
ET4375 Course Introduction to Finite Elements

One Dimensional Model of a Fault Current Limiter

The objective of this assignment is to implement a one-dimensional model of the fault current limiter.

Problem Definition

To build the one-dimensional model, we consider solving the Poisson equation on the computational domain
Ω = (−0.2 m, 0.2m) subdivided into the following four parts

Ω = Ωair ∪ Ωcore ∪ Ωcoil−up ∪ Ωcoil−down (1)

where Ωair, Ωcore, Ωcoil−up and Ωcoil−down denote the domain representing the air, ferromagnetic core,
coil with upward facing current and coil with downward facing current, respectively. These individual
subdomains are defined as follows

Ωair = (−0.2 m,−0.057 m) ∪ (−0.012 m, 0.012 m) ∪ (0.057 m, 0.2 m) (2)

Ωcore = (−0.037 m,−0.012 m) ∪ (0.012 m, 0.037 m) (3)

Ωcoil−up = (−0.057 m,−0.037 m) (4)

Ωcoil−down = (0.037 m, 0.057 m) . (5)

This geometry definition allows us to define the relative magnetic permeability µr(x) (dimensionless) and
the line current density g(x) (in A/m) as follows

µr(x) =

{
1000 if x ∈ Ωcore

1 if x ∈ Ωair ∪ Ωcoil−up ∪ Ωcoil−down
(6)

and

g(x) =


7 · 104A/m if x ∈ Ωcoil−up

−7 · 104A/m if x ∈ Ωcoil−down

0 if x ∈ Ωair ∪ Ωcore

(7)

The magnetic permeability is then defined as µ(x) = µ0µr(x) (in N/A2). The functions µr(x) and g(x) are
shown in Figure 1.

(a) Relative permeability µr(x) (b) Line current density g(x).

Figure 1: Definition of the relative magnetic permeability (left) and the line current density (right).

Our objective is then to solve the differential equation
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= g(x) for x ∈ Ω (8)
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supplied with the Dirichlet boundary conditions

u(x = −.2 m) = 0 and u(x = .2 m) = 0. (9)

The unknown function u(x) here represents the z-component of the magnetic vector potential. The boundary
conditions insulate the computational domain for the magnetic flux. The y-component of the magnetic flux
By and the magnetic field Hy can then be computed as

By =
d u

dx
and Hy = µBy , (10)

respectively.

Assignments

This part guides the student to the development of a finite element code for solving the above differential
equation supplied with boundary conditions by guiding in the construction of a mesh, the assembly of the
linear system on the mesh and solution of the linear system.

Assignment 1 Write a Matlab (or Python) routine, called GenerateMesh.m (or GenerateMesh.py), that
returns as output a vector of size n + 1 of grid points xi on Ω. Make sure that the point separating the
subdomains, i.e., the points {−0.057,−0.037,−0.02, 0.02, 0.037, 0.057} are mesh points. The mesh is
thus in general non-uniform.

Assignment 2 Write the routines SourceFct.m and Diffusion.m that given the coordinate x ∈ Ω return as
output the source function g(x) and magnetic permeability µ(x), respectively. For SourceFct.m for instance,
one can use, given a value for x as input, a logical expression of the form

value = amplitude ∗ (−0.057 ≤ x ≤ −0.037) + (−amplitude) ∗ (0.037 ≤ x ≤ 0.057) (11)

to compute the value as output of the SourceFct.m in x. As similar construction can be used for Diffusion.m.

Assignment 3 Write a routine, called GenerateTopology.m, that generates an n × 2 matrix called elmat
such that the ith row of elmat contains the indices of the left and right node of the ith element in the global
enumeration on mesh on Ω, that is

elmat(i, 1) = i for i = 1, . . . , n (12)

elmat(i, 2) = i+ 1

Assignment 4 Write a routine, called GenerateElementMatrix.m, that given the coordinates xi and xi+1

of the end points of element ei with midpoint xi+1/2 = (xi + xi+1)/2, generates the 2× 2 element matrix
Sei such that

Sei =
1

xi+1 − xi
1

µi+1/2

(
1 −1
−1 1

)
, (13)

where
µi+1/2 = µ(xi+1/2) . (14)

The diffusion coefficient is thus evaluated in the midpoint of the element ei.

Assignment 5 Write a routine, called GenerateElementVector.m, that given the coordinates xi and xi+1 of
the end point of element ei generates the 2× 1 element vector fei such that

fei =
xi+1 − xi

2

(
g(xi)
g(xi+1)

)
. (15)
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Assignment 6 Write a routine, called AssembleMatrix.m, that assembles the element matrices Sei on each
element into the global matrix (n + 1) × (n + 1) matrix S. To so by first initializing S to be an empty
(n + 1) × (n + 1) matrix and subsequently performing a loop over the elements. In this loop the element
matrices are generated and added to the global matrix. In this addition the connectivity of the mesh defined
by the matrix elmat needs to be taken into account. Write therefore a triple for-loop in which

• the outermost loop indexed by i = 1, . . . , n traverses the elements;

• on each element ei the element matrix Sei on the element ei is computed;

• the innermost two loops indexed by j, k = 1, 2 traverse the nodes on ith element;

• the following statement is placed in the innermost loop

S(elmat(i, j), elmat(i, k)) = S(elmat(i, j), elmat(i, k)) + Sei(j, k) . (16)

Assignment 7 Write a routine, called AssembleVector.m, that assembles the element vectors fei on each
element into the global matrix (n+ 1)× 1 vector f . To so by first initializing f to be an empty (n+ 1)× 1
vector and subsequently performing a loop over the elements. In this loop the element vectors are generated
and added to the global vector. In this addition the connectivity of the mesh defined by the matrix elmat
needs to be taken into account. Write therefore a double for-loop in which

• the outermost loop indexed by i = 1, . . . , n traverses the elements;

• on each element ei the element matrix fei on the element ei is computed;

• the innermost loop indexed by j = 1, 2 traverse the nodes on ith element;

• the following statement is placed in the innermost loop

f(elmat(i, j)) = f(elmat(i, j)) + fei(j) . (17)

Assignment 8 Modify the first and last equation of the linear system S uu = f in such a way that the
finite element solution uh(x) satisfied the Dirichlet boundary conditions at x = −0.02 m and x = 0.02 m.
This can be accomplished by modifying the first equation of the linear system in the following way. Modify
the first row of the matrix S by setting S(1, 1) = 1, S(1, 2) = 0, S(n+ 1, n) = 0 S(n+ 1, n+ 1) = 1 and
modify the first and last element of f by setting f(1) = 0 and f(n+ 1) = 0.

Assignment 9 Compute the finite element solution uh using uh = S\f in Matlab for various values of
the number of elements n.

Assignment 10 Compute and plot the derivative d uh(x)/dx of the finite element solution. Give a physical
interpretation of the picture you obtain. Obverse that the derivative is discontinuous in those points x in
which µ is discontinuous.

Assignment 11 Compute and plot the quantity (1/µ)d uh(x)/dx obtained from the the finite element
solution. Give a physical interpretation of the picture you obtain. Observe that the quantify considered in
continuous.
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