
Computer Assignment EE4550: Block 1

Finite Difference Solver of a Poisson Equation in Two Dimensions

The objective of this assignment is to guide the student to the development of a finite difference method
(FDM) solver of a Poisson Equation in two dimension from scratch. This assignment consists of both
pen-and-paper and implementation exercises.

1 Problem Formulation

Let the unit square be denoted by Ω, i.e., Ω = (0, 1) × (0, 1). Let the boundary ∂Ω of Ω be denoted by Γ.
Let (x, y) ∈ Ω denote the dependent variables. Let us assume that the source function f(x, y) with domain
Ω is given. We set out to find the function u(x, y) that is solution of the partial differential equation (PDE)

−∂2u

∂x2
− ∂2u

∂y2
= f(x, y) for (x, y) ∈ Ω (1)

as well as the homogeneous Dirichlet boundary conditions

u = 0 on Γ = ∂Ω. (2)

The extension to more general PDEs and/or boundary conditions is left as an exercise. The Laplacian of u
is the function

∆u =
∂2u

∂x2
+

∂2u

∂y2
= ∇ · ∇u = div gradu . (3)

With this notation the PDE can be written as

−∆u = f(x, y) for (x, y) ∈ Ω . (4)

This equation is called the Poisson equation. In case that f(x, y) = 0 it is called the Laplace equation. For
particular choices of the source function f(x, y) this PDE supplied with boundary conditions can be solved
analytically using separation of variables for instances. In this assignment we will choose f(x, y) such that
a given function u(x, y) is the solution of the problem.

Pen and Paper Assignment 1 Choose the function f(x, y) such that the function uex(x, y) = x (x −
1) y (1 − y) is the exact solution of the above problem. Do so by computing −∆uex. Use the meshgrid
command in Matlab to plot the function u(x, y) for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 for future reference. Other
possible choices for uex include functions of the form uex(x, y) = x (x − 1) y (1 − y) ûex(x, y) where
ûex(x, y) is a twice differentiable (i.e. sufficiently smooth) function of x and y.

2 Some Mathematics

The Kronecker product will be valuable in constructing the matrix A.

Kronecker Product of Matrices The Kronecker product of two matrices is defined as folllows. Given
two rectangular matrices R1 ∈ Rm1×n1 and R2 ∈ Rm2×n2 its Kronecker product denoted by R1 ⊗ R2 ∈
Rm1m2×n1n2 is formed by replacing each entry r1,ij of R1 by r1,ij ·R2.

We for instance have that

[
1 2
3 4

]
⊗
[
0 5
6 7

]
=


1 · 0 1 · 5 2 · 0 2 · 5
1 · 6 1 · 7 2 · 6 2 · 7
3 · 0 3 · 5 4 · 0 4 · 5
3 · 6 3 · 7 4 · 6 4 · 7

 =


0 5 0 10
6 7 12 14
0 15 0 20
18 21 24 28


The Kronecker product is implemented in the Matlab kron command.
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Pen and Paper Assignment 2 Given

I =

(
1 0
0 1

)
and A =

(
2 −1
−1 2

)
(5)

compute both A⊗ I and I ⊗A.

3 Finite Difference Discretization

Discretization of the Geometry For the discretization of the two-dimensional model problem we intro-
duce a mesh size h = 1

N (N being the number of elements in one direction) and an uniform grid Gh

consisting of (N + 1)2 nodes if we include those on the boundary Γ

Gh = {(xi, yj)|xi = (i− 1)h, yj = (j − 1)h;h =
1

N
, 1 ≤ i, j ≤ N + 1;N ∈ N} . (6)

In this numbering the indices i = 1 and i = N + 1 (j = 1 and j = N + 1) correspond to grid points on the
left and right (bottom and top) boundary, respectively. In Figure 1 we illustrate this numbering in the case
the N = 5.

i=1 i=6
j=1

j=6

(i, j) = (3, 2)

(i, j) = (4, 5)

Figure 1: grid ordering using (i, j)

i = 1 i = 6

I = 1

I = 9

I = 28

I = 36

Figure 2: x-lexicografic using I

Discretization of the Physics On Gh we introduce grid vectors approximating the source function f(x, y)
and unknown the u(x, y) in the grid nodes with increasing accuracy as h→ 0, i.e.,

fh
i,j ≈ f(xi, yj) for (xi, yj) ∈ Gh , (7)

and similarly for uhi,j . The discrete set of data corresponds to what the meshgrid command in Matlab
generates.

Internal Nodes We enforce the model problem to hold in each grid node and approximate the continuous
second order derivatives by central finite difference approximations. The use of finite difference here is
generic, as low-order finite element or finite volume discretization result in the same linear system. Using
nearest neighbours we have that for the internal nodes that

∂2u

∂x2
(xi, yj) =

uhi−1,j − 2uhi,j + uhi+1,j

h2
+O(h2) for 2 ≤ i, j ≤ N (8)
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(and similar for the y-derivative). The approximation to the partial differential equation (1) discretized on
internal points of Gh can be written as

−uhi,j−1 − uhi−1,j + 4uhi,j − uhi+1,j − uhi,j+1

h2
= fh

i,j for 2 ≤ i, j ≤ N . (9)

The discrete Laplacian on these nodes can then be represented by a so-called stencil notation

1

h2

 0 −1 0
−1 4 −1
0 −1 0

 (10)

in which the middle row (column) represents the coupling of the unknown with its left and right (top and
bottom) neighbours. This stencil is referred to as the 5-point stencil.

Boundary Nodes to enforce that the discrete problem satisfies the Dirichlet boundary conditions. One
can either add an equation for each node on the Dirichtlet boundary by imposing for these nodes the stencil 0 0 0

0 1 0
0 0 0

 (11)

and overwriting fh
i,j on the boundary by 0. Together with the equations on the internal nodes, this results in

(N + 1)2 linear equations for the (N + 1)2 unknowns {uhi,j |1 ≤ i, j ≤ N + 1}.

4 Linear System Formulation

To arrive at a linear system for the grid unknowns, we introduce a global ordering of the grid nodes. We
introduce an x-lexicografic ordering of the internal and boundary nodes in which

node (i, j) is assigned global index I = i + (j − 1)(N + 1) for 1 ≤ i, j ≤ N + 1 , (12)

such that 1 ≤ I ≤ (N + 1)2 as shown in Figure 2. This allows us to group the known and unknown grid
values fh

i,j and uhi,j into vectors uh and uh of size (N + 1)2

uh =



uh1,1
uh1,2

...
uh1,N+1

uh2,1
uh2,2

...
uh2,N+1

...
uhN+1,1

uhN+1,2
...

uhN+1,N+1



∈ R(N+1)2 and fh =



fh
1,1

fh
1,2
...

fh
1,N+1

fh
2,1

fh
2,2
...

fh
2,N+1

...
fh
N+1,1

fh
N+1,2

...
fh
N+1,N+1



∈ R(N+1)2 . (13)

Changing a matrix in the (i, j) grid numbering to a vector in the I x-lexicografic orderning can be accom-
plished in Matlab using the reshape command.
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The model problem then translates into a linear system of equations

Ah uh = fh , (14)

in which the system matrix Ah, fh and uh represents the discretized differential operator, the discrete source
term and the discrete source vector, respectively.

To specify Ah, we introduce four auxiliary matrices. We denote by IhN+1 the identity matrix on
R(N+1)×(N+1), by Îh and T h the matrices

Îh =

0 0 0
0 IhN−1 0
0 0 0

 ∈ R(N+1)×(N+1) and T h =


4 −1 0 . . . . . . 0
−1 4 −1 0 . . . 0

...
...

...
...

...
...

0 . . . 0 −1 4 −1
0 . . . . . . 0 −1 4

 ∈ R(N−1)×(N−1)

(15)
(observe the value of 4 on the main diagonal and the absence of the scaling with h2) and by T̂ h the matrix

T̂ h =

h2 0 0
0 T h 0
0 0 h2

 ∈ R(N+1)×(N+1) . (16)

The matrix

Ah =
1

h2



h2IN+1 0 . . . . . . . . . . . . 0

0 T̂ h −Îh 0 . . . . . . 0

0 −Îh T̂ h −Îh 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 −Îh T̂ h −Îh 0

0 . . . . . . 0 −Îh T̂ h 0
0 . . . . . . . . . . . . 0 h2IN+1


∈ R(N+1)2×(N+1)2 . (17)

The entries of the vector fh need to be overwritten with 0.

Construction of the matrix Ah using the Kronecker Product The matrix Ah can be constructed using
the Kronecker product of the identify matrix and the one-dimensional variant of Ah. This construction
requires care in properly treating the boundary conditions. We consider a process in four steps.

We first consider the one-dimensional problem−u′′(x) = f(x) on the interval 0 < x < 1 with Dirichlet
boundary conditions at both end points. Assume the interval to be subdivided into N intervals such that
N+1 nodes arise of which N−1 are interior nodes. LetAh be tridiagonal matrix of size the (N−1)×(N−1)
corresponding to the interior nodes only. This matrix can be obtained from the previous assignment by
eliminating the first and last row as well as the first and last column.

Next we return to the two-dimensional problem and partition all nodes 1 ≤ I ≤ (N +1)2 into the nodes
corresponding to the boundary and the interior points. Let I, Iboundary and Iinterior correspond to all the
nodes, the nodes on the boundary and the interior points, respectively. Then

I = Iboundary ∪ Iinterior and Iboundary ∩ Iinterior = ∅ . (18)

To construct these sets in Matlab we can use the following piece of code

indic = ones(N+1,N+1); indic(2:end-1,2:end-1) =0;
nnodes = (N+1)ˆ2;
indvec = reshape(indic,[nnodes,1]);
bnd = find(indvec==1); interior = find(indvec==0);
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We suggest to try this code on a small example first. In the third step we initialize Ah to the (N + 1)2 ×
N + 1)2 (corresponding to both interior and boundary nodes) identity matrix as

Ah = I(N+1)2 . (19)

In a fourth and final step we overwrite the equations corresponding to the interior points using

Ah(Iinterior, Iinterior) = Ah ⊗ IN−1 + IN−1 ⊗Ah , (20)

where the first and second term correspond to the discretization of uxx and uyy, respectively. The construc-
tion is such that the boundary conditions in Ah are taken into account.

Construction of the vector fh using reshape The construction of the vector fh requires care in setting
the components corresponding the boundary nodes. One possibility is to proceed as follows

1. construct fh as a matrix first (instead of directly as a vector) using for instance the meshgrid com-
mand would do;

2. set the first and last row and column of fh as a matrix to zero;

3. reshape fh as a matrix into fh as a vector using the reshape command.

Pen and Paper Assignment 3 Assume h = 1/2 and give the size and all elements of the vector fh.

Pen and Paper Assignment 4 Assume h = 1/2 and give the size and all elements of the matrix Ah.

Computer Assignment 5 Build a Matlab code to construct the matrix Ah using the Matlab kron com-
mand and the matrix Ah. Set h = 1/2 and verify your answer of Assignment 4 using your Matlab imple-
mentation.

Computer Assignment 6 Build a Matlab code to construct the vector fh using the Matlab reshape
command. Set h = 1/2 and verify your answer of Assignment 5 using your Matlab implementation.

Computer Assignment 7 Assume h = 1/16, generate Ah and a plot of the non-zero structure of the
matrix Ah using the Matlab command spy. Explain the non-zero structure of the matrix Ah you observe.

Computer Assignment 8 Assume that h = 1/16. Verify that the matrix Ah is symmetric if Ah is sym-
metric and if Ah is constructed using the Kronecker product as in (20).

Computer Assignment 9 Assume that h = 1/4, h = 1/8 and h = 1/16. Compute the eigenvalues of Ah

using eig in Matlab. Verify that the eigenvalues of Ah are real and positive.

5 Direct Linear Solvers

In this section of the assignment you will be asked to solve the linear system

Ahuh = fh (21)

using Matlab’s backslach \ and lu commands. This part of the assignment has three goals. The first
goal is to verify that the matrix Ah and the vector fh are build correctly by verifying that the computed
solution solution uh is correct. The second goal is to visualize that fill-in occurs in the L and U factors
when an LU-factorization of the matrix Ah is computed. The third goal is to show to what extend the
LU-factorization is limited by the size of the problem.
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Computer Assignment 10 Assume that h = 1/(2p), where p = 1, 2, 3, . . .. Compute the solution uh us-
ing Matlab ’s backslach \ command. Plot the computed solution on the grid. We suggest the combined
use of reshape and meshgrid to make such plots. The use of reshape here is intended to convert a
vector of length (N + 1)2 to a matrix of size (N + 1) × (N + 1). Verify that the difference between the
analytically given solution and the finite difference computed solution reduces as h becomes smaller.

Computer Assignment 11 Assume again that h = 1/(2p), where p = 1, 2, 3, . . .. Compute the LU-
factorization of the matrix Ah using Matlab ’s lu command. Make a plot of the non-zero structure of the
factors L and U using Matlab ’s spy command. Compare the number of non-zero elements of L and U
with that of the matrix Ah.

Computer Assignment 12 Try gradually larger problems by reducing the meshwidth h. Find the error
that Matlab’s returns for too large problems.

Elective Computer Assignment 13 The use of sparse matrix formats using Matlab’s sparse matrix
format and fill-in reducing reordering schemes allows to treat even larger problems. Experiment with these
options.
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