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Vision

Unified computational design-through-analysis framework for interactive rapid
prototyping and thorough offline post-analysis of engineering designs

Ingredients
• physics-informed operator learning for prototyping
• isogeometric analysis for thorough post-analysis

Design principle: stay in the IGA paradigm [Hughes et al., 2005] to seamlessly blend
between learning-based prototyping and compute-based post-analysis (even locally)

Tech preview
https://visualization.surf.nl/iganet

2 / 27

https://visualization.surf.nl/iganet


IGA in a nutshell

Integration of finite element analysis into NURBS-based computer-aided design

Benefits
• no tedious and time consuming meshing
• no geometric approximation error
• better accuracy per degree of freedom
• higher continuity of basis functions

Challenges
• ‘dirty’ CAD geometries are not (directly) analysis suitable
• matrix assembly (in Galerkin-type IGA) is more costly than in FEA
• efficient h-, p- and k-robust iterative solvers are more involved
• continuity preserving multi-patch coupling is non-trivial
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IGA variants

Galerkin-type IGA [Hughes et al., 2005]
• weak form w/ integration by parts → spline test/trial functions → Ahuh = fh

• spline spaces: B-/HB-/THB-splines, T-/U-splines, LR-splines, ...
• multi-patch: Nitsche, D-Patch, Almost-C1, Analysis-suitable G1, Approximate C1, ...

Collocation-type IGA [Auricchio et al., 2010]
• weak form w/o integration by parts → δ test/spline trial functions → Ahuh = fh

• collocation points: Demko, Greville, superconvergent [Anitescu et al., 2015], clustered
SC points [Montardini et al., 2017], least-squares collocation [Lin et al., 2020]

Variational collocation-type IGA [Gomez and Lorenzis, 2016]
• IGA-C at Cauchy-Galerkin points = IGA-G
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Comparison between Galerkin and collocation IGA

solution IGA-G abs. error IGA-C abs. error

Results by Mengyun Wang
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Comparison between Greville and clustered superconvergent points
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Collocation IGA

PDE problem

Lu = f in Ω

Bu = g on Γ

Weighted residual form
∫

Ω
ϕΩ(Lu − f) dx +

∫
Γ

ϕΓ(Bu − g) ds = 0

Let

ϕΩ =
k∑

i=1
ci δΩ(x − xi) (xi ∈ Ω) and ϕΓ =

n∑
i=k+1

ci δΓ(x − xi) (xi ∈ Γ)

then
k∑

i=1
ci (Lu(xi) − f(xi)) +

n∑
i=1+k

ci (Bu(xi) − g(xi)) = 0
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Collocation IGA cont’d

As the coefficients ci are arbitrary we obtain

Lu(xi) = f(xi) i = 1, . . . , k

Bu(xi) = g(xi) i = k + 1, . . . , n

• basis functions bi need to be at least Cℓ such that L and B can be applied
• regular system matrix requires that #collocation points = #basis functions

and all collocation points must be pairwise distinct
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Least-squares collocation IGA

Idea: When #collocation points (m) > #unknowns (n) then the system matrix is
over-determined and the system can be solved in least-squares manner

min
k∑

i=1
∥Lu(xi) − f(xi)∥2 +

m∑
i=k+1

∥Bu(xi) − g(xi)∥2

[Lin et al., 2020] derives rigoros conditions under which least-squares collocation IGA
(IGA-L) is consistent and convergent. In essence, there must be at least one collocation
point per element (e.g., Greville points) but we can use more to increase the resolution.
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Comparison between collocation and least-squares collocation IGA
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Least-squares collocation IGA revisited

Replacing u, f , and g by their approximations uh, fh, and gh we obtain

min
k∑

i=1
∥

n∑
j=1

Lbj(xi)uj − bj(xi)fj∥2 +
m∑

i=k+1
∥

n∑
j=1

Bbj(xi)uj − bj(xi)gj∥2

• B-spline basis functions b̂j(ξ) are defined in the reference space Ω̂ = (0, 1)d and are
mapped into physical space Ω through the push-forward mapping

xh(ξ) =
n∑

i=1
b̂j(ξ)xj ,

• problem is fully parameterized through fj ’s, gj ’s, and xj ’s relative to a fixed basis b̂j
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IgANet architecture
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Training and evaluation

Training
For [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond, [x1, . . . , xn] ∈ Sgeo do

For a batch of collocation points ξi ∈ [0, 1]2 (e.g., Greville points + more) do

Train IgANet ([f1, . . . , fn], [g1, . . . , gn], [x1, . . . , xn]) 7→ [u1, . . . , un]
EndFor

EndFor

Evaluation
For [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond, [x1, . . . , xn] ∈ Sgeo do

Evaluate IgANet ([f1, . . . , fn], [g1, . . . , gn], [x1, . . . , xn]) 7→ [u1, . . . , un]

Use basis representation uh(x) =
n∑

j=1
bj(x)uj for all further purposes

EndFor
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Test case: Poisson’s equation on a variable annulus
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Validation results
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Validation results
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Automatic placement of interior control points

Harmonic mapping: x : Ω̂ → Ω by solving

∇ · ∇ξ(x, y) = 0
∇ · ∇η(x, y) = 0

such that x−1|Γ = Γ̂

• x−1 exists and is unique if the curvature of Ω̂ is non-positive and the boundary Γ̂ when
considered with respect to the metric on Ω is convex [Eells and Lemaire, 1978]

• x−1 is one-to-one by the Radó-Kneser-Choquet theorem [Duren and Hengartner, 1997]
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Automatic placement of interior control points cont’d

Weak form in H2 [Hinz et al., 2020]∫
Ω̂ bL̃x dΩ̂ = 0∫
Ω̂ bL̃y dΩ̂ = 0

such that x−1|Γ = Γ̂

where
L̃ =

(
g22

∂2

∂ξ2 − 2g12
∂2

∂ξ∂η
+ g11

∂2

∂η2

)
/ (g11 + g22)

New weak form in H1 [Ji et al., 2023]∫
Ω̂ ∇xb · ∇xξ dΩ̂ = 0∫
Ω̂ ∇xb · ∇xη dΩ̂ = 0

such that x−1|Γ = Γ̂
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Comparison between H1 and H2 approaches

original: improved:

Results by Ye Ji
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Planar results

Results by Ye Ji
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Volumetric results

Results by Ye Ji
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Solution of nonlinear systems by preconditioned Anderson acceleration

0 10 20 30 40 50 60 70 80 90 100
Function Evaluations

10-5

10-4

10-3

10-2

10-1

R
es

id
ua

l

Newton
AA(5)
AA(5,AA(5))
AAadp(5,AA(5))
AA(5)-DiagBlockJacobian
AA(5)-FullJacobian
AA(5)-DiagJacobian

function evaluations

0 1 2 3 4 5 6
Time (sec.)

10-5

10-4

10-3

10-2

10-1

R
es

id
ua

l

Newton
AA(5)
AA(5,AA(5))
AAadp(5,AA(5))
AA(5)-DiagBlockJacobian
AA(5)-FullJacobian
AA(5)-DiagJacobian

wallclock time

But: 1sec is not interactive anymore! Maybe IGA-L + operator learning will help?
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Happy

birthday

Tom!
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