
Computer Assignment EE4550: Block 2

Finite Element Solver of a Poisson Equation in One Dimension

The objective of this assignment is to guide the student to the development of a finite element solver from
scratch. The assignment consists of a compulsory and an elective part. The former in turn consists of both
pen-and-paper and implementation exercises.

In this assignment we aim at solving the Poisson equation on the domain Ω = (0, 1). We in particular
set out to find the function u(x) that is solution of the equation

−d
2u

dx2
= g(x) for 0 < x < 1 (1)

where the source function g(x) is defined as

g(x) = 2 sin(πx) + 4π(x− 1) cos(πx)− π2(x− 1)2 sin(πx) (2)

and where u(x) satisfies homogeneous Dirichlet and homogeneous Neumann boundary conditions at the
left and the right end point of Ω, respectively. This means that

u(x = 0) = 0 and
du

dx
(x = 1) = 0. (3)

Compulsory Theoretical Part

Assignment 1 Verify that the function u(x) = −(x − 1)2 sin(πx) is the exact solution of the above
problem. Do so by verifying that the second derivative of u(x) equals −g(x) and that u(x) verifies the
boundary conditions at both end points. Plot the function u(x) for 0 ≤ x ≤ 1 for future reference.

Assignment 2 Cast the above Poisson equation supplied with the boundary conditions at the left and right
end point in its weak or variational form. Pay in particular attention to the order of derivatives used and to
the choice of the vector space of test functions to resolve the boundary conditions. Please refer to the lecture
notes for completing this assignment.

Assume that Ω is discretized by a mesh consisting of n+ 1 vertices (or nodes) xi where i runs from 1 to
n + 1. This enumeration includes the end points of Ω, that is, x1 = 0 and xn+1 = 1. Assume furthermore
that the mesh on Ω consists of n elements ei = [xi, xi+1] where i = 1, . . . , n such that Ω = ∪ni=1ei. The
points xi and xi+1 are the end points of ei. Assume furthermore that on each element ei the solution to the
previously introduced Poisson problem is approximated by linear (first order) Lagrangian shape functions.
On each element ei the weak form is discretized. This requires the computation of an element 2× 2 matrix
Sei and the element 2× 1 vector fei on each element ei. This matrix and vector are a representation of the
second derivative operator −d2/dx2 and the source function g(x) locally on the element ei.

Assignment 3 Give the expression for the element 2 × 2 matrix Sei and the element 2 × 1 vector fei on
the element ei. Use the trapezoidal rule to approximate the integrals on ei that appear in these expressions.
Please refer to the lecture notes for completing this assignment.

The contribution Sei and fei on element ei need to be assembled to the global matrix S and f . This
assembly requires the mapping from the local enumeration of the nodes on element ei to the global enumer-
ation of nodes on the mesh of Ω. The local and global enumeration run from 1 to 2 and from 1 to n + 1,
respectively. This mapping gives a unique global index to each left and right node of the element ei and is
defined by the connectivity matrix or topology of the mesh.

Assignment 4 Explain why the global matrix S and the global vector f are of size (n+ 1)× (n+ 1) and
(n+ 1)× 1, respectively.

Having the matrix S and the vector f the discrete finite element solution uh(x) can be computed by a
linear system solve.

1



Compulsory Implementation Part

This part guides the student to the development of a finite element code for solving the above Poisson
equation by guiding in the construction of a mesh, the assembly of the linear system on the mesh and
solution of the linear system.

Assignment 5 Write a Matlab (or Python) routine, called GenerateMesh.m (or GenerateMesh.py), that
returns as output a vector of size n+ 1 of equidistant grid points xi on Ω.

Assignment 6 Write the routines SourceFct.m and ExactSolu.m that given the coordinate xi return as
output the source function g(xi) and exact solution u(xi), respectively.

Assignment 7 Write a routine, called GenerateTopology.m, that generates an n × 2 matrix called elmat
such that the ith row of elmat contains the indices of the left and right node of the ith element in the global
enumeration on mesh on Ω, that is

elmat(i, 1) = i for i = 1, . . . , n (4)

elmat(i, 2) = i+ 1

Assignment 8 Write a routine, called GenerateElementMatrix.m, that given the coordinates xi and xi+1

of the end points of element ei generates the 2× 2 element matrix Sei such that

Sei =
1

xi+1 − xi

(
1 −1
−1 1

)
. (5)

Assignment 9 Write a routine, called GenerateElementVector.m, that given the coordinates xi and xi+1 of
the end point of element ei generates the 2× 1 element vector fei such that

fei =
xi+1 − xi

2

(
g(xi)
g(xi+1)

)
. (6)

Assignment 10 Write a routine, called AssembleMatrix.m, that assembles the element matrices Sei on
each element into the global matrix (n+ 1)× (n+ 1) matrix S. To so by first initializing S to be an empty
(n + 1) × (n + 1) matrix and subsequently performing a loop over the elements. In this loop the element
matrices are generated and added to the global matrix. In this addition the connectivity of the mesh defined
by the matrix elmat needs to be taken into account. Write therefore a triple for-loop in which

• the outermost loop indexed by i = 1, . . . , n traverses the elements;

• on each element ei the element matrix Sei on the element ei is computed;

• the innermost two loops indexed by j, k = 1, 2 traverse the nodes on ith element;

• the following statement is placed in the innermost loop

S(elmat(i, j), elmat(i, k)) = S(elmat(i, j), elmat(i, k)) + Sei(j, k) . (7)

Assignment 11 Write a routine, called AssembleVector.m, that assembles the element vectors fei on each
element into the global matrix (n+ 1)× 1 vector f . To so by first initializing f to be an empty (n+ 1)× 1
vector and subsequently performing a loop over the elements. In this loop the element vectors are generated
and added to the global vector. In this addition the connectivity of the mesh defined by the matrix elmat
needs to be taken into account. Write therefore a double for-loop in which

2



• the outermost loop indexed by i = 1, . . . , n traverses the elements;

• on each element ei the element matrix fei on the element ei is computed;

• the innermost loop indexed by j = 1, 2 traverse the nodes on ith element;

• the following statement is placed in the innermost loop

f(elmat(i, j)) = f(elmat(i, j)) + fei(j) . (8)

Assignment 12 Modify the first equation of the linear system S uu = f in such a way that the finite
element solution uh(x) satisfied the Dirichlet boundary conditions at x = 0. This can be accomplished by
modifying the first equation of the linear system in the following way. Modify the first row of the matrix S
by setting S(1, 1) = 1 and S(1, 2) = 0 and modify the first element of f by setting f(1) = 0.

Assignment 13 Run the assembly routines to get the matrix S and vector f for n = 100. Visualize the
matrix S using the command spy in matlab. Can you give an interpretation of the picture you obtain?

Assignment 14 Compute the finite element solution uh using uh = S\f in Matlab. Compare this solution
with the analytical solution found in the first assignment.

Elective Part

• change the analytical solution and recompute the finite element solution;

• compute the solution on a sequence of increasing finer meshes and verify how the error decreases. Use
to this end a set of uniform meshes with N elements and allow N to gradually increase by setting N
equal to 2, 4, 8, 16, 32, 64, . . .. Given a solution computed on a mesh, compute the error u(x)−uh(x)
on all of the mesh points and define the error norm to be largest component of the error vector in
absolute value. Plot the error norm as a function of N . Use a logarithmic scale for the error norm
axis. What do you observe? Can you explain the observed behavior;

• change the Neumann boundary condition to du
dx(x = 1) = α and solve the resulting problem numeri-

cally for different values of α;

• plot the error defined as u(x)− uh(x) as a function of x over Ω. Implement a non-uniform mesh and
try refine the mesh in areas in which the error is largest. Recompute the solution and verify whether
the error has decreased as expected;

• change the differential equation to be solved to

− d

dx

(
c(x)

du

dx

)
= g(x) for 0 < x < 1 (9)

where the diffusion coefficient is a non-constant function;

• implement second order Lagrangian elements;

3


