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Transport phenomena: Convection

Convection (alias advection) is the transport of a conserved
quantity of interest by a vector field, e.g., the velocity field.

Injection of tracer particles in a moving fluid.
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Transport phenomena: Diffusion

Diffusion is the transport of a conserved quantity from a region of
high concentration to a region of low concentration, e.g., due to
Brownian random molecular motion or heat conduction.

Transport of particles due to random molecular motion.

initial state intermediate state equilibrium state
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Examples of transport phenomena

Flow processes in our body (blood flow, drug delivery)

Heating and air conditioning in rooms, cars, aircrafts

Transport of pollutants in air (with turbulent effects)

wind direction

convection

turbulent
dispersion
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Governing equations

Transient convection-diffusion equation in conservative form

∂tu + ∂x(vu)−∂x(d∂xu) = f

with

transient term ∂tu = ∂tu(x , t)

velocity field v = v(x , t)

diffusion coefficient d = d(x) ≥ 0

load vector f = f (x , t)

Simplification for constant uniform diffusion coefficient d

∂tu + ∂x(vu)−d∂xxu = f
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Governing equations, cont’d

Application of the chain rule to the convective term yields

∂x(vu) = v(∂xu) + (∂xv)u

In case of a so-called divergence-free velocity field

divv = ∂xv
x + ∂yv

y + · · · = 0

∂xv = 0 ⇔ v = const in 1D

this leads to the non-conservative form

∂tu + v∂xu−d∂xxu = f
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Model problems

Time-dependent convection-diffusion problem

∂tu + ∂x(vu)−∂x(d∂xu) = f in [a, b]

is complemented by initial conditions at time t = 0

u = u0 in [a, b]

and boundary conditions at a = x and x = b:

Dirichlet bc’s: u = uD

Neumann bc’s: u′ = gN

Flux bc’s: (vu − d∂xu)′ = gF

Introduction into Finite Elements 7 / 31



Model problems, cont’d

Time-dependent convection problem (hyperbolic)

∂tu + ∂x(vu) = f in [a, b]

is complemented by initial conditions at time t = 0

u = u0 in [a, b]

and boundary conditions at x = a and/or x = b if and only if the
(normal) flow velocity is directed into the domain

Example: If v ≡ const > 0 (=̂ translation of u0 to the right) then
u(x = a) = uD is prescribed at the inflow boundary part at x = a
but no boundary condition is imposed at the outflow part at x = b.
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Steady convection-diffusion problem

Boundary value problem: Given v and d > 0 find u

s.t.


∂x(vu)−∂x(d∂xu) = f in [a, b]

u = ua at x = a
u = ub at x = b

Weak form: Find u ∈ S = {u ∈ H1 : u(a) = ua ∧ u(b) = ub}

s.t.

∫ b

a
w [∂x(vu)−∂x(d∂xu)] dx =

∫ b

a
wf dx

i.b.p⇔
∫ b

a
w∂x(vu) + ∂xw(d∂xu) dx − w(d∂xu)|ba︸ ︷︷ ︸

=0

=

∫ b

a
wf dx

for all w ∈W = {u ∈ H1 : w(a) = 0 ∧ w(b) = 0}

Introduction into Finite Elements 9 / 31



Steady convection-diffusion problem, cont’d

Boundary value problem: Given v and d > 0 find u

s.t.


∂x(vu)−∂x(d∂xu) = f in [a, b]

u = ua at x = a
u′ = gb at x = b

Weak form: Find u ∈ S = {u ∈ H1 : u(a) = ua}

s.t.

∫ b

a
w [∂x(vu)−∂x(d∂xu)] dx =

∫ b

a
wf dx

i.b.p.⇔
∫ b

a
w∂x(vu) + ∂xw(d∂xu) dx − w(b)︸ ︷︷ ︸

6=0

(dgb) =

∫ b

a
wf dx

for all w ∈W = {u ∈ H1 : w(a) = 0}
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Steady convection-diffusion problem, cont’d

Boundary value problem: Given v and d > 0 find u

s.t.


∂x(vu)−∂x(d∂xu) = f in [a, b]

u = ua at x = a
(vu − d∂xu)′ = gb at x = b

Weak form: Find u ∈ S = {u ∈ H1 : u(a) = ua}

s.t.

∫ b

a
w [∂x(vu)−∂x(d∂xu)] dx =

∫ b

a
wf dx

i.b.p.⇔
∫ b

a
−∂xw [vu−d∂xu] dx + w(b)︸ ︷︷ ︸

6=0

gb =

∫ b

a
wf dx

for all w ∈W = {u ∈ H1 : w(a) = 0}
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Galerkin finite element method

Generic weak form for the problem at hand

Find u ∈ S : a(u,w) = b(w) for all w ∈W

with non-symmetric bilinear form (i.e. a(u,w) 6= a(w , u))

a(u,w) =

∫ b

a
w∂x(vu) + ∂xw(d∂xu)dx

or a(u,w) =

∫ b

a
−∂xw(vu−d∂xu)dx

and linear form with or without boundary contributions

b(w) =

∫ b

a
wf + w(b)(dgb) dx or b(w) =

∫ b

a
wf dx − w(b)gb
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Galerkin finite element method, cont’d

Approximate trial and test spaces by finite approximations

uh =
N∑
j=1

ϕjuj ∈ Sh = span〈ϕ1, . . . , ϕN〉 ⊂ S

wh =
N∑
i=1

φiwi ∈Wh = span〈φ1, . . . , φN〉 ⊂W

and solve the discrete problem

Find uh ∈ Sh : a(uh,wh) = b(wh) for all wh ∈Wh
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Galerkin finite element method, cont’d

Assemble the system matrix A and the right-hand side vector b

A =

a(ϕ1, φ1) . . . a(ϕN , φ1)
...

. . .
...

a(ϕ1, φN) . . . a(ϕN , φN)

 b =

b(φ1)
...

b(φN)


and impose Dirichlet boundary conditions, e.g. u(x = a) = ua

A =

 1 . . . 0
...

. . .
...

a(ϕ1, φN) . . . a(ϕN , φN)

 b =

 ua
...

b(φN)


Solve the linear system Au = b for the vector of unknowns
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Numerical example

Boundary value problem: Given v and d > 0 find u

s.t.

{
v∂xu−d∂xxu = 1 in [0, 1]

u = 0 at x = 0 and x = 1

with known exact solution

uex(x) =
1

v

(
x − 1− eγx

1− eγ

)
where γ = v

d . If γ � 1 the
problem is termed convection-
dominated. Numerical meth-
ods have problems in resolving
the boundary layer at x = b. 0 0.2 0.4 0.6 0.8 1
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Numerical example, cont’d

Let ϕj = φj , j = 1, . . . ,N and choose linear finite elements

xjxj−1 xj+1x1

1

x

xN

ϕj+1ϕj−1 ϕj

xjxj−1 xj+1x1

x

xN

∂xϕj+1∂xϕj−1 ∂xϕj
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Numerical example, cont’d

Resulting system matrix and right-hand side vector

A =



1 0 . . . . . . . . . . . . 0

− v
2−

d
h

2d
h

v
2−

d
h

− v
2−

d
h

2d
h

v
2−

d
h

. . .
. . .

. . .

− v
2−

d
h

2d
h

v
2−

d
h

0 . . . . . . . . . . . . 0 1


b =

(
0 h . . . . . . . . . . . . h 0

)T
Galerkin FEM for an internal node i (=̂ central FD scheme)

v
ui+1 − ui−1

2h
−d ui+1 − 2ui + ui−1

h2
= 1
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Numerical example, cont’d

FEM yields good approximations for γ = 2.
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Numerical example, cont’d

FEM yields poor approximations for γ = 20 unless h is small.
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Numerical example, cont’d

FEM yields oscillatory approximation for γ = 100 even for small h.
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Analysis of the discrete problem

Observation: oscillatory behavior depends on the size of γ and on
the mesh width h. A useful measure is the mesh Péclet number

Pe =
γh

2
=

vh

2d

Galerkin FEM for an internal node i in terms of Pe reads

v
ui+1 − ui−1

2h
−d ui+1 − 2ui + ui−1

h2
=1

⇔
(

v

2h
− d

h2

)
ui+1 +

2d

h2
ui −

(
v

2h
+

d

h2

)
ui−1 =1

⇔ v

2h

(
Pe− 1

Pe
ui+1 +

2

Pe
ui −

Pe + 1

Pe
ui−1

)
=1
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Analysis of the discrete problem, cont’d

Aim: to construct an alternative three-point formula

α1ui−1 + α2ui + α3ui+1 = 1

which reproduces the exact solution at the mesh nodes

ui−1 =
1

v

(
xi − h − 1− eγxi e−2Pe

1− eγ

)

ui =
1

v

(
xi −

1− eγxi

1− eγ

)

ui+1 =
1

v

(
xi + h − 1− eγxi e2Pe

1− eγ

)
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Analysis of the discrete problem, cont’d

Substitute expressions for ui and ui±1 into three-point formula and
derive sufficient conditions for the unknown coefficients

(α1 + α2 + α3)︸ ︷︷ ︸
=0

xi −(α1 − α3)︸ ︷︷ ︸
v/h

h−(α1e
−2Pe + α2 + α3e

2Pe)︸ ︷︷ ︸
=0

1− eγxi

1− eγ
= v

Solution of the 3× 3 system for the coefficients α1, α2, α3 yields

α1 = −v 1 + cothPe

2h
, α2 = v

cothPe

h
, α3 = v

1− cothPe

2h
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Analysis of the discrete problem, cont’d

Conclusion: given γ = v/d and h the exact solution at the nodes
is reproduced by the alternative discrete method

v

2h
((1− cothPe)ui+1 + (2cothPe)ui − (1 + cothPe)ui−1) =1

⇔ v
ui+1 − ui−1

2h
−(d + d̂)

ui+1 − 2ui + ui−1

h2
=1

with stabilizing artificial/numerical diffusion

d̂ = β
vh

2
= βd Pe, β = cothPe− 1

Pe
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Conclusions on Galerkin FEM

Galerkin FEM tends to produce oscillations if Pe� 1 but it
can be stabilized by adding artificial diffusion, e.g.

v
ui+1 − ui−1

2h
−(d + d̂)

ui+1 − 2ui + ui−1

h2
= 1

Galerkin FEM without stabilization
produces nodally exact solution to
the modified equation

v∂xu − d

(
1− β sinh2

Pe

)
∂xxu = 1

with negative net diffusion for Pe > 1
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Systematic approach towards stabilization for FEM

Given the residual of the original PDE, e.g.,

R[u] = ∂x(vu)−∂x(d∂xu)− f

an element-wise contribution is added to the standard weak form∫ b

a
wR[u] dx +

N−1∑
k=1

∫ xk+1

xk

τkP[w ]R[u] dx = 0

⇔
N−1∑
k=1

∫ xk+1

xk

(w + τkP[w ])R[u] dx = 0 ∀w ∈W

This stabilization is consistent, that is, all terms on the left-hand
side vanish if u equals the exact solution since R[uex] ≡ 0
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Making it work in practice

Stabilization parameter τk may be defined per element

τk = β
hk
|v |
, hk = xk+1 − xk

Streamline-Upwind Petrov-Galerkin (SUPG) method

P[w ] = v(∂xw)

Galerkin Least-Squares (GLS)/Subgrid Scale (SGS) method

P[w ] = v(∂xw)∓ ∂x(d∂xw)± (∂xv)w

Since i.b.p is not performed for the stabilizing term the
second-order derivative vanishes for linear finite elements
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Working out the (bi-)linear forms

Definition of bilinear and linear forms with SUPG-stabilization, e.g.,

a(u,w) =
N−1∑
k=1

ak(u,w), b(w) = w(b)(dgb) +
N−1∑
k=1

bk(w)

with element-wise counterparts defined as follows

ak(u,w) =

∫ xk+1

xk

w∂x(vu) + ∂xw(d∂xu)

+ τk(v∂xw)(∂x(vu)+∂x(d∂xu)) dx

bk(w) =

∫ xk+1

xk

wf + τk(v∂xw)f dx
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Shock capturing methods

Observation: linear stabilization methods such as SUPG, GLS,
and SGS may fail ti suppress oscillations in the vicinity of steep
gradients or discontinuities (e.g., shock waves)

Remedy: replace P[w ] by a nonlinear stabilization operator∫ b

a
wR[u] dx +

N−1∑
k=1

∫ xk+1

xk

τk P̂[u,w ]R[u] dx = 0

where

P̂[u,w ] =

{
v̂∂xw if |u| 6= 0
0 otherwise

and v̂ =

(
R[u]

|∂xu|2

)
∂xu
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Extension to time-dependent problems

Redefine the residual of the PDE to include the transient term

R[u] = ∂tu+v∂xu−d∂xxu − f

Redefine the stabilization operator

SUPG: P[w ] = v∂xw

GLS/SGS: P[w ] = ± w
∆t + v(∂xw)∓ ∂x(d∂xw)± (∂xv)w

and work out the (bi-)linear forms so that the weak problem reads∫ b

a
w
du

dt
dx + a(u,w) = b(w) for all w ∈W
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Extension to time-dependent problems, cont’d

Discretization in space by FEM yields the semi-discrete problem

M
du

dt
+ Au = b

Application of the θ-scheme yields the fully discrete problem

M
un+1 − un

∆t
+ θAun+1 + (1− θ)Aun = θbn+1 + (1− θ)bn

θ = 0: explicit forward Euler method

θ = 1
2 : implicit Crank-Nicolson method

θ = 1: implicit backward Euler method
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