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Abstract

A numerical scheme to compute 2D inviscid compressible flows on unstructured grids using
a staggered positioning of the variables is presented. A finite volume scheme is used to dis-
cretize the conservation laws.

We restrict ourselves to unstructured grids that consist of triangles. At the triangle centroids
the scalar variables are located. At the midpoints of the edges the normal momentum com-
ponent is positioned. This placement of the variables, see Figure 1, is similar to the classic
staggered scheme on structured grids with quadrilateral cells. Use of this staggered grid fa-
cilitates future extension to weakly compressible and incompressible flows.

As primary variables we have chosen the density p, the momentum vector m = pu and the
energy variable pH, whereas the third thermodynamic variable (in our case the pressure p)
follows from the equation of state. The equations are decoupled in such a way that each
primary variable is solved for one after another. Hence, in this way each of the conservation
laws is considered (more or less) as an independent convection equation. Such a segrega-
tion of the equations is common in the field of the shallow water equations, but it is seldom
encountered in the field of aerodynamics. An implicit Euler scheme is employed to do the
time stepping. This is done in such a way that both stationary as nonstationary problems
can be solved in a time-accurate manner. The first stage in the time-stepping algorithm is
to compute the new momentum components normal to the edges. A local coordinate sys-
tem (parallel/perpendicular to the cell edges) is used, avoiding the usual decomposition in
Cartesian vector components. To achieve this, a new reconstruction algorithm is developed
to treat the convection term in the momentum equation. Central or first order upwind differ-
ences then suffice. For the computation of the pressure gradient, several schemes have been

Figure 1: Staggered grid.



Figure 2: Pressure distribution around a NACA0012 airfoil with My, = 0.8 and o = 1.25°.

devised. The second stage is the solution of the continuity equation, resulting in the new
density in all cell-centers. Solving the energy equation is the third stage, and the last stage
is the computation of the pressure.

Our scheme is much simpler than the prevailing (colocated) schemes for the Euler equations,
since only central and/or upwind differences are required, thereby avoiding the necessity to
determine numerical fluxes at control volume boundaries by flux-splitting or approximate
Riemann solvers, or using solution dependent second and fourth order dissipation terms. The
discretization of the continuity and energy equation is straightforward, and the numerical
treatment of the convection term in the momentum equation is the only non-trivial issue.
Numerical consistency is used to discriminate between the various possibilities that arise.

On the basis of numerical experiments on 1D Riemann problems we have every reason to
believe that our scheme approximates genuine weak solutions of the Euler equations that
satisfy the entropy condition. A challenging 2D test case is the computation of the transonic
flow around a NACAOQ0012 airfoil with an angle of attack of 1.25° and an inlet Mach number
of 0.8. The pressure distribution following from our first order upwind method is shown in
Figure 2.



