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Deft package

Delft Flow andTransport

e Navier Stokes equations forcompressibldlow
on general domains

o Offshoot of ISNaS I(hformationSystemNavier
Stokes)
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Design decisions
* Finite Volume Method
* Rectangular blocks of curvilinear coordinates
e Staggered grid
e Time-dependeralgorithm

e Pressure correction for the incompressibility
condition
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Navier Stokes equations

ou
Ot

— +V-(uu')+Vp=V -T+f

V-u=0

u velocities

p pressure

T stress tensor

f body forces like gravity

Variations in density are not taken into accoumand
T are scaled quantities.

U
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Method of lines

du
dth - Gpp, = N(up) + L(uy) + 3
Duh =0
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Time Integration

Implicit time integration, like for instance
Crank-Nicolson

uZ+§At (N( n—|—1)_|_L( n+1)+f}?+1)+

%At (N(u}) + L(uy) + 1)

Dul™ =0
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Matrix Structure
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Pressure Correction

u; + AtGpZ_l/Q =

1
uZ+§At (N(u};) + L(uy) + f}f“) +

A (N () + L(uf) + )

™ — u+AtGAp = 0

_Du+AtDGAp = 0
pn+1/2 _ pn—1/2 4 Ap
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Pressure Correction
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p Matrix structure 2D
Example:n x n block, N = n”.

 Tridiagonal block matrix of tridiagonal matrices
« Bandwidth:O(v/N)

 FlopsLU decompositionO(N?). (One time
only on fixed domains)

e FlopsLU backsubstitutionO(N?3/?)
e Flops matrix vector multiplicationO(N).
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p Matrix structure (3D)

Example:n x n x n block, N = n?.

* Tridiagonal block matrix of tridiagonal
blockmatrices of tridiagonal matrices

« BandwidthO(N?/3)

« FlopsLU decompositionO(N"/3). (Only once
on fixed domains)

e FlopsLU backsubstitutio®(N°/3)
« Flops matrix vector multiplicationO (V)
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A Classic: Defect Correction

SolveAx = b
Presetsx’ =0,r'’ =b — Ax" =b, k=0
while ||| > [|b]|. do
Solve Pc* = r* {P is preconditioner}
xk+l — b o ok
Rl ok Ak
k=k+1
end while

Each iteration require@(N) flops.
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Preconditioners
Classicwith A =D — L - U
e Jacobi:P =D
e Gauss-SeidelP =D — L
e Successive overrelaxatio®. = (D /w — L)

Modernwith A = LU

e Incomplete LU (ILU):

A=LU+ E, P = LU. L andU sparse, usually
the same sparsity pattern 4s

e Incomplete Block LU (IBLU).
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DC Error Reduction

"t =1F — Ac¥ = (I — AP7)rF
Al — kbt — g lphtl ke
eFtl = AN T — AP ™Y A" = (I — P71A)E"

Reduction governed by spectral radiug bf- AP~ 1).
For the Laplacian:

» Jacobi and Gauss-Seidél— O(h?)

 SOR with optimalv and a whole slew of other
conditions:1 — O(h).
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Effectiveness of DC
How many iterations to gain a decimal digit?

g7 = W

AT =0.1
klog Ay = —log 10
2.3
k‘:
1Og)\1
A —
Oy
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Effectiveness of DC

Jacobi and Gauss-Seide(/ ) iterations.

SORO(h™1) iterations.
In 2D:

» Jacobi and G®(N?) flops, worse thad.U
« SOR(O(N?/?) flops, order equal ta.U
In 3D:

« Jacobi and G®(N°/3) flops, order equal t& U
« SORO(N*/3) flops,better than.U/
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Conver gence properties

Damped Jacobl, 10 iterations
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Conver gence properties
Chebyshev10)\, = 0.1
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Conver gence properties
Chebyshev10)\, = 0.03

Jos van Kan (DIAM), CASA talk February 15, 2006 — p-2



Conver gence properties
Chebyshev10)\, = 0.01
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Gradient Methods

 "Best" polynomial on the fine structure of the
spectrum

« Gradient Methods are always better than Defe
Correction

* Irregular convergence behaviour
U
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Multigrid

Defect Correction: very effective ongartof the
spectrum.

The eigenspace of the spectral intery@p, 1) is vir-
tually reduced to O in a few Iterations.
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1D example

ConS|der—— =f, w0)=u(l)=0
Discretize mtoN Intervals): Au = f
Eigenvalues of — P~ A are

k
A\ = 1 — sin? % k=1,...,N — 1.
Corresponding eigenvectors

kg
%—SmW7T k.g=1,...,N — 1.

Eigenvalueslose to 1correspond to smooth
eigenvectorsalso for the Laplacian in 2 and 3D.
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Rough and smooth spectrum

e Roughpart of the spectrum: defect correction,
smoothein MG speak.

o Smoothpart of the spectrum: solve problem or
coarser grid and interpolat€.oarse grid
correctionin MG speak.
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Restriction and prolongation

Fine grid correction4,c;, = ry,
Coarse grid correctiodycy = ry
Transfer operators:

P,y prolongation from coarse to fine grid.
Interpolation usually.

e Rpyy: restriction from fine grid to coarse grid.
R = P! in symmetric problems.

The coarse grid correction becomes:
RunAnPracr = Runry
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Two Grid Algorithm

Presetsu}, r) = fj, — Au)
ub = S(u), b, A, ng){Presmoothing}
rg = Rgnry
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Two Grid Algorithm

Presetsu}, r} = f;, — Au)

ub = S(u), b, A, ng){Presmoothing}

rpg = Ryt

SolveAHcH =2 :

w, = u) "+ P,pcy {Coarse Grid Correction}
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Two Grid Algorithm

Presetsu}, r) = fj, — Au)
ub = S(u), b, A, ng){Presmoothing}

rg = Rynry,
SolveAHcH =2 :
w, = u) "+ P,pcy {Coarse Grid Correction}

uP%s = S( 9% b, A, nq){Postsmoothing}
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Multi Grid Algorithm

Require: A1 = Rey1.0A0Pr 041 have been
calculated on all levels
MGRecursive (Ay, 1y, ¢y, £)
If £ < pthen

SES
Solve A,c, = r,{Direct solution on coarsest
level}

end If
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Multi Grid Algorithm

Require: A1 = Rey1.0A0Pr 041 have been
calculated on all levels
MGRecursive (Ay, 1y, ¢y, £)
If £ < pthen
cy = S(0,ry, Ay, ng){Presmoothing}
ro1 = Re1(re — Agcy) {Calculate coarse grid
residual}

SES
Solve A,c, = r,{Direct solution on coarsest
level}

end if
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Multi Grid Algorithm

Require: A1 = Rey1.0A0Pr 041 have been
calculated on all levels
MGRecursive (Ay, 1y, ¢y, £)
If £ < pthen
cy = S(0,ry, Ay, ng){Presmoothing}
ro1 = Re1(re — Agcy) {Calculate coarse grid
residual}
call MGRecursivg Ay 1,11, ¢o1, ¢ + 1)
cy = ¢y + Pypr1coq1 {Coarse grid correction}

SES
Solve A,c, = r,{Direct solution on coarsest
level}

end If
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Multi Grid Algorithm

Require: A1 = Rey1.0A0Pr 041 have been

calculated on all levels

MGRecursive (Ay, 1y, ¢y, £)

If £ < pthen
cy = S(0,ry, Ay, ng){Presmoothing}
ro1 = Re1(re — Agcy) {Calculate coarse grid
residual}
call MGRecursivg Ay 1,11, ¢o1, ¢ + 1)
cy = ¢y + Pypr1coq1 {Coarse grid correction}
cy = S(cy, 1y, Ap,nyp) {POStsmoothing}

else
Solve A,c, = r,{Direct solution on coarsest
level}

end if
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TheMG miracle

« Spectrum off — P~'A bounded away fromn
uniformly in h.

 Number of iterations does not depend/an
« The workload is theoreticallg (V) flops.

But how big is the multiplicative constant going to |
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Robust Blackbox
Wishlist:

e Good smoother under various circumstances
(anisotropy, stretched and skew cells)

« Arbitrary number of points in either direction
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Smootherstested
e (Alternating) damped line Jacobi, 1 or 2
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Smootherstested
e (Alternating) damped line Jacobi, 1 or 2

nostsmoothing steps, no presmoothing

ncomplete BlockLU decomposition, 1
nostsmoothing step, no presmoothing
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Comparison

()
£
2
o
o

Comparison of the various iterative methods

BiCGSTAB/ILU
BIiCGSTAB/MG
GMRES/ILU

GMRES/MG
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Recursion

* Line Jacobi is recursivper lineand can be
massively parallelized, especially in 3D.

 What about IBLU? Classic IBLU is fully
recursive.
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Divide and Conquer

The inversion of am x n tridiagonal matrix can be
executed irf log n non recursive steps.

(I+LD '+ UDYHYD-L-U)=
D—LD'U—-UD 'L - LD 'L —-UD'U

=Dy~ L~ Uj

Bandwith is doubled in this operation.
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|ncomplete Block Div and Cong

* Use the same formulaterpreted als blocks

« Use incomplete versions @&fD U etc.

« D, L andU are (block)diagonals, consisting of
tridiagonal blocks.

« We need 7 diagonals dp—!

e Calculate from the productform of the inverse,
keeping only 7 diagonals ihlog n steps

Recursion use®(*log n) steps as claimed.
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