ATHENS Course Introduction to Finite Elements

Computer Assignment Day 3

Galerkin Finite Element Solution of a Heat Equation in One Dimension

In this assignment, we solve a heat equation in one spatial dimension. A new issue is the integration of the partial differential equation in time. We consider the following problem for u(x,t)

$$(P_1) \begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, & \text{for } (x,t) \in (0,1) \times (0,T), \\ \frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(1,t) = 0, & \text{for } t \in (0,T], \\ u(x,0) = \cos(\pi x) + 1, & \text{for } x \in (0,1). \end{cases}$$

$$(1)$$

Compulsory Theoretical Part

Assignment 1 Show that the analytic solution of the above heat problem (P_1) , including the initial and boundary conditions, is given by

$$u(x,t) = e^{-\pi^2 t} \cos(\pi x) + 1.$$

We suggest using pen and paper. Plot this solution as a function of x and t. You can use the meshgrid command in Matlab to generate this plot. Make sure to label the x and t axis in your plot.

To solve problem (P_1) by the use of the Galerkin finite element method, we have to formulate (P_1) in a weak or variational sense.

Assignment 2 Give the continuous weak formulation of problem (P_1) , in which the order of the spatial derivatives is minimized. Take the boundary conditions and initial condition into account in this weak formulation.

To obtain a finite element solution $u^h(x,t)$ that approximate the exact solution u(x,t), we divide the spatial interval (0,1) into n elements e_i such that $\bigcup_{i=1}^n e_i = (0,1)$. Each element is the interval $e_i = [x_i, x_{i+1}]$. We require that $x_1 = 0$ and $x_{n+1} = 1$. The finite element approximation can then be written as a linear combination of linear basis functions $\phi_j(x)$, for $j \in \{1, \ldots, n+1\}$ with time dependent coefficients, that is

$$u(x,t) = \sum_{j=1}^{n+1} c_j(t)\phi_j(x).$$
 (2)

The time evolution of the coefficients c is then given by the system of ordinary differential equations

$$Mc' + Sc = 0, (3)$$

where M and S represent the mass matrix and stiffness matrix respectively. These matrices are formed by an element-by-element procedure.

Assignment 3 Give an expression for the element 2×2 stiffness matrix S_{e_i} and the mass matrix M_{e_i} . Use the trapezoidal rule to approximate the integrals on e_i .

Compulsory Implementation Part

Assignment 4 Write a matlab routine, called GenerateMesh.m, that returns as output a vector of equidistant meshpoints x_i , $i \in \{1, ..., n+1\}$ (You may use the file that you created previously).

Further, we need to know which vertices belong to a certain element e_i . This is called the *topology* of the mesh.

Assignment 5 Write a routine, called GenerateTopology.m, that generates a two-dimensional array, called elmat, which contains the indices of the vertices of each element, that is

$$elmat(i,1) = i$$

$$elmat(i,2) = i+1$$
, $for i \in \{1,\ldots,n\}$ (4)

(You may use the file that you created previously).

Assignment 6 Show that for linear basis functions, the element mass and element stiffness matrices, on element i, are given by

$$M_{e_i} = \frac{x_{i+1} - x_i}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad S_{e_i} = \frac{1}{x_{i+1} - x_i} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$
 (5)

To obtain the global matrices S and M, we need to do an assembly procedure that performs a loop over all the elements.

Assignment 7 Write a matlab routine, called AssemblyStiffnessMatrix.m, that performs this operation, where S is initialized as a (sparse) zero n+1-by-n+1 matrix, and subsequently:

$$S(elmat(i,j), elmat(i,k)) = S(elmat(i,j), elmat(i,k)) + S_{e_i}(j,k),$$
for all elements $i \in \{1, ..., n\}$ and $j, k \in \{1, 2\}.$

$$(6)$$

Write a similar routine, called AssemblyMassMatrix.m, to get the global mass matrix.

Now, we are at the stage of solving the problem

$$Mu' + Su = 0$$
, supplied with initial conditions.

We will consider several time integration methods.

Assignment 8 Write a routine for the (explicit) forward Euler time integration of this problem. Integrate from t=0 to t=1, with an element size of h=0.1 and $\Delta t=0.001$. Repeat the simulations with $\Delta t=0.1$ and h=0.01. What do you observe? Explain your results.

Assignment 9 Change the routine in which the (implicit) backward Euler time integration. Repeat the simulations. Show plots of your solution and compare your result with the exact solution.

Assignment 10 Change the routine in which the trapezoidal (Crank-Nicholson) method is used. Repeat the simulations. Compare your solution with the exact solution.

Elective Part

- use the Matlab command ode45 to perform the time integration;
- implement second order Lagrangian elements in space;
- implement a non-zero forcing term;