plot parameters defined in a plot record are only valid for that specific plot
record. They overwrite defaults locally. Parameters defined by the DEFINE
plot parameters command are used for all records.

Colour table

The numbers in the colour table define the colours to be used for the plotting.
Which colours are connected with these numbers depends on your local instal-
lation.
The default colour table is defined by the numbers 1, 2, 3,. . .
By the command DEFINE COLOUR TABLE = (C1, C2, C3, . . . ) the user may
connect new numbers to the colours 1, 2, 3 etc.

7.1.5 Special commands for time-dependent problems with
respect to program ISNASPOST”

The general input for the program ISNASPOST is described in Section 7.1.2.
This paragraph is devoted to the available time commands.

The syntax of the time commands is:
Options are indicated between the square brackets [ and ].

TIME = t0
TIME = (t0, t1)
TIME = (t0, t1, istep)
TIME HISTORY [(t0, t1)] print min Vi
TIME HISTORY [(t0, t1)] print max Vi
TIME HISTORY [(t0, t1)] print min abs (Vi)
TIME HISTORY [(t0, t1)] print max abs (Vi)
TIME HISTORY [(t0, t1)] print point(x,y,z) Vi [,degfd=k]
TIME HISTORY [(t0, t1)] plot min Vi
TIME HISTORY [(t0, t1)] plot max Vi
TIME HISTORY [(t0, t1)] plot min abs (Vi)
TIME HISTORY [(t0, t1)] plot max abs (Vi)
TIME HISTORY [(t0, t1)] plot point(x,y,z) Vi [,degfd=k]

TIME = (t0, t1, istep) is meant for time-dependent problems. All commands
after this COMMAND are carried out for the actual times t0 to t1 with
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integer steps istep. If t0 and /or t1 do not coincide with times at which the
solution is actually computed, the times closest to t0 and t1 are chosen.
If t1 is omitted only t = t0 is used. istep gives the number of time steps
minus one between succeeding times (default 1).

TIME HISTORY (t0, t1) makes a time history of the quantity from time t0 to
t1. If (t0, t1) is omitted, the complete time interval is used.

plot / print min/max Vi plots or prints the minimum, maximum value of
Vi respectively, abs(Vi) does the same for the absolute value of Vi.

plot / print point (x,y,z) Vi makes a time history of the value of Vi in
point (x,y,z). At this moment the node closest to (x,y,z) is used instead
of the point itself.
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Chapter 8

Inspecting the output file
and trouble shooting

In this chapter we shall consider the output file produced by isnasexe and also
treat some of the possible problems that may occur when running Deft and how
to solve these problems.
In Section 8.1 the present form of the output file is considered. Trouble shooting
is the subject of Section 8.2.

8.1 Inspecting the output file

In the file isnasexe.out a lot of information about the computations can be
found. In general most of it is not important for the user and in future versions
the amount of output will be reduced considerably. At this moment each time
step produces output. For example the last time step of the example treated in
Section 9.1 gives the following output:

TIME STEP 10 (t = 1.00)

Output of subroutine ISGMR

The 2-norm of the initial residual is:0.475927E-03
The number of executed iterations in ISGMR is 3
The 2-norm of the residual is 0.202052E-07
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Output of subroutine ISGMR

The 2-norm of the initial residual is:0.295993E-03
The number of executed iterations in ISGMR is 7
The 2-norm of the residual is 0.261574E-10

THE NET MASS OUTFLOW OVER ALL BLOCKS IS -2.049E-11

STOPPING CRITERION FOR STATIONARY SOLUTION

Equation Lambda1 Stopcrit. Maxnorm
1 0.588151E+00 0.599860E-03 0.121776E-03
2 0.633784E+00 0.508468E-01 0.165019E-01

It starts with the actual time step and time. Next some output of subroutine
ISGMR is produced. This is in fact the linear solver. First the output with
respect to the velocity is printed and after that with respect to the pressure.
This output is self-explaining.
The output ends with the net mass outflow, which should be approximately
0, and some information about the stopping criterion. This information gives
information to check whether the solution has become stationary.
The stopping criterion gives information about each equation, where equation
1 refers to the velocity and equation 2 to the pressure. The lambda printed
is nothing else than ‖un+1−un‖

‖un−un−1‖ where the super script denotes the time level.
This parameter is an indication of how fast the method is converging to steady
state. If lambda is not less than 1. there is no guarantee that you are in the
neighbourhood of a steady state. The Stopcrit value indicates how small the
norm must be in order that the solution may be considered stationary. It uses
an accuracy of 10−2. Maxnorm gives the norm of the difference of the last two
iterations. So we see that in this example indeed the stationary state has been
reached within the accuracy required.

8.2 Trouble shooting

8.2.1 No convergence

One of the most frequently produced error message concerns the lack of con-
vergence in the linear solver. Another problem might be that the solution does
not reach steady state.
In both cases it is in general difficult to find the cause of the problems. In this
section we shall do some suggestions about possible reasons and what to do in
such cases.

Decrease time-step If all input is correct and the mathematical model is
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supposed to converge then the standard solution is always to reduce the
time-step. Especially in the case of a transient small time-steps may be
necessary for convergence of the solution. Since this is the easiest way to
overcome problems, it is always a good practice to start with this method.

Check input In fact checking of the input should always be done at first. It is
important that coefficients and boundary conditions are given in a correct
way.

Check boundary conditions An important part of the checking of the input
is the checking of the boundary conditions. It is necessary that the num-
ber of boundary conditions at each boundary is correct. This means that
for the momentum equations exactly ndim boundary conditions must be
given for each outer boundary and for the scalar unknowns exactly one.
Furthermore the velocity boundary conditions must be given in indepen-
dent directions.

Always realize that normal components are directed outwards and that
tangential components are always directed in the anti-clockwise direction.
So, for example, ’un = 1’ does not mean a uniform inflow velocity profile
but rather a uniform velocity profile.

Another important item is the prescription of boundary conditions at
outflow. In general, prescribing the unknowns at the outflow boundary
(Dirichlet boundary conditions), is non-physical and may introduce seri-
ous convergence problems.

Finally prescribing the normal velocity at all outer boundaries, implies
that the pressure is not unique but fixed upon an additive constant. In
that case it is necessary to have an exact mass balance over the outer
boundaries.

Check model parameters Another important issue is the checking of the
model parameters. It might be possible that the flow is turbulent, whereas
you use a laminar model. For example if ρ is too large, µ too small or the
velocity too large, the flow may become turbulent and a turbulence model
is necessary. Always estimate the Reynolds number in order to be sure
that the flow is laminar.

8.2.2 Wiggles

In some cases Deft has produced results that show clear wiggles. If the wiggles
occur in the neighbourhood of the outflow boundary this may be caused by
inaccurate or incorrect outflow boundaries.
Another possible reason for wiggles is that the grid is not smooth enough. Sharp
gradients in the grid may produce wiggles in the solution, especially at large
Reynolds numbers. A possible solution is to smooth the grid. Sometimes multi-
block is necessary to get a smooth grid. If smoothing of the grid is not possible
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or hard to achieve, it is advised to use another type of discretization like the
so-called ”WesBeek” discretization.

Note that in some rare cases, wiggles may be produced by postprocessing. Wig-
gles due to postprocessing can be recognized easily since these are always con-
fined within grid cells. Wiggles across different grid cells are probably a result
of Deft computation.
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Chapter 9

Examples

In this chapter we consider a number of test examples that have been run to
test the Deft code. These examples are merely meant to test the code both from
a software point of view as well as from a numerical point of view. However,
they give also an impression of how a real application may look like.
In Section 9.1 we consider one of the most simple flows, the Poisseuille flow in
a straight channel.
Section 9.2 treats the laminar flow in a 90◦ bend at Reynolds number 100.
In Section 9.3 the flow through an l-shaped region is computed with a staggered
arrangement. This example is meant to demonstrate the effect of a very non-
smooth region.
In Section 9.4 the flow through an l-shaped region is computed with a collo-
cated arrangement. This example allows to show the behaviour of the collocated
scheme on a realistic non-smooth grid.
Section 9.5 shows a more complicated example, the flow over a backward facing
step. This example is commonly used as benchmark problem. In our case we
compare single block with multiblock.
In Section 9.6 an example of a user function is demonstrated. It concerns an
analytic example that has no practical importance but may be used to check
the accuracy of the solution method.
Section 9.7 deals with a problem containing an extra transport equation. In
this example we consider the flow in a square cavity driven by a temperature
difference. As a consequence the momentum equations are coupled with the
temperature equation.
An example of a turbulent flow is treated in Section 9.8. In this example we
consider a turbulent flow through a tube with a sinusoidal constriction using a
k-ε model.
Section 9.9 shows an example of the solution of a transport equation, where
the velocity is given. In this case the momentum equations are skipped. The
example concerns a well-known benchmark problem, the so-called Molenkamp
test.
Section 9.10 shows an example of the solution of the Burgers equation. IN this
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case only the momentum equations are solved, the pressure is taken equal to
zero.
Finally in Section 9.11 we give a list of all available examples in the Deft direc-
tory that can be put into your local directory with the command ”isgetex”.
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9.1 Poisseuille flow in a straight channel

One of the simplest flows is the Poisseuille flow in a straight channel. This flow
can be used as a first check on the reliability of the code. The region is given
by 0 ≤ y ≤ 1, 0 ≤ x ≤ L. See Figure 9.1.1 for a sketch of the region.

1

I

II

III

IV L

Figure 9.1.1: Definition region for straight channel

At boundary I we have a parabolic inflow condition:

u =
(

0
4x(1 − x)

)
(9.1)

at the boundaries II and IV a no-slip condition and at boundary III we prescribe
the parallel outflow condition

ut = 0, σnn = 0 (9.2)

The exact solution of the Navier-Stokes equations under these boundary condi-
tions is given by:

u =
(

0
4x(1− x)

)
, p = 0.8(L− y) (9.3)

In this example the convective terms are equal to zero.
At first sight one may expect (at least for an equidistant grid) that the code
solves this problem exactly. However, numerical experiments show that the
solution contains a small error. A thorough analysis shows that this error is
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due to the approximation of the boundary conditions at the fixed walls. In
the Deft code we use a linear extrapolation to satisfy the boundary condition
for the tangential velocity. However, this velocity is quadratic and hence the
boundary condition is not satisfied exactly. A refinement of the grid shows a
O(h2) convergence to the correct solution.

9.1.1 Obtaining the files and running the problem

The relevant files for this problem can be copied to the current directory by the
following command:

isgetex channel

The problem can be run and the results viewed by giving the commands:

isgetex channel
sepmesh channel.msh
isnaspre channel.prb
isnasexe
isnaspost channel.pst [ > channel.out ]
sepdisplay

The part between the square brackets [] is optional. If it is used the output of
the command isnaspost is written to the file channel.out.

9.1.2 Mesh

If we define L = 4, and use 6 cells in the vertical direction and 4 cells in the
horizontal direction with equidistant spacing than the following input file for
sepmesh might be used to generate the grid:

constants
integers

nelm1 = 6
nelm2 = 4

reals
B = 1
H = 4

end
mesh2d

isnas
points

p1=(0,0)
p2=($B,0)
p3=($B,$H)
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p4=(0,$H)
curves

c1 = line1(p1,p2,nelm=$nelm1)
c2 = line1(p2,p3,nelm=$nelm2)
c3 = line1(p3,p4,nelm=$nelm1)
c4 = line1(p4,p1,nelm=$nelm2)

surfaces
s1 = rectangle5(c1,c2,c3,c4)

plot
end

9.1.3 Problem description

The solution has been defined such that the maximum velocity at inflow is
equal to 1. In this example we use a time-step ∆t = 0.1 and an end time t1 = 1,
hence 10 time steps are carried out. Since this a stationary problem θ = 1 is
recommended. If we define ρ = 5 and µ = 0.5, the following file channel.prb
might be used to solve the problem.

*
Input for the straight channel problem
*
time_integration

tinit = 0
tend = 2
tstep = .1
theta = 1
rel_stationary_accuracy = 1d-2

boundary_conditions
curve 1: inflow 1.0
curve 2: noslip
curve 4: noslip
curve 3: parallel_outflow

coefficients
momentum_equations

rho = 5
mu = .5

linear_solver
momentum_equations

amount_of_output = 0
relaccuracy = 1d-4
divaccuracy = 0

pressure_equations
amount_of_output = 0
divaccuracy = 0
startvector = zero
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9.1.4 Post-processing

If we want to print the velocity, make a vector plot of the velocity, a contour
plot of pressure and stream lines, a three-dimensional plot of the pressure and
a coloured level plot of the pressure, then the following input file for isnaspost
might be used:

postprocessing
name v0 = ’velocity’
name v1 = ’pressure’
name v2 = ’stream function’

print vector v0
plot identification = text = ’ Deft ’,origin =(10,10)
plot vector v0, factor=.2 //

text=’velocity field Re=10 mesh 6x4 dt=.1 tend=1.0’
plot contour v1, nlevel=8 //

text=’pressure contour Re=10 mesh 6x4 dt=.1 tend=1.0’
plot contour v2, nlevel=8 //

text=’streamlines Re=10 mesh 6x4 dt=.1 tend=1.0’
3d plot v1, nlevel=20
plot coloured levels v1, nlevel=8

end

9.1.5 Output produced by this example

When running this example each command itself produces some output.

The command sepmesh produces two files: meshoutput and finvol.new. Besides
that it echoes the input to the screen as well as some extra information about
number of points, number of cells and computation time.

The command isnaspre makes two files isnasinp.cmp and isnaspre.out.

The command isnasexe makes three files sepcomp.inf, sepcomp.out and isna-
sexe.out. The file isnasexe.out contains the actual output that is readable for
the user.
In the file isnasexe.out a lot of information about the computations can be
found. In general most of it is not important for the user and in future versions
the amount of output will be reduced considerably. The output of the last time
step can be found in Section 8.1.
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9.2 Flow through a 90 degree bend

A less trivial example is that of a flow through a 90 degrees bend as shown
in Figure 9.2.2. The regions defined by the curves 1, 2, 8, 9 and 4, 5, 6, 10
are added to the bend in order to force some kind of fully developed flow at
instream and outstream boundary. The boundaries 2, 3, 4 and 6, 7, 8 form the
fixed walls. Boundary 1 is an instream boundary, hence boundary 5 is an outlet.
Boundary conditions:

1

2

3

4

5

6

7

8

9

10

 

Figure 9.2.2: Definition region of the 90 degree bend

fixed walls (1, 2, 8, 9 and 4, 5, 6, 10) u = 0

instream boundary u =
(

0
4x(1− x)

)

outstream boundary σnn = 0, σnt = 0.

9.2.1 Obtaining the files and running the problem

The relevant files for this problem can be copied to the current directory by the
following command:

isgetex bend
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The problem can be run and the results viewed by giving the commands:

isgetex bend
sepmesh bend.msh
isnaspre bend.prb
isnasexe
isnaspost bend.pst [ > bend.out ]
sepdisplay

9.2.2 Mesh

If we define a grid of 8 × 8 cells in the rectangular regions and a grid of 8 ×
cells in the bend, then the following input file to create the mesh may be used:

Figure 9.2.3 shows the grid generated by sepmesh.

 

Figure 9.2.3: Mesh for bend problem generated by sepmesh
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9.2.3 Problem description

If we define a parabolic inflow profile with maximum velocity 1, a time step
∆t = 0.2, an end time t1 = 8 and as physical parameters ρ = 50, µ = 0.5 then
the following input file may be defined to compute the stationary solution:

*
Input for the bend problem
*
time_integration

tinit = 0
tend = 40
tstep = .2
theta = 1
rel_stationary_accuracy = 1d-2

boundary_conditions
curve 1: inflow 1.0
curve 11: noslip
curve 5: outflow
curve 12: noslip

coefficients
momentum_equations

rho = 50
mu = .5

linear_solver
momentum_equations

amount_of_output = 0
relaccuracy = 1d-4
divaccuracy = 0

pressure_equations
amount_of_output = 0
divaccuracy = 0
startvector = zero

discretization
momentum_equations

upwind = none
# lin_convection = picard

The output file shows that in this case the stationary solution has not yet been
reached completely. However, if we require an accuracy of at most 1 %, the
solution may be considered as steady state.
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9.2.4 Post-processing

The following self explaining input file for isnaspost is used.

postprocessing
plot identification = text = ’ Deft ’,origin =(15,10)
plot mesh
plot vector v0, factor=.1 //

text=’velocity field Re=100 mesh 8x32 dt=.2 tend=8’
plot contour v1, nlevel=8 //

text=’pressure contour Re=100 mesh 8x32 dt=.2 tend=8’
plot contour v2, nlevel=8 //

text=’streamlines Re=100 mesh 8x32 dt=.2 tend=8’
plot coloured levels v1,nlevel=19

end

Figure 9.2.4 shows the vector plot of the velocity, as well as the isobars and the
stream lines.

178



scalex:      5.000

scaley:      5.000

factor:       .100

velocity field   Re=100  mesh 8x32  dt=.2  tend=8

 ISNaS  

 

23

4

5

6

7

scalex:      5.000

scaley:      5.000

LEVELS

 1      -2.601

 2        .500

 3       3.602

 4       6.703

 5       9.804

 6      12.906

 7      16.007

 8      19.109

pressure contour Re=100  mesh 8x32  dt=.2  tend=8

 ISNaS  

 

2

3

4

5

6

7

scalex:      5.000

scaley:      5.000

LEVELS

 1       -.672

 2       -.576

 3       -.480

 4       -.384

 5       -.288

 6       -.192

 7       -.096

 8        .000

streamlines      Re=100  mesh 8x32  dt=.2  tend=8

 ISNaS  

 

Figure 9.2.4: Vector plot of the velocity, isobars and stream lines in bend prob-
lem
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9.3 Flow through an L-shape

To investigate the performance of the Deft code for a very non-smooth grid,
we consider the flow through an L-shape. Of course such a region is extremely
suitable for a multiblock approach, but we will postpone the demonstration of
a multiblock example to Section 9.5.
A sketch of the region can be found in 9.3.5.
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3

4
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Figure 9.3.5: Definition region of the L-shape

The instream boundary is at the lower side, the outlet at the right-hand side.
All other boundaries are assumed to be fixed walls, where we prescribe a no-slip
condition u = 0. At the inlet a parabolic velocity field is given and at the
outstream boundary we impose the artificial (non-correct) boundary conditions
σnn = 0, ut = 0.

9.3.1 Obtaining the files and running the problem

The relevant files for this problem can be copied to the current directory by the
following command:

isgetex lshape

The problem can be run and the results viewed by giving the commands:
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isgetex lshape
sepmesh lshape.msh
isnaspre lshape.prb
isnasexe
isnaspost lshape.pst [ > lshape.out ]
sepdisplay

9.3.2 Mesh

The following file may be used to create a grid.

constants
integers

nelm1=8
end
mesh2d

isnas
points

p1=(0,0)
p2=(1,0)
p3=(1,3)
p4=(4,3)
p5=(4,4)
p6=(0,4)

curves
c1 = line1(p1,p2,nelm=$nelm1)
c2 = line1(p2,p3,nelm=$nelm1)
c3 = line1(p3,p4,nelm=$nelm1)
c4 = line1(p4,p5,nelm=$nelm1)
c5 = line1(p5,p6,nelm=$nelm1)
c6 = line1(p6,p1,nelm=$nelm1)
c7 = curves(c2,c3)
c8 = curves(c5,c6)

surfaces
s1 = rectangle5(c1,c7,c4,c8)
plot

end

Figure 9.3.6 shows the grid generated by sepmesh.

9.3.3 Problem description

The data for the L-shape problem are respectively ρ = 5 and µ = 0.5. The
input file for isnaspre might have the following shape

*
Input for the lshape problem
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Figure 9.3.6: Mesh for L-shape generated by sepmesh

*
time_integration

tinit = 0
tend = 3.0
tstep = .15
theta = 1
rel_stationary_accuracy = 1d-2

boundary_conditions
curve 1: inflow 1.0
curve 2 to 3: noslip
curve 4: sigmann=0, ut=0
curve 5 to 6: noslip

coefficients
momentum_equations

rho = 5
mu = .5

linear_solver
momentum_equations

amount_of_output = 0
relaccuracy = 1d-4
divaccuracy = 0

pressure_equations
amount_of_output = 0
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divaccuracy = 0
startvector = zero

9.3.4 Post-processing

The following self explaining input file for isnaspost is used.

postprocessing
plot mesh
plot identification = text = ’ Deft ’,origin =(15,10)
plot vector v0, factor=.1//

text=’velocity field Re=10 mesh 8x16 dt=.15 tend=1’
plot contour v1, nlevel=8//

text=’pressure contour Re=10 mesh 8x16 dt=.15 tend=1’
plot contour v2, nlevel=8//

text=’streamlines Re=10 mesh 8x16 dt=.15 tend=1’
end

Figure 9.3.7 shows the vector plot of the velocity, the isobars and the stream
lines. From these pictures it is clear that Deft is able to handle fairly non-smooth
grids, however, with a certain price. The ”discontinuity” in the grid-derivatives
is clearly visible in the streamlines. In order to get a smooth solution it is
necessary to smooth the grid or to use multi block.
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scalex:      3.750

scaley:      3.750

factor:       .100

velocity field   Re=10  mesh 8x16  dt=.15  tend=1
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Figure 9.3.7: Vector plot of the velocity, isobars and stream lines in L-shape
problem
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9.4 Flow through an L-shape. Collocated scheme

To investigate the performance of the Deft code for a very non-smooth grid, we
consider the flow through an L-shape with the help of a collocated scheme.
A sketch of the region can be found in 9.4.8.
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Figure 9.4.8: Definition region of the L-shape

The instream boundary is at the lower side, the outlet at the right-hand side.
All other boundaries are assumed to be fixed walls, where we prescribe a no-slip
condition u = 0. At the inlet and at the outlet, a parabolic velocity field is
given.

9.4.1 Obtaining the files and running the problem

The relevant files for this problem can be copied to the current directory by the
following command:

isgetex lshape_col

The problem can be run and the results viewed by giving the commands:

isgetex lshape_col
sepmesh lshape_col.msh
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isnaspre lshape_col.prb
isnasexe
isnaspost lshape_col.pst [ > lshape_col.out ]
sepdisplay

9.4.2 Mesh

The following file may be used to create a grid.

constants
reals

right = 1
top = 4
left = -3
walltop = 3

integers
nelm1=26
nelm2=25
nelm3=29

end
mesh2d

isnas
points

p1=(0,0)
p2=($right,0)
p3=($right,$top)
p4=($left,$top)
p5=($left,$walltop)
p6=(0,$walltop)

curves
c1 = line1(p1,p2,nelm=$nelm1)
c2 = line1(p2,p3,nelm=$nelm2,factor=0.5,ratio=1)
c3 = line1(p3,p4,nelm=$nelm3,factor=1.5,ratio=1)
c4 = line1(p4,p5,nelm=$nelm1)
c5 = line1(p5,p6,nelm=$nelm3,factor=0.5,ratio=1)
c6 = line1(p6,p1,nelm=$nelm2,factor=2.,ratio=1)
c7 = curves(c2,c3)
c8 = curves(c5,c6)

surfaces
s1 = rectangle5(c1,c7,c4,c8)
plot

end

Figure 9.4.9 shows the grid generated by sepmesh.
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Figure 9.4.9: Mesh for L-shape generated by sepmesh

9.4.3 Problem description

The data for the L-shape problem are respectively ρ = 1 and µ = 1. The input
file for isnaspre might have the following shape

*
Input for the L-shape problem
Collocated arrangement
Wesbeek+bilinear interpolation
*
initial_conditions
time_integration

tinit = 0
tend = 5.
tstep = .01
theta = 1
rel_stationary_accuracy = 1d-6

boundary_conditions
curve 1: u_momentum = dirichlet = 0

v_momentum = dirichlet = func = 1
curve 2 to 3: u_momentum = dirichlet = 0

v_momentum = dirichlet = 0
curve 4: u_momentum = dirichlet = func = 2

v_momentum = dirichlet = 0
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curve 5 to 6: u_momentum = dirichlet = 0
v_momentum = dirichlet = 0

coefficients
momentum_equations

rho = 1
mu = 1

linear_solver
momentum_equations

amount_of_output = 0
relaccuracy = 1d-10
divaccuracy = 0

pressure_equations
amount_of_output = 0
divaccuracy = 0
startvector = zero

discretization
momentum_equations
discr_method=bilinear_interpolation
collocated_grid

end_of_isnas_input

9.4.4 Post-processing

The following self explaining input file for isnaspost is used.

postprocessing
name v0 = ’velocity’
name v1 = ’pressure’
name v2 = ’stream function’
plot mesh
plot identification = text = ’ Deft collocated Wesbeek ’,origin =(5,10)
plot vector v0, factor=.2 //

text=’velocity field Re=1’
plot contour v1, nlevel=11 //

text=’pressure contour Re=1’
compute v2 = stream function v0
name v2 = stream function
plot contour v2, nlevel=11 //

text=’streamlines Re=1’
end

Figure 9.4.10 shows the vector plot of the velocity, the isobars and the stream
lines. From these pictures it is clear that Deft is able to handle fairly non-smooth
grids, however, with a certain price. To remove an eventual ”discontinuity” in
the grid-derivatives, it is necessary to refine the grid (See section 2.2.1).
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Figure 9.4.10: Vector plot of the velocity, isobars and stream lines in L-shape
collocated problem
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9.5 Flow over a backward-facing step

The backward facing step belongs to the class of accepted benchmark problem
for the incompressible Navier-Stokes equations. Reliable reference solutions can
be found in Morgan et al. [26].
Figure 9.5.11 shows the configuration of the region. At boundary 1 (the inlet)

Figure 9.5.11: Definition region of the backward-facing step

we assume a parabolic velocity profile, the boundaries 2, 3, 4, 6, 7 and 8 are fixed
walls. At those boundaries we prescribe a no-slip condition. At boundary 5 (the
outlet) we prescribe a semi-natural outflow condition, i.e. σnn = 0, ut = 0. The
Reynolds number is defined by

Re = Umax(H − h)/ν

with Umax the maximum value of the velocity profile at the inlet,
ν the kinematic viscosity
H the height of the channel after the step
h the height of channel above the step

In first instance we shall solve the problem using a smoothed single block grid.
After that the multiblock approach will be showed.
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9.5.1 Obtaining the files and running the problem for the
single block problem

The relevant files for the single block problem can be copied to the current
directory by the following command:

isgetex bfs_sb
sepmesh bfs_sb.msh
isnaspre bfs_sb.prb
isnasexe
isnaspost bfs_sb.pst [ > bfs_sb.out ]
sepdisplay

9.5.2 Single block mesh

The mesh is generated as one single block. In order to avoid discontinuities due
to the abrupt change of the boundary the grid is smoothed using the option
smooth in rectangle.

#
#
# 3.0
# -----------------------------------------------
# | |
# 0.5 | |
# | |
# ----------- | 1.0
# 0.5 | |
# | |
# | |
# ------------------------------------
#

constants
integers

nelm1=32
reals

dim1=3.0
end
mesh2d

isnas
points

p1=(0,0)
p2=(.5,0)
p3=(.5,.5)
p4=(1,0.5)
p5=(1,$dim1)
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p6=(0,$dim1)
p7=(0,1.5)
p8=(0,1)

curves
c1 = line1(p1,p2,nelm=16)
c2 = line1(p2,p3,nelm=8)
c3 = line1(p3,p4,nelm=8)
c4 = line1(p4,p5,nelm=$nelm1)
c5 = line1(p5,p6,nelm=16)
c6 = line1(p6,p7,nelm=$nelm1)
c7 = line1(p7,p8,nelm=8)
c8 = line1(p8,p1,nelm=8)
c9 = curves(c2,c3,c4)
c10 = curves(c6,c7,c8)

surfaces
s1 = rectangle5(c9,c5,c10,c1,smooth=2)
plot

end

Figure 9.5.12 shows the grid generated by sepmesh.

 

Figure 9.5.12: Single block mesh for backward-facing step generated by sepmesh

9.5.3 Single block problem description

If we define ρ = 50 and µ = 0.5 then the following problem file may be used.
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*
Input for the Backward facing step problem single block,
parabolic inflow boundary condition wit Umax = 1.0 .
*
time_integration

tinit = 0
tend = 80
tstep = .25
theta = 1
rel_stationary_accuracy = 1d-2

boundary_conditions
curve 1: inflow 1.0
curve 9: noslip
curve 5: parallel_outflow

# curve 5: outflow
# curve 5: inflow -0.5

curve 10: noslip
coefficients

momentum_equations
rho = 50

# rho = 150
mu = .5

linear_solver
momentum_equations

amount_of_output = 0
relaccuracy = 1d-4
divaccuracy = 0

pressure_equations
amount_of_output = 0
divaccuracy = 0
startvector = zero

9.5.4 Single block post-processing file

The following self explaining input file for isnaspost is used.

postprocessing
plot mesh
plot identification = text = ’ ISNAS 2D backward facing step ’,origin =(10,12)
plot vector v0, factor=.1//

text=’velocity field Re=50 mesh 16x48 dt=.25 ’
plot contour v1, levels=(-6.2, -4.5, -3.0, -1.0,//

.1, 2.5, 4.5, 6.0)//
text=’pressure contour Re=50 mesh 16x48 dt=.25 ’

plot contour v2,levels=(-0.015, -0.010, -0.005, 0.000, 0.006,//
0.016, 0.036, 0.086, 0.136, 0.186, 0.236, 0.286, 0.311, 0.186)//
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text=’streamlines Re=50 mesh 16x48 dt=.25 ’
end

Figure 9.5.13 shows the vector plot of the velocity, the isobars and the stream
lines. Mark that the step is only slightly visible in the stream lines.

9.5.5 Obtaining the files and running the problem for the
multi block problem

The relevant files for the multi block problem can be copied to the current
directory by the following command:

isgetex bfs_mb
sepmesh bfs_mb.msh
isnaspre bfs_mb.prb
isnasexe
isnaspost bfs_mb.pst [ > bfs_mb.out ]
sepdisplay

9.5.6 Multi block mesh

The multi block mesh differs from the single block mesh in the sense that it
consists of two blocks and that all cells are rectangular. The input file has the
following shape:

mesh2d
isnas
points

p1=(0,0)
p2=(.5,0)
p3=(.5,.5)
p4=(1,0.5)
p5=(1,3)
p6=(.5,3)
p7=(0,3)
p8=(0,.5)

curves
c1 = line1(p1,p2,nelm=8)
c2 = line1(p2,p3,nelm=8)
c3 = line1(p3,p4,nelm=8)
c4 = line1(p4,p5,nelm=40)
c5 = line1(p5,p6,nelm=8)
c6 = line1(p6,p7,nelm=8)
c7 = line1(p7,p8,nelm=40)
c8 = line1(p8,p1,nelm=8)
c9 = line1(p3,p6,nelm=40)
c10 = curves(c2,c9)
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scalex:      5.000

scaley:      5.000

factor:       .100

velocity field   Re=50  mesh 16x48  dt=.25  tend=5
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Figure 9.5.13: Vector plot of the velocity, isobars and stream lines in single
block backward-facing step
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c11 = curves(c7,c8)
surfaces

s1 = rectangle5(c10,c6,c11,c1)
s2 = rectangle5(c4,c5,-c9,c3)

plot
end

Figure 9.5.14 shows the grid generated by sepmesh.

 

Figure 9.5.14: Multi block mesh for backward-facing step generated by sepmesh

9.5.7 Multi block problem description

The multi block problem file is nearly identical to the single block one, except
that the curves have got other names and as a consequence the description of
the boundary conditions changes a bit.
Besides that the command number of computers = 2 has been added, which
implies that not only multi block is applied but also that the multi block process
is carried out in parallel at two processors.
The input file becomes:

*
Input for the Backward facing step problem multi block
*
number_of_computers = 2
time_integration

196



tinit = 0
tend = 5
tstep = .25
theta = 1

boundary_conditions
curve 1: inflow 1.0
curve 2 to 4: noslip
curve 5 to 6: parallel_flow
curve 7 to 8: noslip

coefficients
momentum_equations

rho = 50
mu = .5

linear_solver
momentum_equations

amount_of_output = 1
relaccuracy = 1d-4
divaccuracy = 0

pressure_equations
amount_of_output = 1
divaccuracy = 0
startvector = zero

9.5.8 Multi block post-processing

The multi block post processing file is only a little bit different from the single
block input file. We give this file without comment.

postprocessing
plot mesh
plot identification = text = ’ ISNAS 2D backward facing step ’,origin =(10,12)
plot vector v0, factor=.1//

text=’velocity field Re=50 mesh 16x48 dt=.25 tend=5’
plot contour v1, nlevel=8//

text=’pressure contour Re=50 mesh 16x48 dt=.25 tend=5’
plot contour v2,levels=(-0.009, -0.004, -0.002, 0.000, 0.006,//

0.016, 0.036, 0.086, 0.136, 0.186, 0.236, 0.286, 0.311, 0.186)//
text=’streamlines Re=50 mesh 16x48 dt=.25 tend=5’

end

Figure 9.5.15 shows the vector plot of the velocity, the isobars and the stream
lines.
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scalex:      5.000

scaley:      5.000
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Figure 9.5.15: Vector plot of the velocity, isobars and stream lines in multi block
backward-facing step
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9.6 An analytic test example

As a simple example using user defined files we consider an artificial mathemat-
ical example. This example has no practical meaning but may be used to check
the accuracy of the code and the methods used.
At this moment, except on an ad-hoc basis, Deft does not contain means to
compute and print the error.

Consider the Navier-Stokes equations with constant values of ρ and µ. Define
the exact solution of the Navier-Stokes equations by

u = sin(t) sin(x) sin(y) (9.4)
v = sin(t) cos(x) cos(y)
p = sin(t)(sin(x) + cos(y))

Substitution of (5.4) in the Navier-Stokes equations defines the right-hand side
by

f1 = ut + (uux + vuy) + (px − µ(uxx + uyy))/ρ

f2 = vt + (uvx + vvy) + (py − µ(vxx + vyy))/ρ (9.5)

with

ux = sin(t) cos(x) sin(y)
uxx = −u

uy = sin(t) sin(x) cos(y)
uyy = −u

ut = cos(t) sin(x) sin(y)
px = sin(t) cos(x)

vx = − sin(t) sin(x) cos(y)
vxx = −v

vy = − sin(t) cos(x) sin(y)
vyy = −v

vt = cos(t) cos(x) cos(y)
py = − sin(t) sin(y)

9.6.1 Obtaining the files and running the problem

The relevant files for this problem can be copied to the current directory by the
following command:

isgetex analyt

The problem can be run and the results viewed by giving the commands:

isgetex analyt
sepmesh analyt.msh
isnaspre analyt.prb
islink analyt
analyt
isnaspost analyt.pst [ > analyt.out ]
sepdisplay

The part between the square brackets [] is optional. If it is used the output of
the command isnaspost is written to the file analyt.out.
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9.6.2 Mesh

If we define a rectangular region of size (π, π) and use 20 cells in x and y-
direction, the following input file for sepmesh might be used to generate the
grid:

*
* Mesh for the analytic test example
*
mesh2d

isnas
points

p1=(0,0)
p2=(3.1415,0)
p3=(3.1415,3.1415)
p4=(0,3.1415)

curves
c1 = line1(p1,p2,nelm=20)
c2 = line1(p2,p3,nelm=20)
c3 = line1(p3,p4,nelm=20)
c4 = line1(p4,p1,nelm=20)

surfaces
s1 = rectangle5(c1,c2,c3,c4)

end

9.6.3 Problem description

The example has Dirichlet boundary conditions, i.e. the velocity is prescribed
at all boundaries. In fact this is a very dangerous situation since the pressure is
fixed up to an additive constant and hence the problem to be solved is singular.
In general it might be necessary to adapt the numerical boundary conditions in
such a way that the compatibility condition, implying that net outflow is zero,
is satisfied with great accuracy.
In this example however, precautions did not seem to be necessary.

The problem is solved with a Crank-Nicolson scheme (θ = 0.5). Both for the
boundary conditions and the right-hand side we need a function subroutine,
with two functions.

*
Input for the analytic problem
*
time_integration

tinit = 0
tend = .5
tstep = .05
theta = .5
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boundary_conditions
curve 1 to 4: ux = time_func=1, uy = time_func=2

coefficients
momentum_equations

rho = 10
mu = .5
force1 = func = 1
force2 = func = 2

linear_solver
momentum_equations

amount_of_output = 0
relaccuracy = 1d-4
divaccuracy = 0

pressure_equations
amount_of_output = 0
relaccuracy = 1d-6
divaccuracy = 0
startvector = zero

In order to run the program we must submit the function subroutines USFUNB
and USFUNC. For that reason it is necessary to write our own main program.
As an example the following program analyt.f may be used.

program analyt
implicit none

integer nbuffr
parameter( nbuffr = 5000000 )
integer ibuffr
common ibuffr(nbuffr)

call is_main( nbuffr )

end

function usfunb ( ichoice, x, y, z, t )

c User written function subroutine. It gives
c the user the opportunity to define a
c boundary condition as a function of space
c and time.

implicit none

double precision usfunb, x, y, z, t
integer ichoice
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c x i x-coordinate
c y i y-coordinate
c t i actual time
c ichoice i choice parameter given by the user input
c usfunb o computed boundary condition

if ( ichoice.eq.1 ) then
usfunb = sin(t) * sin(x) * sin(y)

else if ( ichoice.eq.2 ) then
usfunb = sin(t) * cos(x) * cos(y)

end if

end

function usfunc ( ichoice, x, y, z, t )

c User written function subroutine. It gives
c the user the opportunity to define a
c coefficient as a function of space
c and time.

implicit none

double precision usfunc, x, y, z, t
integer ichoice

c x i x-coordinate
c y i y-coordinate
c t i actual time
c ichoice i choice parameter given by the user input
c usfunc o computed coefficient

double precision u, ut, ux, uxx, uy, uyy,
+ v, vt, vx, vxx, vy, vyy,
+ p, px, py,
+ mu, rho

mu = 0.5d0
rho = 10d0

u = sin(t) * sin(x) * sin(y)
ut = cos(t) * sin(x) * sin(y)
ux = sin(t) * cos(x) * sin(y)
uxx = - u
uy = sin(t) * sin(x) * cos(y)
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uyy = - u

v = sin(t) * cos(x) * cos(y)
vt = cos(t) * cos(x) * cos(y)
vx = - sin(t) * sin(x) * cos(y)
vxx = - v
vy = - sin(t) * cos(x) * sin(y)
vyy = - v

p = sin(t) * (sin(x)+ cos(y))
px = sin(t) * cos(x)
py = - sin(t) * sin(y)

if ( ichoice.eq.1 ) then
usfunc = ut +

+ u*ux +v*uy +
+ px / rho -
+ mu*(uxx + uyy)/rho
else if ( ichoice.eq.2 ) then

usfunc = vt +
+ u*vx +v*vy +
+ py / rho -
+ mu*(vxx + vyy)/rho

end if

end

The program analyt must be linked to the Deft libraries with the command
islink. After running analyt output is written to the screen. The output contains
information about the iteration process with respect to the stationary solution.
However, since the problem is time-dependent this output makes no sense at all
and hence must be neglected.

9.6.4 Post-processing

The following post-processing file is just an example of the type of post-processing
possible.

postprocessing
plot identification = text = ’ Deft ’,origin =(20,10)
plot mesh
plot vector v0, factor=.1 //

text=’velocity field mesh 20x20 dt=.05 tend=1.55’
plot contour v1, nlevel=8 //

text=’pressure contour mesh 20x20 dt=.05 tend=1.55’
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plot contour v2, nlevel=8 //
text=’streamlines mesh 20x20 dt=.05 tend=1.55’

plot coloured levels v1,nlevel=19
end

Figure 9.6.16 shows the vector plot of the velocity, the isobars and the stream
lines.
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Figure 9.6.16: Vector plot of the velocity, isobars and stream lines in analytic
test example
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9.7 Natural convection in a square cavity

In this example we introduce the use of extra transport equations. For that
purpose we consider a standard benchmark problem for a natural convection
flow, see de Vahl Davis et al. [10] (1981).
The domain of reference is a square cavity of unit length as sketched in Figure
9.7.17. The walls of the cavity are fixed, which implies that the velocity satisfies

I

II

IV

III

Figure 9.7.17: Definition region for natural convection in a square cavity

no-slip conditions. The temperature at the left side I is held at a constant
temperature of one in dimensionless form and at the right side III at zero. The
lower and upper sides II and IV are isolated.

The equations to be solved are given by:

∂

∂xi
ui = 0

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂p

∂xi
− ∂

∂xj
τij = ρgβ(T − T0)

ρcp(
∂T

∂t
+

∂uiT

∂xi
− ∂T

∂xi
κ

∂T

∂xi
= 0 (9.6)

The dimensionless parameters for this problem are the Reynolds number Re,
the Prandtl number Pr and the Rayleigh number Ra, defined by

Re =
ρUL

µ
(9.7)

Pr =
µcp

κ
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Ra =
bGρ2L3∆T

µ2
Pr

with U a specific velocity
L a specific length
µ the viscosity
ρ the density
cp the heat capacity
κ the thermal conductivity
T0 the reference temperature
∆T a specific temperature difference
b the volume expansion coefficient
G the acceleration of gravity

9.7.1 Obtaining the files and running the problem

The relevant files for this problem can be copied to the current directory by the
following command:

isgetex bouss

The problem can be run and the results viewed by giving the commands:

isgetex bouss
sepmesh bouss.msh
isnaspre bouss.prb
islink bouss
bouss
isnaspost bouss.pst [ > bouss.out ]
sepdisplay

The part between the square brackets [] is optional. If it is used the output of
the command isnaspost is written to the file bouss.out.

9.7.2 Mesh

If we use 20 cells in the both directions with equidistant spacing then the fol-
lowing input file for sepmesh might be used to generate the grid:

mesh2d
isnas
points

p1=(0,0)
p2=(1,0)
p3=(1,1)
p4=(0,1)

curves
c1 = line1(p1,p2,nelm=20)
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c2 = line1(p2,p3,nelm=20)
c3 = line1(p3,p4,nelm=20)
c4 = line1(p4,p1,nelm=20)

surfaces
s1 = rectangle5(c1,c2,c3,c4)

end

9.7.3 Problem description

The solution of the natural convection problem requires one extra transport
equation. Furthermore the right-hand-side vector for the momentum equations
depends on the temperature. Since Deft solves the transport equations decou-
pled from the momentum equation, the temperature at the preceding time-level
is used to compute the right-hand side. In this case it is necessary to use a
function subroutine USFUNC1 to give the right-hand side. As a consequence
the value of i in FUNC = i, must be between 100 and 200.
The following problem input file may be used for the Boussinesq problem:

*
Input for the Boussinesq benchmark problem
(square cavity)
Free convection flow
*
number_of_transport_equations = 1
initial_conditions
time_integration

tinit = 0
tend = 6
tstep = .05
theta = 1
rel_stationary_accuracy = 1d-2

boundary_conditions
curve 1: noslip, transport 1 = neumann = 0
curve 2: noslip, transport 1 = dirichlet = 0
curve 3: noslip, transport 1 = neumann = 0
curve 4: noslip, transport 1 = dirichlet = 1

coefficients
momentum_equations

rho = 1
mu = 1
force2 = func=101

transport_equation 1
capacity = 1
diffusion = 1.408

linear_solver
momentum_equations
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amount_of_output = 0
relaccuracy = 1d-4
divaccuracy = 0

pressure_equations
amount_of_output = 0
divaccuracy = 0
startvector = zero

transport_equations all
amount_of_output = 0
relaccuracy = 1d-6

In order to run the program we must submit the function subroutine USFUNC1.
For that reason it is necessary to write our own main program. As an example
the following program bouss.f may be used.

program bouss
implicit none

integer nbuffr
parameter( nbuffr = 5000000 )
integer ibuffr
common ibuffr(nbuffr)

call is_main( nbuffr )

end

function usfunc1 ( ichoice, x, y, z, t, soluts, ndegfd )

c User written function subroutine. It gives
c the user the opportunity to define a
c coefficient as a function of space, time and previously computed
c solutions.

implicit none

integer ichoice, ndegfd
double precision usfunc1, x, y, z, t, soluts(ndegfd)

c x i x-coordinate
c y i y-coordinate
c t i actual time
c ichoice i choice parameter given by the user input
c soluts i array containing the solution at the previous level
c in the node
c ndegfd i Length of array soluts
c usfunc1 o computed coefficient
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c temp temperature

double precision temp

c temp temperature

if ( ichoice.eq.1 ) then
temp = soluts(4)
usfunc1 = 1408d0 * temp

end if

end

The program bouss must be linked to the Deft libraries with the command
islink. After running bouss, output is written to the screen. The output contains
information about the iteration process with respect to the stationary solution.
However, since the problem is time-dependent this output makes no sense at all
and hence must be neglected.

9.7.4 Post-processing

The following input file for isnaspost plots the velocity vectors, the isobars,
stream lines and isotherms. Of the stream function and temperature also a
coloured level plot is made.

postprocessing
plot identification = text = ’ Deft ’,origin =(18,10)
plot vector v0 //
text=’velocity field Ra=1d4 Pr=.71 mesh 20x20 dt=.05 tend=1.55’

plot contour v1, nlevel=8 //
text=’pressure contour Ra=1d4 Pr=.71 mesh 20x20 dt=.05 tend=1.55’

plot contour v2, nlevel=8 //
text=’streamlines Ra=1d4 Pr=.71 mesh 20x20 dt=.05 tend=1.55’

plot contour v3, nlevel=8 //
text=’temperature contour Ra=1d4 Pr=.71 mesh 20x20 dt=.05 tend=1.55’

plot coloured levels v2, nlevel=19
plot coloured levels v3, nlevel=19

end

end

Figure 9.7.18 shows the vector plot of the velocity, the isobars, the stream lines
and the isotherms.
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Figure 9.7.18: Vector plot of the velocity, isobars, stream lines and isotherms in
natural convection flow
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9.8 Turbulent flow through a tube

With the Deft code it is possible to compute complex turbulent flows in two
or three dimensions. At this moment, four turbulence models are implemented:
the standard k-ε, RNG based k-ε, the extended k-ε and Wilcox’s k-ω models.
In this section the code has been applied to the prediction of turbulent flow
through a tube with a sinusoidal constriction, as shown in Figure 9.8.19. This

r

R0

x

y

xs

u
0

x

Figure 9.8.19: Region for turbulent flow through a tube

flow has been studied experimentally by Deshpande and Giddens [12].

As an example, the RNG form of k-ε model in conjunction with wall functions
is employed. The height of the duct is 50.8 mm and the Reynolds number based
on that height and the average inlet velocity is 15,000. The height and the base
length of the constriction are 1

2R0 and 4R0, respectively, where R0 is the half
height of the duct. Due to symmetry, only the lower half of the domain needs
to be considered. The inlet profiles for the velocity and turbulence quantities
were specified at the plane x = −4R0. Following Deshpande and Giddens, at the
inlet a fully-developed power-law profile (n ≈ 6.4) is assumed for the streamwise
velocity:

uin = u0(1 +
y

R0
)1/6.4 (9.8)

where u0 = 0.342 m/s is the centerline velocity. For the turbulence quantities
k and ε, the following inlet profiles are assumed:

kin = 1.5I2
Tu2

in, εin =
c
3/4
µ k

3/2
in

l
(9.9)

Here, IT is the turbulence intensity, taken to be 3% and l is the mixing length
given by:

l = min(κy, 0.1R0) (9.10)

These inlet conditions are prescribed in routine usfunb.f . In addition, symme-
try and outstream conditions are imposed in the usual way.

9.8.1 Obtaining the files and running the problem

The relevant files for this problem can be copied to the current directory by the
following command:
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isgetex contube

The problem can be run and the results viewed by giving the commands:

isgetex contube
sepmesh contube.msh
isnaspre contube.prb
islink contube
contube
isnaspost contube.pst [ > contube.out ]
sepdisplay

The part between the square brackets [] is optional. If it is used the output of
the command isnaspost is written to the file contube.out.

9.8.2 Mesh

The following input file for sepmesh might be used to generate the grid:

*
mesh for 2D turbulent flow through a constricted tube
*
mesh2d

isnas

points
p1 = (-0.1016 , 0.00 )
p2 = (-0.0508 , 0.00 )
p3 = (-0.04445, 0.000483365)
p4 = (-0.0381 , 0.00185988 )
p5 = (-0.03175, 0.00391996 )
p6 = (-0.0254 , 0.00635 )
p7 = (-0.01905, 0.00878004 )
p8 = (-0.0127 , 0.0108401 )
p9 = (-0.00635, 0.0122166 )
p10 = ( 0.0 , 0.0127 )
p11 = ( 0.00635, 0.0122166 )
p12 = ( 0.0127 , 0.0108401 )
p13 = ( 0.01905, 0.00878004 )
p14 = ( 0.0381 , 0.00185988 )
p15 = ( 0.04445, 0.000483365)
p16 = ( 0.0508 , 0.00 )
p17 = ( 0.3556 , 0.00 )
p18 = ( 0.3556 , 0.0254 )
p19 = ( 0.0508 , 0.0254 )
p20 = (-0.0508 , 0.0254 )
p21 = (-0.1016 , 0.0254 )
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curves
c1 = line1(p1, p2, nelm = 7)
c2 = spline1(p2, p3, p4, p5, p6, p7, p8, //

p9, p10, p11, p12, p13, p14, p15, p16, nelm = 15)
c3 = line1(p16, p17, nelm = 28)
c4 = line1(p17, p18, nelm = 20)
c5 = line1(p18, p19, nelm = 28)
c6 = line1(p19, p20, nelm = 15)
c7 = line1(p20, p21, nelm = 7)
c8 = line1(p21, p1 , nelm = 20)
c9 = curves(c1,c2,c3)
c10= curves(c5,c6,c7)

surfaces
s1 = rectangle5(c9,c4,c10,c8,smooth=2)

end

Figure 9.8.20 shows the grid generated by sepmesh.

Geometry and grid (50 x 20)

 

Figure 9.8.20: Mesh for turbulent flow through a tube generated by sepmesh

9.8.3 Problem description

The following file contube.prb might be used to solve the problem.

*
2D turbulent flow through a constricted tube
*
turbulence

model = rng_k_eps
discretization
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turbulence_equations all
upwind = isnas

time_integration
tinit = 0
tend = 6
tstep = 0.01
theta = 1
rel_stationary_accuracy = 1d-2

initial_conditions
k_turb = 1d-4
eps_turb = 1d-4

boundary_conditions
curve 1 to 3:

wall_functions = smooth
curve 4:

parallel_outflow
k_neumann = 0
eps_neumann = 0

curve 5 to 7:
freeslip
k_neumann = 0
eps_neumann = 0

curve 8:
un, func = 1
ut = 0
k_dirichlet, func = 2
eps_dirichlet, func = 3

coefficients
momentum_equations

rho = 1d3
mu = 1d-3

linear_solver
momentum_equations

maxiter = 1000
amount_of_output = 0
relaccuracy = 1d-3

pressure_equations
amount_of_output = 0
maxiter = 1000
relaccuracy = 1d-4
divaccuracy = 0
startvector = zero

turbulence_equations all
maxiter = 1000
amount_of_output = 0
relaccuracy = 1d-3
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In order to run the program we must submit the function subroutine USFUNB.
For that reason it is necessary to write our own main program. As an example
the following program contube.f may be used.

program contube
implicit none

integer nbuffr
parameter( nbuffr = 5000000 )
integer ibuffr
common ibuffr(nbuffr)

call is_main( nbuffr )

end

function usfunb ( ichoice, x, y, z, t )

c User written function subroutine. It gives
c the user the opportunity to define a
c boundary condition as a function of space
c and time.

implicit none

double precision usfunb, x, y, z, t
integer ichoice

c x i x-coordinate
c y i y-coordinate
c t i actual time
c ichoice i choice parameter given by the user input
c usfunb o computed boundary condition

double precision u, u0, tke, eps, cmu, kappa,
+ lscale, it, h

c cmu an empirical constant
c eps dissipation rate of turbulent energy
c h distance between wall and symmetry
c it turbulence intensity
c kappa von Karman constant
c lscale length scale
c tke turbulent kinetic energy
c u tangential velocity
c u0 centreline velocity
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cmu = 9d-2
kappa = 41d-2

u0 = 0.342d0
It = 3.13d-2
H = 0.0254d0

u = u0*((y/H)**1.5625d-1)

tke = 15d-1*u*u*It*It
if ( tke .eq. 0d0 ) tke = 1d-4

lscale = min(kappa*y, 0.13*H)

if ( lscale .eq. 0d0 ) then
eps = 1d4

else
eps = (cmu**75d-2)*(tke**15d-1)/lscale

end if

if ( ichoice .eq. 1 ) then
usfunb = -u

else if ( ichoice .eq. 2 ) then
usfunb = tke

else if ( ichoice .eq. 3 ) then
usfunb = eps

end if

end

9.8.4 Post-processing

With the post-processings file contube.pst we activate isnaspost to perform the
following actions:

• Plot the mesh.

• Make a vector plot of the velocity field.

• Plot the isobars.

• Plot the stream lines.

• Make a contour plot of the turbulent kinetic energy k.
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contube.pst has the following shape:

postprocessing

plot identification = text = ’Geometry and grid (50 x 20)’,origin =(7,1)
plot mesh, yfact = 1.0
plot identification = text = ’Flow through a constricted tube ’//

origin =(6,6)
plot vector v0, factor = 0.04, yfact = 1.0//

text=’ velocity field Re=15000 mesh 50x20’
plot contour v1, yfact = 1.0//

text=’ pressure contour Re=15000 mesh 50x20’
plot contour v2, yfact = 1.0//

levels = (-0.00015 0.0 0.0003 0.0007//
0.0015 0.0024 0.004 0.0058 0.008)//

text=’ streamlines Re=15000 mesh 50x20’
plot contour v3, yfact = 1.0//

text=’ turbulent energy Re=15000 mesh 50x20’
end

Figure 9.8.21 shows the vector plot of the velocity, the isobars and the stream
lines. Figure 9.8.22 shows the contour plot of the turbulent kinetic energy.

218



scalex:     32.808

scaley:     39.370

factor:       .040

        velocity field        Re=15000  mesh 50x20

Flow through a constricted tube 

 

2

3
4 45 56 67 78

89
910

scalex:     32.808

scaley:     39.370

LEVELS

 1    -131.083

 2    -116.250

 3    -101.417

 4     -86.584

 5     -71.751

 6     -56.918

 7     -42.085

 8     -27.252

 9     -12.419

10       2.413

11      17.246

        pressure contour      Re=15000  mesh 50x20

Flow through a constricted tube 

 

2
34

5 6
7

8

scalex:     32.808

scaley:     39.370

LEVELS

 1  -1.500E-04

 2    .000E+00

 3   3.000E-04

 4   7.000E-04

 5   1.500E-03

 6   2.400E-03

 7   4.000E-03

 8   5.800E-03

 9   8.000E-03

        streamlines           Re=15000  mesh 50x20

Flow through a constricted tube 

 

Figure 9.8.21: Vector plot of the velocity, isobars and stream lines
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Figure 9.8.22: Contour lines of turbulent kinetic energy k

9.9 The solution of a single transport equation

In this example we assume that the velocity is given and that the sole equation
to be solved is a transport equation. For that purpose we consider a standard
benchmark problem for a convection problem, the so-called Molenkamp test,
see Vreugdenhil and Koren (1993) [54].
Consider a square region with co-ordinates −1 ≤ x ≤ 1,−1 ≤ y ≤ 1. In this
example we consider pure convection. A ”cloud” of material is transported
without change of form. In this example, a smooth shape of the cloud has been
chosen to avoid accuracy problems due to discontinuous derivatives. The scaled
advection equation is

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 0, (9.11)

where the velocity field describes a pure rigid-body rotation

u = −ωy, v = ωx, ω = 2π. (9.12)

The initial condition is a Gaussian distribution which does extend outside the
domain but only very slightly.

c(x, y, 0) = 0.014r2
, r =

√
(x +

1
2
)2 + y2. (9.13)

Boundary conditions are required only at inflow, where the exact solution is
imposed:

c(x, y, t) = 0.014r2
, r =

√
(x +

1
2
cos(ωt))2 + (y +

1
2
sin(ωt))2. (9.14)
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9.9.1 Obtaining the files and running the problem

The relevant files for this problem can be copied to the current directory by the
following command:

isgetex cone

The problem can be run and the results viewed by giving the commands:

isgetex cone
sepmesh cone.msh
isnaspre cone.prb
islink cone
cone
isnaspost cone.pst [ > cone.out ]
sepdisplay

The part between the square brackets [] is optional. If it is used the output of
the command isnaspost is written to the file cone.out.

9.9.2 Mesh

The following input file for sepmesh might be used to generate the grid:

mesh2d
isnas
points

p1=(-1,-1)
p2=( 0,-1)
p3=( 1,-1)
p4=( 1, 0)
p5=( 1, 1)
p6=( 0, 1)
p7=(-1, 1)
p8=(-1, 0)

curves
c1 = line1(p1,p2,nelm=40)
c2 = line1(p2,p3,nelm=40)
c3 = line1(p3,p4,nelm=40)
c4 = line1(p4,p5,nelm=40)
c5 = line1(p5,p6,nelm=40)
c6 = line1(p6,p7,nelm=40)
c7 = line1(p7,p8,nelm=40)
c8 = line1(p8,p1,nelm=40)
c9 = curves(c1,c2)
c10= curves(c3,c4)
c11= curves(c5,c6)
c12= curves(c7,c8)
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surfaces
s1 = rectangle5(c9,c10,c11,c12)

end

9.9.3 Problem description

The solution is time-dependent. The output will be created only at t = 0.01. In
this specific case the initial conditions depend on space and as a consequence a
user written function subroutine USFUNI must be provided. Since the velocity
is given, the computation of the momentum equations is skipped. Furthermore
the so-called ”isnas” upwind scheme has been applied for the convection equa-
tion.
The file cone.prb used has the following form:

*
Unsteady rotation of a cone-shaped scalar field
*
number_of_transport_equations = 1
time_integration

tinit = 0
tend = .01
tstep = 0.001
theta = 0.5

initial_conditions
u_momentum = func = 1
v_momentum = func = 2
pressure = 0
transport 1 = func = 3

boundary_conditions
curve 1: transport 1 = neumann = 0
curve 2: transport 1 = dirichlet = time_func = 3
curve 3: transport 1 = neumann = 0
curve 4: transport 1 = dirichlet = time_func = 2
curve 5: transport 1 = neumann = 0
curve 6: transport 1 = dirichlet = time_func = 4
curve 7: transport 1 = neumann = 0
curve 8: transport 1 = dirichlet = time_func = 1

coefficients
transport_equation 1

capacity = 1
diffusion = 0

linear_solver
transport_equations all

amount_of_output = 0
relaccuracy = 1d-6

discretization
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momentum_equations
skip

transport_equations 1
upwind = isnas

end_of_isnas_input

In order to run the program we must submit the function subroutines USFUNI
and USFUNB. For that reason it is necessary to write our own main program.
As an example the following program cone.f may be used.

program cone
implicit none

integer nbuffr
parameter( nbuffr = 5000000 )
integer ibuffr
common ibuffr(nbuffr)

call is_main( nbuffr )

end

function usfunb ( ichoice, x, y, z, t )

c User written function subroutine. It gives
c the user the opportunity to define a
c boundary condition as a function of space
c and time.

implicit none

double precision usfunb, x, y, z, t
integer ichoice

c x i x-coordinate
c y i y-coordinate
c t i actual time
c ichoice i choice parameter given by the user input
c usfunb o computed boundary condition

double precision omega, a, b, power

omega = 2d0*3.1415926535d0

if ( ichoice .eq. 1 ) then
a = -1
b = y
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else if ( ichoice .eq. 2 ) then
a = 1
b = y

else if ( ichoice .eq. 3 ) then
a = x
b = -1

else if ( ichoice .eq. 4 ) then
a = x
b = 1

end if

power = (a+5d-1*cos(omega*t))**2 + (b+5d-1*sin(omega*t))**2
usfunb = 1d-2**(4*power)

end

function usfuni ( ichoice, x, y, z )

c User written function subroutine. It gives
c the user the opportunity to define an
c initial value as a function of space.

implicit none

double precision usfuni, x, y, z
integer ichoice

c x i x-coordinate
c y i y-coordinate
c z i z-coordinate
c ichoice i choice parameter given by the userinput
c usfuni o computed boundary condition

double precision omega, power

omega = 2d0*3.1415926535d0
power = (x+5d-1)**2 + y**2

if ( ichoice.eq.1 ) then
usfuni = -omega*y

else if ( ichoice.eq.2 ) then
usfuni = omega*x

else if ( ichoice.eq.3 ) then
usfuni = 1d-2**(4*power)

end if
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end

9.9.4 Post-processing

The following input file for isnaspost might be used:

postprocessing
plot contour v3//

levels = (0.00001 0.10001 0.20001 0.30001 0.40001 0.50001 0.60001//
0.70001 0.80001 0.90001)

3d plot v3
end

In this case isnaspost produces two pictures. Figure 9.9.23 shows the contour
lines of the concentration and Figure 9.9.24 the three-dimensional plot of the
concentration.
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scalex:      7.500

scaley:      7.500

LEVELS

 1   1.000E-05

 2   1.000E-01

 3   2.000E-01

 4   3.000E-01

 5   4.000E-01

 6   5.000E-01

 7   6.000E-01

 8   7.000E-01

 9   8.000E-01

10   9.000E-01

Contour levels of vector v 3                    
 

Figure 9.9.23: Contour plot of concentration
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3D plot of vector v 3                    
 

Figure 9.9.24: Contour plot of concentration

9.10 The solution of the one-dimensional Burg-
ers equation
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9.11 An overview of all examples that are avail-
able through the command isgetex

In this Section we give a short overview of all examples that are available by
using the command isgetex. These examples can be put into your local directory
by the command:

isgetex name_example

where name example is the name of the example.

To run the examples follow the following list:

isgetex name_example
sepmesh name_example.msh
isnaspre name_example.prb

If the file name example.f exists then

islink name_example
name_example

else

isnasexe

isnaspost name_example.pst [ > name\_example.out ]
sepdisplay

The following examples are available:

• channel flow

channel Flow in a straight channel. See 9.1.

gravity channel This example considers a very simple channel flow with
a uniform velocity. Special in this example is the fact that gravity is
used as driving force. As a consequence the pressure depends on the
height y.
The pressure at outflow is prescribed as a function.

chan expli mb 2D plane channel flow multi-block, explicit time inte-
gration given by theta=0

chan expli mb left 2D plane channel flow multi-block, explicit time in-
tegration given by theta=0

chan expli mb par 2D plane channel flow multi-block and parallel, ex-
plicit time integration given by theta=0

chan expli mb pari 2D plane channel flow multi-block and parallel, ex-
plicit time integration given by theta=0

227



chan infl straight channel problem, inflow boundary conditions over two
segments

chan infl 2 channel flow with inflow at a part of the boundary

chan mb inacc par channel problem, multi block parallel, number of computers
= 2, subdomain solution = inaccurate

chan mb pr test problem multi block parallel, number of computers =
2, subdomain solution = accurate

chan mb pri test problem multi block, parallel, number of computers
= 2, subdomain solution = inaccurate type of algorithm = par

chanchoup Input for the straight channel with bump Euler compress-
ible, mach = .675d0, upwind = first order

chancomp test for Euler compressible problem using scaled parameters

chancomp noscal test for Euler compressible problem using physical pa-
rameters

chancomp rd test for Euler compressible problem read initial condi-
tions from restart file

chancomp wrt test for Euler compressible problem write solution to
restart file

chanexpli straight channel problem, explicit time integration

chanjump Flow in a straight channel, where the grid contains a sudden
jump in grid size. This example is used to demonstrate the effect of
sudden grid size changes.

chanjump wb Straight channel problem with jump in grid size wesbeek
discretization

channel1 straight channel problem

channel2 straight channel problem

channel3 straight channel problem

channel4 straight channel problem

channel5 straight channel problem

channel6 straight channel problem

channel7 straight channel problem

channel iblu multi1 problem, one block with a different orientation

channel mb straight channel problem, multi block

channel mb1 straight channel problem, multi block

channel mb2 straight channel problem, multi block

channel mb3 straight channel problem, multi block

channel mb4 straight channel problem, multi block

channel mb5 straight channel problem, multi block
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channel mb6 straight channel problem, multi block

channel mb7 straight channel problem, multi block

channel mb8 straight channel problem, multi block

channel mb wb straight channel problem, multi block Wesbeek dis-
cretization

channel mbliss straight channel problem, multi block

channel pic straight channel problem, picard linearization convection

channel rd straight channel problem restart from restart file

channel rd r straight channel problem restart from restart file with re-
fine option

channel sn straight channel problem, boundary condition sigmann given
at inflow

channel wrt straight channel problem write to restart file

channel wrt r straight channel problem write to restart file with refine
option( output =cartesian)

channelliss straight channel problem

channelmassfr straight channel problem multi phase gas flow

channpr1 Without preconditioner in order to test the orientation of
the channel flow problem (this flow is from left to right. See also
channpr2.*)

channpr2 Without preconditioner in order to test the orientation of
the channel flow problem (this flow is from right to left. See also
channpr1.*)

channpr3 Without preconditioner in order to test the orientation of the
channel flow problem (this flow is from bottom to top. See also
channpr4.*)

channpr4 Without preconditioner in order to test the orientation of the
channel flow problem (this flow is from top to bottom. See also
channpr3.*)

chanskco Flow in a straight channel, where the grid has been made de-
liberately skewed. The input velocity is constant. This example is
used to demonstrate the effect of non-orthogonal grids.

• gravity force

gravity channel This example considers a very simple channel flow with
a uniform velocity. Special in this example is the fact that gravity is
used as driving force. As a consequence the pressure depends on the
height y.
The pressure at outflow is prescribed as a function.

• general
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2dcilinder 2D flow around a cylinder, single block, using periodical bound-
ary conditions, inflow parallel with respect to the periodical bound-
ary.

2dcilinder skew 2D flow around a cylinder, single block, using periodi-
cal boundary conditions, inflow skewed with respect to the periodical
boundary.

3d 3D channel flow, with dirichlet boundary conditions on all sides, using
the classical discretization

3d- See 3d, however, now the flow is in opposite direction

3d2 See 3d, however, now the flow is in another direction

3d2- See 3d2, however, now the flow is in another direction

3d2lin See 3dlin, however, now the flow is in another direction

3d2par See 3dpar, however, now the flow is in another direction

3d3 See 3d, however, now the flow is in opposite direction

3d3- See 3d, however, now the flow is in opposite direction

3d3lin See 3dlin, however, now the flow is in another direction

3d3par See 3dpar, however, now the flow is in another direction

3d cavity 3d cavity problem, all dirichlet boundary conditions

3d pic 3d test problem for picard linearization of convection term

3d skew wb 3D channel flow, all dirichlet boundary conditions
skew grid, wesbeek discretization

3d wb curved h 3D channel flow, all dirichlet boundary conditions
curved grid, wesbeek discretization

3dbend 3d, 90 degree bend problem, outflow boundary condition: sig-
mann=0 ut=0

3dbendp 3d bend problem, with periodic boundary conditions

3dbfs 3d backward facing step problem

3dbfs mb 3d bfs flow, outflow boundary condition: sigmann=0 and
ut=0 side walls: noslip
multiblock, subdomain solution accurate

3dbfs mb inacc 3d bfs flow, outflow boundary condition: sigmann=0
and ut=0
side walls: noslip
multiblock, subdomain solution inaccurate

3dbfs mb par 3d bfs flow, outflow boundary condition: sigmann=0 and
ut=0 side walls: noslip
multiblock, parallel, number of computers=3, subdomain solution
accurate
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3dbfs mb pari 3d bfs flow, outflow boundary condition: sigmann=0
and ut=0
side walls: noslip
multiblock parallel, number of computers = 3, subdomain solution
inaccurate

3dcavskew Driven cavity flow in three dimensions with angle = 45 deg

3dcilinder skew 3D flow around cylinder, single block, using periodical
boundary conditions

3dlin 3d channel flow, all dirichlet boundary conditions boundary con-
dition ux=z, linear velocity field

3dliss 3D channel flow, all dirichlet boundary conditions

3dpar 3d channel flow, outflow boundary condition: sigmann=0 and
ut=0 side walls: noslip

3dpar mb 3d channel flow, outflow boundary condition: sigmann=0
and ut=0 side walls: noslip multiblock subdomain solution = accu-
rate

3dpar mb 4 3d channel flow, outflow boundary condition: sigmann=0
and ut=0 side walls: noslip multiblock 4 blocks, subdomain solution
= accurate

3dpar mb 4 par 3d channel flow, outflow boundary condition: sig-
mann=0 and ut=0 side walls: noslip multiblock parallel, number of computers
= 4, subdomain solution = accurate

3dpar mb 4 pari 3d channel flow, outflow boundary condition: sig-
mann=0 and ut=0 side walls: noslip multiblock, parallel,number of computers
= 4, subdomain solution = inaccurate

3dpar mb inacc 3d channel flow, outflow boundary condition: sigmann=0
and ut=0 side walls: noslip multiblock , subdomain solution = inac-
curate

3dpar mb inacc p 3d channel flow, outflow boundary condition: sig-
mann=0 and ut=0 side walls: noslip multiblock, parallel,number of computers
= 2, subdomain solution = inaccurate

3dpar mb par 3d channel flow, outflow boundary condition: sigmann=0
and ut=0 side walls: noslip multiblock, number of computers = 2,
subdomain solution = accurate

3dpar mb pari 3d channel flow, outflow boundary condition: sigmann=0
and ut=0 side walls: noslip multiblock, parallel, number of computers
= 2 subdomain solution = inaccurate

3dparliss 3d channel flow, outflow boundary condition: sigmann=0 and
ut=0 side walls: noslip

3dparper as 3dpar problem now with periodic boundary conditions

3dperiod1 3d test for periodic boundary conditions
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3dperiod12 3d test for periodic boundary conditions

3dperiod2 3d test for periodic boundary conditions

3dperiod3 3d test for periodic boundary conditions

3dsmagor 3D channel flow, all dirichlet boundary conditions large eddy,
smagorinsky , viscous correction

3dt 3D transport equation

3dtperiod 3D transport equation with periodic boundary conditions

3dturb three-dimensional straight channel flow with turbulence

3duct lam 3D developing flow in a curved rectangular duct

3dunsnt 3d test for boundary condition: un=0 and sigmant=0

3dunsnt per as 3dunsnt problem now with periodic boundary condi-
tions

3dunsntall as 3dunsnt problem now on all sidewalls freeslip boundary
condition

3dupwind 3D cavity with moving lid To test first order upwind scheme
Restriction: Picard linearization must be used !

analyt An artificial analytic example to demonstrate the use of user de-
fined functions. See 9.6.

analyt fth An artificial analytic example to demonstrate the fractional
θ-method for the time integration.

analyt gth An artificial analytic example to demonstrate the generalized
θ-method for the time integration.

aniso Turbulent flow through a square duct computed with the anisotropic
model of Speziale variant
This example demonstrates the capability of the anisotropic mod-
els to predict the secondary flow which has been missing from the
Boussinesq hypothesis
Compare the results with the results obtained from ‘3dturb’ in the
test bank

axicom Axisymmetric channel , compressible problem mach=.001 wes-
beek discr.

axtest0 axisymmetric straight channel problem

axtest1 analytical axisymmetric problem u=r, v=-2z, p=0 noconvection

axtest2 analytical axisymmetric problem u=r, v=-2z, p=r+3z noconvec-
tion

axtest3 axisymmetric flow in a diverging channel

axtest4 analytical axisymmetric problem u=r, v=-2z, p=r+3z with con-
vection

bend Laminar flow through a ninety degrees bend. See 9.2.
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bend180 as bend360 mb problem, mesh generated now with Liss

bend360 mb 2d, 360 degree bend problem using multi block

bend360 mb liss

bend couette bend problem, couette flow

bend expli bend problem , explicit time integration given by theta=0

bend kappa bend problem higher order upwind, kappa=.75

bend mpl1kappa bend problem upwind = tvd, limiter = mplone kappa limiter

bend mpl2kappa bend problem upwind = tvd, limiter = mpltwo kappa limiter

bend mrkappa bend problem upwind = tvd, limiter = mr kappa limiter

bend muscl bend problem upwind = muscl

bend noconv bend problem without convection

bend plkappa bend problem upwind = tvd, limiter = pl kappa limiter

bend rkappa bend problem upwind = tvd, limiter = r kappa limiter

bend splkappa bend problem upwind = tvd, limiter = symm pl kappa limiter

bend sratio bend problem upwind = tvd, limiter = symm ratio limiter

bend sweby bend problem upwind = tvd, limiter = sweby phi limiter

bend vdt Laminar flow with Reynolds number = 300 through a ninety
degrees bend, using 3 different time steps 4t = .05, .1, and .2.

bend wb bend problem, Wesbeek discretization

bendcons bend problem standard discretization, upwind first order con-
servative

bfs mb Multi-block backward-facing step. See 9.5.

bfs mb inacc Backward facing step problem multi block Inaccurate so-
lution of subdomains is used.

bfs mb np Backward facing step problem multi block

bfs mb rd Backward facing step problem multi block restart from restart
file

bfs mb rd r Backward facing step problem multi block restart from
restart file with refine option parallel, number of computers = 2, sub-
domain solution = accurate

bfs mb rd ri Backward facing step problem multi block restart from
restart file with refine option parallel, number of computers = 2, sub-
domain solution = inaccurate

bfs mb rdi Backward facing step problem multi block restart from restart
file parallel, number of computers = 2, subdomain solution = inac-
curate
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bfs mb turb Turbulent flow over a backward-facing step
Reference: Kim et al, ”Investigation of a reattaching turbulent shear
layer: flow over a backward-facing step”, ASME Journal of Fluids
Eng., vol. 102, pp. 302-308, 1980

bfs mb wb Backward facing step problem multi block, Wesbeek dis-
cretization.

bfs mb wrt Backward facing step problem multi block write to restart
file

bfs mb wrt r Backward facing step problem multi block write to restart
file with refine option (output=cartesian)

bfs mb wrt ri Backward facing step problem multi block write to restart
file with refine option (output=cartesian) parallel, number of computers
= 2, subdomain solution = inaccurate

bfs mb wrti Backward facing step problem multi block write to restart
file parallel, number of computers = 2, subdomain solution=inaccurate

bfs sb Single-block backward-facing step. See 9.5.

bfs sb wb Backward facing step problem single block, parabolic inflow
boundary condition wit Umax = 1.0 . Wesbeek discretization

bocht 2d, 90 degrees bend problem

bouss Natural convection flow in a square cavity. See 9.7.

bouss col Boussinesq benchmark problem (square cavity) Free convec-
tion flow Collocated arrangement

bouss mb Boussinesq benchmark problem (square cavity) Free convec-
tion flow multi block ( 4 blocks )

bouss pr Boussinesq benchmark problem (square cavity) Free convec-
tion flow test for printing

bouss rd Boussinesq benchmark problem (square cavity) Free convec-
tion flow test reading restart file

bouss rd r Boussinesq benchmark problem (square cavity) Free convec-
tion flow restart from restart file with refine option

bouss wb Boussinesq benchmark problem (square cavity) Free convec-
tion flow using wesbeek discretization and a randomized grid

bouss wb2 Free convection flow in cavity using Wesbeek discretization.
The mesh used here was introduced by D.S. Kershaw, J. Comput.
Phys., 39, 375 (1981).

bouss wrt Boussinesq benchmark problem (square cavity) Free convec-
tion flow test writing restart file

bouss wrt r Boussinesq benchmark problem (square cavity) Free con-
vection flow write to restart file with refine option( output =carte-
sian)
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bump1 laminar flow in a duct with obstruction To illustrate the effect
of the mesh to the solution (here good mesh)

bump2 laminar flow in a duct with obstruction To illustrate the effect
of the mesh to the solution (here wrong mesh)

bump3 laminar flow in a duct with obstruction (2D version) To illustrate
the effect of the mesh to the solution (here good mesh)

bump4 laminar flow in a duct with obstruction (2D version) To illustrate
the effect of the mesh to the solution (here wrong mesh)

bump5 laminar flow in a duct with obstruction
Use periodic conditions in order to compare with 2D solution (see
bump3.prb) To illustrate the effect of the mesh to the solution (here
good mesh)

bump6 laminar flow in a duct with obstruction
Use periodic conditions in order to compare with 2D solution (see
bump4.prb) To illustrate the effect of the mesh to the solution (here
wrong mesh)

chanskew Flow in a straight channel channel is positioned under an angle
of 30 degrees

chanskpa Flow in a straight channel, where the grid has been made
deliberately skewed. The only difference with chanskco is that the
input velocity is parabolic.

chncav wb c test for cavitating flow with shocktube first order upwind
conservative discretization = wesbeek

chncav wb nc test for cavitating flow with shocktube first order upwind
non-conservative discretization = wesbeek

chnma.001 channel , compressible problem mach=.001 Re = 2.3d2, wes-
beek discr.

chnma.5 channel with bump, compressible problem mach=.5 Euler, wes-
beek discr.

chnma.675 channel with bump, compressible problem mach=.675 now
the max machnumber in the flow will be 1.3 the keyword ’pres corr method
= 1’ has to be chosen for convergence

collocated test collocated discretization on curved grid

conc concentric cylinder problem

cone Pure advection without momentum equations; Molenkamp test. See
9.9.

contd compressible with special pressure correction method

contube Turbulent flow through a tube with a sinusoidal constriction.
The RNG k − ε model is used. See 9.8.

convect Test example for pure convection equation (Discontinuous field).
This example is used to test upwind schemes.
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convrot Test example for pure convection equation (Smith and Hutton
test case). This example is used to test upwind schemes.

couette1 Couette1 flow: un, ut given on all boundaries

couette10 Couette10 flow: sigmant, sigmann given

couette11 Couette11 flow: ut, sigmann given

couette12 Couette12 flow: un, sigmant given on all boundaries

couette12 wb Couette12 flow: un, sigmant given on all boundaries

couette13 Couette13 flow: un, ut given on all boundaries

couette14 Couette14 flow: sigmant, sigmann given

couette15 Couette15 flow: ut, sigmann given

couette16 Couette16 flow: un, sigmant given on all boundaries

couette16 wb Couette16 flow: un, sigmant given on all boundaries

couette17 Couette flow: un, ut given on all boundaries

couette18 Couette flow: sigmant , sigmann given

couette19 Couette19 flow: ut, sigmann given

couette2 Couette2 flow: sigmant, sigmann given

couette20 Couette20 flow: un, sigmant given

couette20 wb Couette20 flow: un, sigmant given

couette21 Couette21 flow: un, ut given on all boundaries

couette22 Couette22 flow: sigmant , sigmann given

couette23 Couette23 flow: ut, sigmann given

couette24 Couette24 flow: un, sigmant given

couette24 wb Couette24 flow: un, sigmant given

couette25 Couette25 flow: un, ut given on all boundaries

couette26 Couette26 flow: sigmant, sigmann given

couette27 Couette27 flow: ut, sigmann given

couette28 Couette28 flow: un, sigmant given

couette28 wb Couette28 flow: un, sigmant given

couette29 Couette29 flow: un, ut given on all boundaries

couette3 Couette3 flow: ut, sigmann given

couette30 Couette30 flow: sigmant, sigmann given

couette31 Couette31 flow: ut, sigmann given

couette32 Couette32 flow: un, sigmant given

couette3d Couette flow: un, sigmant given on all boundaries

couette4 Couette4 flow: un, sigmant given on all boundaries
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couette4 wb Couette4 flow: un, sigmant given on all boundaries

couette5 Couette5 flow: un, ut given on all boundaries

couette6 Couette6 flow: sigmant, sigmann given

couette7 Couette7 flow: ut, sigmann given

couette8 Couette8 flow: un, sigmant given on all boundaries

couette8 wb Couette8 flow: un, sigmant given on all boundaries

couette9 Couette9 flow: un, ut given on all boundaries

crack Couette flow: un, ut given on all boundaries, multiblock

crack1 Couette flow: un, ut given on all boundaries, multiblock

crack2 Couette flow: un, ut given on all boundaries, multiblock

curvduct Developing flow in a 90 deg curved rectangular duct based on
the experimental study of W.J. Kim and V.C. Patel, ”Origin and de-
cay of longitudinal vortices in developing flow in a curved rectangular
duct”, J. Fluids Engng., vol. 116, p. 45-52, 1994. This computation
has been presented at the Fifth ERCOFTAC-IAHR Workshop on
Refined Flow Modelling, organized by EDF in Chatou (Paris), April
1996. Remark: to compute this flow problem, use restart option, as
follows: - First, compute with tstep = 0.0001 and endtime = 0.05
(this file) - restart the computation with tinit=0.05, tstep = 0.01 and
endtime can be 0.85 (insession = 2).

curved h Input for the straight channel problem, discr method=wesbeek
curved grid

curved h col Input for the straight channel problem Collocated arrange-
ment Wesbeek+bilinear interpolation

curved v Input for the straight channel problem, discr method=wesbeek
curved grid

dune Turbulent flow over sand dunes in a river Experimental data from
J.C.C. de Ruiter, ”Turbulence measurements above artificial dunes”,
Report Q789, Delft Hydraulics/TOW-Rijkswaterstaat, 1988 The bot-
tom surface is covered with sand particles; average roughness height:
0.0015 m

expansion

fluidbed Input for the bend problem

frsfsub Input for the freesurface channel problem subcritical flow with
Fr=0.43

frsfsuper Input for freesurface channel problem supercritical flow with
Fr=2.05

gravity Test example for a flow only driven by gravity. The mesh is non
orthogonal. The computed flow should be zero, but due to inaccura-
cies a flow might arise.
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gravity mb Input for the test gravity problem, multi block

hill Wake flows behind two-dimensional model hills (ERCOFTAC Work-
shop 1995)

intface INTERFACE PROBLEM for testing WESBEEK discretization

kershaw Solving a diffusion equation on the unit square with constant
diffusion coefficient, using the integration-path method as proposed
in P. van Beek, R.R.P. van Nooyen and P. Wesseling, J. Comput.
Phys., 117, 364 (1995). The mesh used here was introduced by D.S.
Kershaw, J. Comput. Phys., 39, 375 (1981).

laplax1 Axisymmetric Transport equation. Momentum equation is not
solved.

laplax2 Axisymmetric Transport equation. Momentum equation is not
solved.

laplax3 Axisymmetric Transport equation. Momentum equation is not
solved.

linsol3d dia post 3d channel problem, postconditioning for lin. solver

linsol3d dia prec 3d channel problem, diag. preconditioning linear solver

linsol3d ilud post 3dchannel problem, postconditioning linear solver

linsol3d ilud prec 3d channel problem, preconditioning linear solver

linsol3d noprec 3d channel problem, no preconditioner linear solver

linsol bicgstab Input for the bend problem, preconditioner linear solver

linsol cgs Input for the bend problem, preconditioner linear solver

linsol dia post Input for the bend problem, postconditioner for linear
solver

linsol dia prec Input for the bend problem, preconditioner linear solver

linsol ilu post Input for the bend problem, postconditioner linear solver

linsol ilu prec Input for the bend problem, preconditioner linear solver

linsol ilud post Input for the bend problem, postconditioner linear solver

linsol ilud prec Input for the bend problem, preconditioner linear solver

linsol multigrid post Input for the bend problem, preconditioner linear
solver

linsol multigrid prec Input for the bend problem, preconditioner linear
solver

linsol noprec Input for the bend problem, no preconditioner linear solver

logo Demonstration flow for multi-block. The flow around the letters
ISNAS is computed. The grid must be generated by Liss in the
following way:
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liss pre pin
l2i

After that the standard Deft commands may be given.

lowkeps Turbulent flow through channel to test Lam-Bremhorst k-eps
model. A very fine mesh has been used.

lshape Flow through an l-shape channel. Example of a very non-smooth
grid. See 9.3.

lshape col Input for the L-shape problem Collocated arrangement Wes-
beek+bilinear interpolation

lshape mb Input for the lshape problem, multi block

lshape mb wb Input for the lshape problem, multi block, Wesbeek dis-
cretization.

naca0012 Input for naca0012 airfoil, viscous laminar

naca0012 112x32 eu Input for naca0012 airfoil, Euler

naca0012 mclw Input for naca0012 airfoil, viscous laminar, This prob-
lem is the same as naca0012, only now with the meshcurves ordered
clockwise

naca0021 mb Input for naca0012 airfoil, viscous laminar multiblock,
subdomain solution = accurate

neutrnsp Test problem to check the Neumann or mixed boundary condi-
tions for a transport equation. The momentum equations are skipped.

neutrnsp mb Input for test of ROBBINS ( NEUMANN ) boundary con-
dition for TRANSPORT-equation Momentum equation is not solved
Multi block ( 4 blocks )

nozzle Input for the nozzle problem

outstream Couette flow: un, ut given on all boundaries

pol3d Transport of a pollutant mass by convection and diffusion in a 3D
flow field

presshole Input for the pressurehole problem, multiblock parallel

presshole 8 Input for the pressurehole problem, multiblock parallel 8
blocks, subdomain solution = accurate

presshole 8 wb Input for the pressurehole problem, multiblock parallel
8 blocks, subdomain solution = accurate, discr method=wesbeek

presshole 8 wbi Input for the pressurehole problem, multiblock parallel
8 blocks, discr method=wesbeek, subdomain solution=inaccurate

presshole 8i Input for the pressurehole problem, multiblock parallel 8
blocks, subdomainsolution = inaccurate
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presshole wb Input for the pressurehole problem, multiblock parallel
discr method=wesbeek, subdomain solution = accurate

presshole wbi Input for the pressurehole problem, multiblock parallel
discr method=wesbeek, subdomain solution=inaccurate

pressholei Input for the pressurehole problem, multiblock parallel sub-
domain solution = inaccurate

pvmtest 2D plane channel flow multi-block and parallel, testing mpi (
pvm )

rectanglecol

ruitequi Example of a skew cavity with ”equidistant” grid size.

ruitjump Example of a skew cavity with a jump in the grid.

shockt test for shocktube

shocktnc test for cavitating flow with shocktube

shocktnc ex test for cavitating flow with shocktube explicit discretiza-
tion with density bias

shocktnc exdb test for cavitating flow with shocktube explicit discretiza-
tion with density bias

shocktnc gs test for cavitating flow with shocktube making use of non-
linear Gauss-Seidel for solving the pressure equation

shocktnc houpw test for cavitating flow with shocktube higher order
upwind in momentum and continuity

shocktnc nwt test for cavitating flow with shocktube newton lineari-
sation of momentum equation upwind classical discretization super-
sonic scheme with defect correction

shocktnc prit test for cavitating flow with shocktube with iterative so-
lution procedure for the pressure correction

shocktnc st c test for cavitating flow with shocktube standard discretiza-
tion conservative

shocktnc st nc test for cavitating flow with shocktube standard dis-
cretization non-conservative

shocktnc sup test for cavitating flow with shocktube supersonic scheme

shocktnc wb c test for cavitating flow with shocktube wesbeek discretiza-
tion conservative

shocktnc wb nc test for cavitating flow with shocktube wesbeek dis-
cretization non-conservative

sigmant0 x wb Input for the straight channel problem, wesbeek dis-
cretization

sigmant0 y wb Input for the straight channel problem, wesbeek dis-
cretization
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stress1 Example of a straight channel problem with skew outflow section,
signt = 0 and sign = 2 -4x -4y

stress1 wb Input for the straight channel problem, with skew outflow
section : signt = 0 and sign = 2 -4x -4y Wesbeek discretization

stress2 Example of a straight channel problem with skew outflow section
, right side signt = 0 and sign = 2 -4x -4y, left side signt = 0 and
sign = -2 +4x -4y.

stress2 wb Input for the straight channel problem, with skew outflow
section :right side signt = 0 and sign = 2 -4x -4y left side signt = 0
sign = -2 +4x -4y Wesbeek discretization

tchannel Fully developed turbulent flow in a straight channel. The stan-
dard k − ε model is used.

tchannel1 2D turbulent fully-developed plane channel flow (from left to
right)

tchannel1 l2t tchannel1 l2t computation of a turbulent channel flow. As
initial condition the solution of a laminar problem is read from the
restartfile. The laminar solution is written to the restartfile by the
tchannel1 lam problem.

tchannel1 lam tchannel1 lam Laminar channel flow , the solution of this
problem is written to the restartfile. The tchannel1 l2t.prb problem,
which computes a turbulent flow, takes the laminar solution from the
restartfile as initial condition.

tchannel1 subst 2D turbulent fully-developed plane channel flow (from
left to right)

tchannel1 wb 2D turbulent fully-developed plane channel flow (from left
to right)

tchannel2 2D turbulent fully-developed plane channel flow (from right
to left)

tchannel3 2D turbulent fully-developed plane channel flow (from bottom
to top)

tchannel4 2D turbulent fully-developed plane channel flow (from top to
bottom)

tchannel mb 2D turbulent fully-developed plane channel flow multi-block

tchannel mb1 2D turbulent fully-developed plane channel flow multi-
block

tchannel mb1 pari 2D turbulent fully-developed plane channel flow multi-
block, same as tchannel mb1 but now parallel

tchannel mb pari 2D turbulent fully-developed plane channel flow multi-
block, same as tchannel mb but now parallel with subdomain solution
= inaccurate

tchannelt 2D turbulent fully-developed plane channel flow
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tchannelt2 Turbulent flow through an open channel (tilted flume) based
on experiments of Nezu and Rodi (1986) An anisotropic model is
used to compute the normal stresses more accurately.

testperiod1 test problem periodical boundary conditions
testperiod2 Test problem for periodical boundary conditions
testperiod3 Test problem for periodical boundary conditions
testperiod4 Test problem for periodical boundary conditions
tomega Turbulent flow through channel to test Wilcox’s k-omega model.

Because k-omega model is a low-Reynolds-number two-equation model,
a very fine mesh has been used. Here, no viscous corrections have
been used.

transper1 Input for test of periodic boundary conditions for one TRANSPORT-
equation. Momentum equation is not solved.

transper2 Input for test of periodic boundary conditions for one TRANSPORT-
equation. Momentum equation is not solved.

tube2d 100 Input for tube2d problem, Re=100
tube2d 100 wb Input for tube2d problem, Re=20, wesbeek discretiza-

tion
tube2d 100 wb reuse Input for tube2d problem, Re=20, wesbeek dis-

cretization
tube3d tube3d flow, outflow boundary condition: sigmann=0 and ut=0

side walls: noslip
ubend Two dimensional turbulent flow through U bend with heat trans-

fer Use multiblock grid of 3400 cells within 3 blocks
ubend rd Two dimensional turbulent flow through U bend with heat

transfer Use multiblock grid of 3400 cells within 3 blocks
upwind Input for the cavity with moving lid To test first order upwind

scheme Restriction: Picard linearization must be used !
warmte Input for the 2D turbulent channel flow with heat transfer
wbtrnsp Input for test of WESBEEK discretization for TRANSPORT-

equation Momentum equation is not solved
wbtrnsp2 Input for test of WESBEEK discretization for TRANSPORT-

equation with discontinuous diffusion coefficient Momentum equation
is not solved

wbtrnsp3 Input for test of WESBEEK discretization for TRANSPORT-
equation Momentum equation is not solved Using special grid gener-
ated with sine functions

wbtrnsp4 Input for test of WESBEEK discretization for TRANSPORT-
equation Momentum equation is not solved Using special grid gener-
ated with random functions

wbupwcon Test problem wesbeek discretization, first order conservative
upwind
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