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Quantum Computing at DIAM 

§ Bachelor projects
§ M. v.d. Lans: Multi-search Groover, Q-add/sub
§ M. Looman: Q-add with simulated quantum errors
§ R. Nugteren: Q-mul for Noisy Intermediate-Scale Quantum (NISQ)
§ S. v.d. Linde: Posit arithmetics
§ O. Ubbes: Quantum Linear Solver Algorithm (QLSA)
§ T. Driebergen: Posit arithmetics for QC
§ M. Schalkers (internship at TNO): LibKet, unitary decomposition

§ Collaborations and support:
§ TNO, TU Delft Quantum & Computer Engineering, SURFsara, 4TU.CEE
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Outlook

§ Basic Concepts of quantum computing
§ Quantum bits, registers, gates, and algorithms

§ Quantum-accelerated design optimization
§ A conceptual framework

§ Practical aspects of quantum computing
§ SDKs and good practices

§ Conclusion
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QUANTUM BITS
Basic concepts of quantum computing
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From bits to quantum bits

§ Classical bits § Quantum bits (qubits)
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From bits to quantum bits

§ Classical bits § Quantum bits (qubits)
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The Bloch sphere

§ Quantum state

| ⟩𝜓 = cos
𝜃
2 ⋅
| ⟩0 + 𝑒!" ⋅ sin

𝜃
2 ⋅
| ⟩1

§ Basis states | ⟩0 and | ⟩1

§ Latitude 𝜃 ∈ 0, 𝜋

§ Longitude 𝜑 ∈ [ )0,2𝜋
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The Bloch sphere, cont’d

§ 𝜃 = 0 implies

| ⟩𝜓 = 1 ⋅ | ⟩0 + 𝑒!" ⋅ 0 ⋅ | ⟩1 = | ⟩0

§ 𝜃 = 𝜋 implies

| ⟩𝜓 = 0 ⋅ | ⟩0 + 𝑒!" ⋅ 1 ⋅ | ⟩1 = | ⟩1

§ Poles represent classical bits
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The Bloch sphere, cont’d

§ 𝜃 = #
$

and 𝜑 = 0 implies

| ⟩𝜓 =
1
2
⋅ | ⟩0 +

𝑒!%

2
⋅ | ⟩1 =

| ⟩0 +| ⟩1
2

§ 𝜃 = #
$

and 𝜑 = π implies

| ⟩𝜓 =
1
2
⋅ | ⟩0 +

𝑒!#

2
⋅ | ⟩1 =

| ⟩0 −| ⟩1
2
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What to do with this added value?

§ Classical bits § Quantum bits (qubits)
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Intermezzo: Schrödinger’s cat
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Intermezzo: Schrödinger’s cat, cont’d

§ Before opening the box § After opening the box

OR
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Intermezzo: Schrödinger’s cat, cont’d

§ Repeating the experiment many times 50% of the cats are dead, 50% alive
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From Bloch’s sphere to probabilities

§ Coefficients of the basis expansion

| ⟩𝜓 = cos
𝜃
2 ⋅
| ⟩0 + 𝑒!" ⋅ sin

𝜃
2 ⋅
| ⟩1

represent the probability amplitude that the quantum state | ⟩𝜓 collapses to 
either of the two basis states | ⟩0 or | ⟩1 upon measurement since

cos
𝜃
2

$

+ 𝑒!" ⋅ sin
𝜃
2

$

= 1

for all latitudes 𝜃 ∈ 0, 𝜋 and longitudes 𝜑 ∈ [ )0,2𝜋
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Life of a qubit

§ Initialization into pure state | ⟩0
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Life of a qubit

§ Initialization into pure state | ⟩0
§ Travelling on Bloch’s sphere
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Life of a qubit

§ Initialization into pure state | ⟩0
§ Travelling on Bloch’s sphere
§ Collapsing to either | ⟩0 or | ⟩1
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Life of a qubit

§ Initialization into pure state | ⟩0
§ Travelling on Bloch’s sphere
§ Collapsing to either | ⟩0 or | ⟩1

§ How to describe the travelling?
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QUANTUM GATES
Basic concepts of quantum computing
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Detour to linear algebra

§ Standard basis for a single-qubit state

𝐸 = | ⟩0 , | ⟩1 𝑤𝑖𝑡ℎ 1
0 ≔ | ⟩0 , 0

1 ≔ | ⟩1

§ Probability amplitudes (= the coefficients | ⟩𝜓 of w.r.t. to basis 𝐸)

𝛼% ≔ cos
𝜃
2 , 𝛼& ≔ 𝑒!" ⋅ sin

𝜃
2

§ Coordinate representation

| ⟩𝜓 = 𝛼%
1
0 + 𝛼&

0
1 → | ⟩𝜓 '=

𝛼%
𝛼&
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Detour to linear algebra, cont’d

§ Initialization into pure state

| ⟩𝜓 = 1 ⋅ 1
0 + 0 ⋅ 0

1 = 1
0
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Detour to linear algebra, cont’d

§ Initialization into pure state

| ⟩𝜓 = 1 ⋅ 1
0 + 0 ⋅ 0

1 = 1
0

§ Multiplication with 𝑋

𝑋 ⋅ | ⟩𝜓 ≔ 0 1
1 0 ⋅ 1

0 = 0
1
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Detour to linear algebra, cont’d

§ Initialization into pure state

| ⟩𝜓 = 1 ⋅ 1
0 + 0 ⋅ 0

1 = 1
0

§ Multiplication with 𝑋

𝑋 ⋅ | ⟩𝜓 ≔ 0 1
1 0 ⋅ 1

0 = 0
1

§ Multiplication with 𝑋 once more

𝑋 ⋅ 𝑋 ⋅ | ⟩𝜓 ≔ 0 1
1 0 ⋅ 0

1 = 1
0
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Detour to linear algebra, cont’d

§ Initialization into pure state

| ⟩𝜓 = 1 ⋅ 1
0 + 0 ⋅ 0

1 = 1
0

§ Multiplication with another matrix

𝐻 ⋅ | ⟩𝜓 ≔
1
2
1 1
1 −1

1
0 =

1
2
1
1
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Detour to linear algebra, cont’d

§ Initialization into pure state

| ⟩𝜓 = 1 ⋅ 1
0 + 0 ⋅ 0

1 = 1
0

§ Multiplication with another matrix

𝐻 ⋅ | ⟩𝜓 ≔
1
2
1 1
1 −1

1
0 =

1
2
1
1

§ Double application of matrix 𝐻 gives

𝐻$ ⋅ | ⟩𝜓 ≔
1
2
1 1
1 −1

1
2
1
1 = 1

0
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Et voilà, our first quantum algorithm

𝐻 ⋅ 𝑋 ⋅ 𝐻 ⋅ 𝑋 ⋅ 1
0 = 0

−1 = 0 ⋅ | ⟩0 − 1 ⋅ | ⟩1

§ Quantum circuit

27

| ⟩0 H H = 1

Probability −1 $ = 1
to measure the 1 state



1 version 1.0
2
3 qubits 1
4 prep_z q[0]
5 X q[0]
6 H q[0]
7 X q[0]
8 H q[0]
9 measure q[0]
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Detour to linear algebra, again

§ Quantum gates can be expressed as unitary matrices

§ 𝑈 ⋅ 𝑈(= 𝐼 = 𝑈( ⋅ 𝑈 (quantum gates are reversible)
§ ∀𝑥 ∈ ℂ), 𝑈𝑥 = 𝑥 (length is preserved)
§ ∀𝑥, 𝑦 ∈ ℂ), 𝑈𝑥, 𝑈𝑦 = 𝑥, 𝑦 (inner product is preserved)

§ Quantum algorithms can be expressed as chains of mat-vec multiplications

| ⟩𝜓*+, = 𝑈- ⋅ 𝑈-.& ⋅ … ⋅ 𝑈$ ⋅ 𝑈& ⋅ | ⟩𝜓!)

| ⟩1!

| ⟩1!!

= 𝑈 ⋅ | ⟩𝜓!)
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Reversible computing

§ Quantum algorithms can be easily reversed (in theory!)

𝑈-
( ⋅ | ⟩𝜓*+, = 𝑈-

( ⋅ 𝑈-

2

⋅ 𝑈-.& ⋅ … ⋅ 𝑈$⋅ 𝑈& ⋅ | ⟩𝜓!)

𝑈-.&
( ⋅ 𝑈-

( ⋅ | ⟩𝜓*+, = 𝑈-.&
( ⋅ 𝑈-.&

2

⋅ 𝑈-.$ ⋅ … ⋅ 𝑈$⋅ 𝑈& ⋅ | ⟩𝜓!)

𝑈( ⋅ | ⟩𝜓*+, = 𝑈&
( ⋅ 𝑈$

( ⋅ … ⋅ 𝑈-.&
( ⋅ 𝑈-

( ⋅ | ⟩𝜓*+, = | ⟩𝜓!)

§ Many ‘nice’ mathematical properties 
§ unitary group 𝑈(𝑛)
§ unitary decomposition,…
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QUANTUM REGISTERS
Basic concepts of quantum computing
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Detour to linear algebra, yet again

§ Tensor-product construction of single-qubit bases

| ⟩0 ⊗ | ⟩0 , | ⟩0 ⊗ | ⟩1 , | ⟩1 ⊗ | ⟩0 , | ⟩1 ⊗ | ⟩1

§ Unique labelling of multi-qubit state

| ⟩00 = | ⟩0 ⊗ | ⟩0 = 1
0 ⊗ 1

0 =
1
0
0
0

| ⟩01 = | ⟩0 ⊗ | ⟩1 = 1
0 ⊗ 0

1 =
0
1
0
0

…
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Multiple qubits

§ Multi-qubit state

| ⟩𝜓&𝜓$ = 𝛼%| ⟩00 + 𝛼&| ⟩01 + 𝛼$| ⟩10 + 𝛼3| ⟩11

= 𝛼%

1
0
0
0

+ 𝛼&

0
1
0
0

+ 𝛼$

0
0
1
0

+ 𝛼3

0
0
1
0

§ such that

𝛼% $ + 𝛼& $ + 𝛼$ $ + 𝛼3 $ = 1
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Table 1.1. An overview of the single- and multiple qubit gates described in this section. Along
with the matrix representation, also the circuit representation of each gate is given.

Name Circuit Representation Matrix Representation

Pauli-X


0 1
1 0

�

Pauli-Y


0 �i
i 0

�

Pauli-Z


1 0
0 �1

�

Hadamard 1
p
2


1 1
1 �1

�

S


1 0
0 i

�

T


1 0
0 ei⇡/4

�

CNOT

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775

C(Z)

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

3

775

SWAP

2

664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

775

To↵oli

2

6666666664

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

3

7777777775
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Multiple qubits, cont’d

§ Controlled-NOT gate

CNOT&$| ⟩𝜓&𝜓$ =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

𝛼%
𝛼&
𝛼$
𝛼3

=

𝛼%
𝛼&
𝛼3
𝛼$

§ Outcome

𝛼%| ⟩00 + 𝛼&| ⟩01 + 𝛼$| ⟩10 + 𝛼3| ⟩11

↦ 𝛼%| ⟩00 + 𝛼&| ⟩01 + 𝛼3| ⟩10 + 𝛼$| ⟩11

= 𝛼%| ⟩00 + 𝛼&| ⟩01 + 𝛼$| ⟩11 + 𝛼3| ⟩10
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Zoo of quantum gates
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Basic concepts of quantum computing

36



Example: 3-bit password

Password:
____

Password:
____

Classical: Quantum:

Quantum 
Program



Bell state 

§ 50:50 chance to measure    | ⟩0? or | ⟩1?

§ But then we know the value of the second qubit without measurement since

| ⟩01

| ⟩10

38

| ⟩𝛽%% =
1
2
⋅ | ⟩00 + 0 ⋅ | ⟩01 + 0 ⋅ | ⟩10 +

1
2
⋅ | ⟩11



Bell state 
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| ⟩𝛽%% =
1
2
⋅ | ⟩00 + 0 ⋅ | ⟩01 + 0 ⋅ | ⟩10 +

1
2
⋅ | ⟩11



Intermezzo: How difficult can it be to add two integers?
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A first quantum algorithm: 1+2=3

Cuccaro et al.: A new quantum ripple-carry addition circuit (2008)

Reversible Adder for Two 3-bit Numbers

|0〉
|a1〉
|b1〉
|0〉
|a2〉
|b2〉
|0〉
|a3〉
|b3〉
|0〉

|0〉
|a1〉
|(a+b)1〉
|0〉
|a2〉
|(a+b)2〉
|0〉
|a3〉
|(a+b)3〉
|(a+b)4〉

C
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R
Y

C
A
R
R
Y

C
A
R
R
Y

!
"

S
U
M

C
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R
R
Y

S
U
M

C
A
R
R
Y

S
U
M

The construction of an n-bit reversible adder is a straightforward extension
of the 3-bit adder. Note that an additional n qubits were needed as temporary
carry bits. These qubits are reversibly set back to zero after they are used so
they may be used for later computation. Therefore, even though the input and
output may be stored using only 2n qubits, 3n qubits must be used for the
computation.

3 The Quantum Fourier Transform

For simplification of notation, let e(t) = e2πit. Let a ∈ Z2n , the additive group
of integers modulo 2n. Let anan−1 · · · a2a1 be the binary representation for a,
where a = an2n−1 + an−12n−2 + · · ·+ a221 + a120. Then |a〉 = |an〉 ⊗ |an−1〉 ⊗
· · ·⊗ |a2〉 ⊗ |a1〉. The quantum Fourier transform (QFT) of |a〉 is the mapping

|a〉 F2n−→
1

2
n

2

2
n
−1∑

k=0

e(ak/2n)|k〉. (1)

It turns out that (1) is unentangled[3]. Let

|φk(a)〉 =
1√
2
(|0〉 + e(a/2k)|1〉). (2)

Then (1) factors as

2
n
−1

∑

k=0

e(ak/2n)|k〉 = |φn(a)〉 ⊗ · · ·⊗ |φ2(a)〉 ⊗ |φ1(a)〉.

It is also helpful to notice that e(a/2k) = e(0.ak . . . a1), where (0.ak . . . a1)
is a binary fraction. Therefore, each |φk(a)〉 contains the lower k binary digits
of a. Consider the following two gate operations:

4

1 Introduction

Traditionally, addition algorithms designed for a quantum computer have mir-
rored their classical counterparts[2, 6, 9], with the necessary extensions for re-
versible computation. Faster quantum addition algorithms implement carry-
save techniques[5, 10], but still follow a classical model. However, the ideal
addition algorithm for a quantum computer may not be similar to its classical
counterpart. This paper presents a new paradigm for addition on a quantum
computer.

The addition method used takes two values a and b, computes F (a) the
quantum Fourier transform (QFT) of a and then uses b to evolve F (a) into
F (a + b). The inverse quantum Fourier transform may then be applied and the
sum recovered. Since there is a cost of computing the transform before and after
the sum, as much computation as possible should be performed in the transform
range before leaving.

This paper assumes a rudimentary background in the ideas of quantum
computation. For an introduction to quantum computation the reader is en-
couraged to read Art Pittenger’s, ”An Introduction to Quantum Computing
Algorithms”[7] or Andrew Steane’s, ”Quantum Computing”[8]. For further
study, an excellent searchable pre-print server is maintained by Los Alamos
laboratories. Papers on quantum computing/cryptography may be found at
http://xxx.lanl.gov/quant-ph.

2 Classical Addition

A number of papers have been published concerning the implementation of
addition on a quantum computer [2, 5, 7, 9, 10]. All of the implementations use
at least 3n qubits to add two n-bit numbers. The method presented here follows
the outline in [7]. The adder is composed of two basic unitary computational
units.

Carry Gate

C
A
R
R
Y

=

!
! !
! " !
" "

Sum Gate

S
U
M

=

!
!
" "

A carry gate with the dark bar on the left side is considered to be a normal
carry gate executed in reverse order. The following diagram shows how these
two unitary gates are combined to form a reversible adder.
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as well be interchanged according to the changes in the order of the rotation gates.

[H,Rx] = HRx �RxH
1
p
2

✓
1 e2⇡i/2x

1 �e2⇡i/2x

◆
�

1
p
2

✓
1 1

e2⇡i/2x �e2⇡i/2x

◆
6= 02,2 (4.7)

[Rx, Ry] = RxRy �RyRx

✓
1 0
0 e2⇡i/2(x+y)

◆
�

✓
1 0
0 e2⇡i/2(x+y)

◆
= 02,2 (4.8)

With this in mind, the quantum circuit from figure 4.1 could be tidied up. This results
in the quantum circuit in figure 4.7 that adds two arbitrary n-qubit registers.

Figure 4.7. The tidied up quantum circuit that adds |b1b2 · · · bni to |a1a2 · · · ani.

The short-hand notation for quantum addition is given in figure 4.8.

Figure 4.8. The addition gate that adds b to a.

To illustrate the quantum addition routine outlined in this section, consider a = 6 and
b = 3. Then n = 4 in order to satisfy a, b < 2n�1, so no overflow can occur. a = 6

62

Finally, equation (3.41) is the result of the QFT.

| i =
1

p
N

⇣
|0i+ e2⇡i[0.qn] |1i

⌘⇣
|0i+ e2⇡i[0.qn�1qn] |1i

⌘
· · ·

⇣
|0i+ e2⇡i[0.q1q2···qn] |1i

⌘

(3.41)

Using this general circuit, the circuit that applies the QFT to some quantum register
can be obtained. For example, the QFT on three qubit is performed by the circuit in
figure 3.6.

Figure 3.6. The quantum circuit that performs the QFT on three qubits.

If the QFT is used in a more extensive circuit, not all gates will be included in the
schematic circuit. Else, the schematic will quickly become cluttered. Because the QFT is
such a general routine, it will be represented in a circuit as in figure 3.7.

Figure 3.7. The representation for the QFT performed on all six qubits.

3.4 Implementation of the Inverse Quantum Fourier Transform

Similarly to the classical case, in order to transform a specific quantum register back
from the Fourier domain an inverse QFT is needed. Because the QFT is (as all quantum
gates) a unitary gate, the inverse QFT is obtained by reversing the order of all gates that
constitute the QFT and taking their hermitian conjugate. It is easily seen that H† = H

54

and SWAP† = SWAP. On the other hand,

R†

' =


1 0
0 e2⇡i/2

'

�†
=


1 0
0 e�2⇡i/2'

�
:= R�' (3.42)

The inverse QFT circuit is thus obtained by reversing the order of the gates and replacing
R' by R�'. For example, the inverse circuit for the three qubit QFT from figure 3.6 is
given in figure 3.8.

Figure 3.8. The quantum circuit that performs the inverse QFT on three qubits.

Just like the QFT, in a more extensive circuit the inverse QFT is represented as shown
in figure 3.9.

Figure 3.9. The representation for the inverse QFT on all six qubits.

3.4.1 Time Complexity

The quantum circuit to Fourier transform or inverse Fourier transform a register of n
qubits uses a Hadamard gate and n� 1 controlled phase shift gates on the first qubit, a
Hadamard and n � 2 controlled phase shift gates on the second qubit and so on, and
only a Hadamard gate on the last qubit. The swaps in the end require a maximum of n

2
SWAP gates (if n is odd, the precise number is n�1

2 ). Therefore, the total number of
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1 = 012

2 = 102

1 = 012

3 = 112
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32 6. ANALYSIS

In the tables 3 and 4, the error rate is given in the upper row and the input size N is given in
the left column. In every cell, there are two values: the left value is the probability of the correct
answer; the right value is the biggest probability of every value except the correct value. These
values are imported, because if the first value is smaller than the second one, the algorithm
is unable to preform any calculation corresponding to the given input size N and error rate.
Those cells are marked red and the others are marked green. Notice that the values of some
cells are relatively close to each other. For example look at table 3 with input size N = 8

and error rate 10�
5
2 . The probability that the correct value is measured is: 0.00834128 and

the biggest probability a specific wrong answer is measured is 0.00823629. Someone could say
that with enough measurements you can distinguish the correct from the wrong answer because
0.00834128 > 0.00823629. Notice that we have two problems. Since the values are very close
together you would need a lot of measurements before you could say with a given certainty what
the correct answer is. In theory this is not a limit so it should be possible. The second and more
serious problem is that another 10000 runs may give slightly di↵erent values, because we only
use a finite amount of runs and we are trying to approximate the true value1. It is possible that
for the true values the opposite is true. For this reason, this cell is marked red instead of green.
Notice we have some white spots in the tables. These cells are not interesting since the algorithm
is already not able to give the right answer for a lower input size N . For unity reasons we have
chosen to only leave out the same values in both the tables.

0,1 10�
3
2 0,01 10�

5
2

1 0.27045 0.3793 0.50545 0.2752 0.78965 0.1233 0.92285 0.0463
2 0.134061 0.221523 0.165182 0.209176 0.451353 0.134284 0.762621 0.0570876
3 0.0601436 0.112097 0.0683512 0.116162 0.191802 0.105916 0.540766 0.0754021
4 0.0336509 0.0611537 0.0351125 0.0589036 0.064375 0.0645881 0.306778 0.0802711
5 0.0224336 0.031892 0.154869 0.0575671
6 0.00798384 0.0176539 0.0654961 0.033179
7 0.00398747 0.0076473 0.0252142 0.0167067
8 0.00254026 0.00363275 0.00834128 0.00823629

Table 3. Results: Normal circuit

0,1 10�
3
2 0,01 10�

5
2

1 0.29475 0.3695 0.54555 0.27185 0.8158 0.11735 0.93645 0.04195
2 0.110416 0.230068 0.239152 0.203304 0.569495 0.115691 0.837026 0.0445888
3 0.0581316 0.114572 0.096711 0.122477 0.341537 0.102147 0.697436 0.0509187
4 0.0259028 0.0583002 0.0382769 0.0672328 0.183066 0.0726129 0.543162 0.0579935
5 0.0839273 0.0450361 0.407117 0.0574072
6 0.0412412 0.0270095 0.283642 0.049151
7 0.0177059 0.0131818 0.191996 0.0404665
8 0.00647699 0.00675828 0.116269 0.0290022

Table 4. Results: Parallelization of the circuit

1Note that their is not really a true value since we are using random noise, our true value is an average of all
possible conditions

Looman: Implementation and Analysis of an Algorithm on Positive Integer
Addition for Quantum Computing (2018)
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1000 QX simulator runs with depolarizing noise error model

Standard circuit: prob. correct (left), largest prob. wrong answer (right)



Towards practical QC: 1+2 ≅ 3 

Looman: Implementation and Analysis of an Algorithm on Positive Integer
Addition for Quantum Computing (2018)

32 6. ANALYSIS

In the tables 3 and 4, the error rate is given in the upper row and the input size N is given in
the left column. In every cell, there are two values: the left value is the probability of the correct
answer; the right value is the biggest probability of every value except the correct value. These
values are imported, because if the first value is smaller than the second one, the algorithm
is unable to preform any calculation corresponding to the given input size N and error rate.
Those cells are marked red and the others are marked green. Notice that the values of some
cells are relatively close to each other. For example look at table 3 with input size N = 8

and error rate 10�
5
2 . The probability that the correct value is measured is: 0.00834128 and

the biggest probability a specific wrong answer is measured is 0.00823629. Someone could say
that with enough measurements you can distinguish the correct from the wrong answer because
0.00834128 > 0.00823629. Notice that we have two problems. Since the values are very close
together you would need a lot of measurements before you could say with a given certainty what
the correct answer is. In theory this is not a limit so it should be possible. The second and more
serious problem is that another 10000 runs may give slightly di↵erent values, because we only
use a finite amount of runs and we are trying to approximate the true value1. It is possible that
for the true values the opposite is true. For this reason, this cell is marked red instead of green.
Notice we have some white spots in the tables. These cells are not interesting since the algorithm
is already not able to give the right answer for a lower input size N . For unity reasons we have
chosen to only leave out the same values in both the tables.

0,1 10�
3
2 0,01 10�

5
2

1 0.27045 0.3793 0.50545 0.2752 0.78965 0.1233 0.92285 0.0463
2 0.134061 0.221523 0.165182 0.209176 0.451353 0.134284 0.762621 0.0570876
3 0.0601436 0.112097 0.0683512 0.116162 0.191802 0.105916 0.540766 0.0754021
4 0.0336509 0.0611537 0.0351125 0.0589036 0.064375 0.0645881 0.306778 0.0802711
5 0.0224336 0.031892 0.154869 0.0575671
6 0.00798384 0.0176539 0.0654961 0.033179
7 0.00398747 0.0076473 0.0252142 0.0167067
8 0.00254026 0.00363275 0.00834128 0.00823629

Table 3. Results: Normal circuit

0,1 10�
3
2 0,01 10�

5
2

1 0.29475 0.3695 0.54555 0.27185 0.8158 0.11735 0.93645 0.04195
2 0.110416 0.230068 0.239152 0.203304 0.569495 0.115691 0.837026 0.0445888
3 0.0581316 0.114572 0.096711 0.122477 0.341537 0.102147 0.697436 0.0509187
4 0.0259028 0.0583002 0.0382769 0.0672328 0.183066 0.0726129 0.543162 0.0579935
5 0.0839273 0.0450361 0.407117 0.0574072
6 0.0412412 0.0270095 0.283642 0.049151
7 0.0177059 0.0131818 0.191996 0.0404665
8 0.00647699 0.00675828 0.116269 0.0290022

Table 4. Results: Parallelization of the circuit

1Note that their is not really a true value since we are using random noise, our true value is an average of all
possible conditions
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Optimized circuit: prob. correct (left), largest prob. wrong answer (right)

1000 QX simulator runs with depolarizing noise error model



CONCEPTUAL FRAMEWORK
Quantum-accelerated design optimization
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Airfoil design
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Image gallery at nasa.gov

airspacemag.com

CFInotebook.net



Simulation-based design and analysis cycle

48

ANSYS Calculations 

Using several tutorials and Whe pUofeVVoU¶V inVWUXcWion, one of Whe VWXdenWV conducted analysis of 
Whe NACA 2412¶V aeUod\namicV on ANSYS¶V FlXid FloZ (FlXenW) VolYeU. RaWheU Whan UoWaWing 
Whe Zind YelociW\¶V angle of aWWack, a foUmXla ZaV deUiYed Wo UoWaWe Whe baVe cooUdinaWeV of Whe 
NACA 2412 by a certain angle ϴ. This method ensured the most consistent mesh across all 
angleV WhaW ZeUe WeVWed. AfWeU impoUWing Whe aiUfoil¶V UoWaWed cooUdinaWeV, a meVh ZaV geneUaWed 
that would strategically measure the aerodynamics of the airfoil at key regions. Across all angle 
measurements, three mesh qualities² course, refined, and fine² were tested to determine which 
degree of mesh quality produced the most accurate result. After generating the mesh, Fluent 
simulations with a constant wind velocity V� = 30 m/s were run until convergence or 150000 
iterations. The numerical coefficients of lift and drag were recorded alongside images of the 
velocity vectors (Figure 3) and pressure contours (Figure 4). The wind velocity produced the low 
Re\nold¶V NXmbeU of Re = 426,248 for all three mesh qualities across ten angles of attack 
between 0 to 16 degrees, resulting in thirty full simulations.  

 

  Figure 3: Velocity Vectors (ϴ = 0°)           Figure 4: Pressure Contours (ϴ = 0°) 

In addition, the angle of attack ϴ = 10° was specifically tested across 5 levels of increasing mesh 
quality. The summary of the tests is displayed in Figure 5 below. ThiV gUaph¶V X YalXeV of 1, 2, 
and 3 correspond to the coarse, refined, and fine mesh qualities, respectively, which all 
simulations were run with. Only the 10° angle of attack was tested at the mesh qualities 4 and 5, 
deemed ultra-fine e[WUemel\ fine, Wo inYeVWigaWe hoZ ANSYS¶V UeVXlWV YaU\ aV meVh TXaliW\ 
increases.  

 

Figure 8: Coefficient of Lift vs. Angle of Attack 

Assessment 

The honors students acquired new knowledge and skills by creating equipment and testing 
procedures to provide learning opportunities for future engineering students. Instead of learning 
information from separate classes where practical applications are often rare, the students were 
given a hands-on project that required knowledge previously unknown to them. With their 
professor¶s instructions and examples, the students gradually and effectively developed the 
necessary knowledge for implementing their research. This new knowledge includes deeper 
understanding of SOLIDWORKS, ANSYS, MATLAB, and machining techniques, giving the 
students real-world skills that will be used in their future engineering endeavors. 

A particular example of the dynamic learning environment created by this project may be seen in 
the expansion of the students¶ knowledge of SOLIDWORKS. The honors students had already 
learned the basics of the CAD program through a required course, but they did not have all of the 
knowledge they needed to design the airfoil and the multi-manometer. The nature of creating 
these two models produced several difficulties that the university¶s course did not cover. For 
example, the students searched for several days for a method to input the exact coordinates of the 
holes along the airfoil¶s surface. Through trial and error tests, along with the guidance of the 
professor, the team was able to find a solution that provided the desired result in the 
SOLIDWORKS model. This gradual and experimental form of learning vastly expanded the 
students¶ knowledge of SOLIDWORKS, giving them confidence to complete the rest of the 
challenges in the project¶s design process. Additionally, the knowledge gained from the 
experimental nature of this learning process was more effectively retained than in a common 
classroom setting.  
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Matsson et al. Aerodynamic Performance of the NACA 2412 Airfoil at Low Reynolds Number, 2016 ASEE Annual Conference & Exposition



1. Design 𝐷 𝒑

§ Design parameters

𝒑 = 𝑝&, … , 𝑝&$

§ Admissible design space

𝒮 = 𝑝&4!), 𝑝&456 ×⋯× 𝑝&$4!), 𝑝&$456
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• 4th control point distribution: 
 

 
Figure 6 

The B-spline curve is defined by 14 
control points with different degrees 
of freedom. 
 
In order to increase the accuracy at 
the leading edge, two control points 
are used to define this region. These 
points are free to move in both x 
and y directions. 
 
The distribution is refined at the 
leading and trailing edges. 
 
Number of design variables = 14 

 
 
 

2.2.1.  Geometrical flexibility 
 
A simple test is performed with MATLAB to test the flexibility of the distributions described 
above. In principle, any physically realistic shape should be achievable to allow design from 
an initial arbitrary shape. Hence, the aim of the test is to try reproduce different existing 
airfoil profiles using a given distribution and evaluate the maximal geometrical difference 
between the two profiles.  
 
The geometrical difference between the two curves is evaluated vertically at 100 different 
points not equally spaced along the chord length. Indeed the density of evaluation points is 
higher at the leading and trailing edges. The test is directed by the MATLAB function 
lsqnonlin developed to solve nonlinear least-squares (nonlinear data-fitting) problems. The 
input parameters are the coordinates of the control points (according to their degrees of 
freedom) and the output is the vector of geometrical differences computed at each evaluation 
point. The function minimizes the difference between the two curves by gradually moving the 
control points (see figure below). 

 
Figure 7: Test of the validation of the control point distribution 

Mauclère, Automatic 2D Airfoil Generation, Evaluation and Optimisation using MATLAB and XFOIL, Master thesis, 2009



2. Simulation

§ Mathematical model

ℳ 𝑈;𝐷 = 0

§ Solution for one particular design

𝑈 = 𝑈(𝐷 𝒑 )

50

Linné FLOW Centre and SeRC, KTH, Sweden 



3. Analysis

§ Cost functional

𝒞(𝑈;𝐷)

51

Lift

Drag



Operation conditions

52



Abstract design optimization

§ Problem: Find a set of admissible design parameters 𝒑 such that solution
𝑈(𝐷 𝒑 ) to the mathematical model ℳ(𝑈,𝐷 𝒑 ) computed on the design
𝐷(𝒑) optimizes the cost functional 𝒞 𝑈, 𝐷(𝒑) for fixed operation condition
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a b s t r a c t 
The development of practical quantum computers that can be used to solve real-world problems is in full 
swing driven by the ambitious expectation that quantum supremacy will be able to outperform classical 
super-computers. Like with any emerging compute technology, it needs early adopters in the scientific 
computing community to identify problems of practical interest that are suitable as proof-of-concept ap- 
plications and to revise existing solution strategies and develop new ones that exploit the capabilities of 
the novel compute hardware. 

In this article we describe a conceptual framework for reducing the computational complexity 
of simulation-driven automated design optimization processes, which are nowadays widely used in 
computer-aided product development, by exploiting quantum supremacy. Our approach is based on the 
assumption that quantum computers will become part of hybrid high-performance computing platforms 
and can then be used as application-specific accelerator devices. 

© 2019 Elsevier B.V. All rights reserved. 
1. Introduction 

The era of accelerated computing started in the mid-20 0 0s, 
when CPU clock speeds approached the 4 GHz barrier and a fur- 
ther increase beyond this barrier would have required enormous 
effort s f or cooling the processor to prevent spurious malfunc- 
tioning and even permanent hardware damage from overheating. 
All major chip vendors followed the paradigm shift from chasing 
ultimate single-core performance towards developing parallel 
high-performance computing (HPC) technologies and flooded the 
market with multi-core CPUs and many-core accelerator cards like 
programmable GPUs and dedicated co-processor devices. 
1.1. Accelerated computing 

The key idea of accelerated computing is to offload computa- 
tionally expensive tasks from the host, a classical multi-core and 
possibly multi-socket CPU-based computer, to the attached accel- 
erator devices, which altogether form the so-called compute node. 
Modern HPC systems consist of hundreds and thousands of com- 
pute nodes, which are interconnected by high-speed networks. 

∗ Corresponding author. 
E-mail address: m.moller@tudelft.nl (M. Möller). 
URL: http://www.ta.twi.tudelft.nl/nw/users/matthias/ (M. Möller) 

In classical accelerated computing, the role of the host com- 
puter is threefold: Firstly, tasks that do not benefit from the 
compute capabilities of the accelerator devices such as in- and out- 
put of data from and to the global filesystem and intrinsically se- 
quential (parts of) algorithms are executed by the host. Secondly, 
the host is responsible for orchestrating the interplay of acceler- 
ator devices among each other and with the CPU and for man- 
aging the communication between the distributed compute nodes. 
Finally, since modern CPUs have up to 20–32 cores with integrated 
vector-processing units, heterogeneous HPC systems also use the 
massive compute power of the host to perform actual computa- 
tions. 

Most of today’s many-core accelerators are designed for exe- 
cuting parallelizable and/or vectorizable instructions of SIMD-type 
(single instruction multiple data) exceptionally fast. Consider, for 
instance, the multiplication of an m × n matrix with a column vec- 
tor of length n . Each matrix row gives rise to a separate dot prod- 
uct, i.e. an accumulated multiply-add operation that can be carried 
out in a parallel and, ideally, vectorized loop over all rows even 
on multiple devices with distributed memory architecture. This so- 
called divide-and-conquer approach is a common building block in 
classical HPC applications and it is supported by most program- 
ming models like OpenMP [1] and MPI [2] . 

Recently, application-specific accelerator technologies are 
emerging, which offer extra functionality that is not available 
in commodity hardware. Consider, for instance, Google’s tensor 
processing units [3] , which is an application-specific integrated 

https://doi.org/10.1016/j.micpro.2019.02.009 
0141-9331/© 2019 Elsevier B.V. All rights reserved. 
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Academic model problem

§ Problem: Minimize the difference

𝑑7 = 𝑢7 − 𝑢7∗

between the solution 𝑢7 and a 
given profile 𝑢7∗ w.r.t. the costs

𝒞 𝑑7 , 𝑝 =𝑑79𝑀𝑑7

such that 𝑑7 solves the system

𝐴7𝑑7 = 𝑓7 − 𝐴7𝑢7∗
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Quantum acceleration

§ Best classical solution algorithm

𝒪 𝑁𝑠𝜅 log 1/𝜖

§ Quantum Linear Solver Algorithm

§ HHL:          𝒪 log 𝑁 𝑠$𝜅$/𝜖

§ Ambainis:  𝒪 log 𝑁 𝑠$𝜅/𝜖
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Quantum acceleration

§ Best classical solution algorithm

𝒪 𝑁𝑠𝜅 log 1/𝜖

§ Quadratic form optimizer

𝒪 (#design parameters)$

§ Quantum Linear Solver Algorithm

§ HHL:          𝒪 log 𝑁 𝑠$𝜅$/𝜖

§ Ambainis:  𝒪 log 𝑁 𝑠$𝜅/𝜖

§ Jordan’s QOPT

𝒪 (#design parameters)&

56



Quantum speed-up
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Quantum speed-up (?)
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Quantum speed-up (?)
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SDKS AND GOOD PRACTICES
Practical aspects of quantum computing
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How accelerated computing works
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How accelerated computing works
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Accelerator Host



How accelerated computing works
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HostAccelerator



How accelerated computing works
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HostAccelerator



How accelerated computing works
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Speed-up of the computation

HostAccelerator



How accelerated computing works
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Speed-up of the computation

HostAccelerator



How accelerated computing works
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Speed-up of the computation

HostAccelerator Q-Accelerator



It feels like GPU-computing in the early 2000

§ Quantum languages
§ AQASM: Atos QML
§ cQASM: QuTech QX, TNO QI
§ OpenQASM: IBM, Google
§ Quil: Rigetti
§ …

§ Quantum SDKs
§ pyAqasm
§ pyQuil
§ Circ
§ OpenQL/QX
§ ProjectQ
§ QisKit
§ Quantum Development Kit
§ Quirk
§ …
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It feels like GPU-computing in the early 2000

69
LaRose: Overview and Comparison of Gate Level Quantum Software Platforms, ArXiv, 2019

Algorithm pyQuil Qiskit ProjectQ QDK
Random Bit
Generator

3(T) 3(T) 3(T) 3(T)

Teleportation 3(T) 3(T) 3(T) 3(T)
Swap Test 3(T)
Deutsch-Jozsa 3(T) 3(T) 3(T)
Grover’s
Algorithm

3(T) 3(T) 3(T) 3(B)

Quantum
Fourier
Transform

3(T) 3(T) 3(B) 3(B)

Shor’s
Algorithm

3(T) 3(D)

Bernstein
Vazirani

3(T) 3(T) 3(T)

Phase
Estimation

3(T) 3(T) 3(B)

Optimization/
QAOA

3(T) 3(T)

Simon’s
Algorithm

3(T) 3(T)

Variational
Quantum
Eigensolver

3(T) 3(T) 3(P)

Amplitude
Amplification

3(T) 3(B)

Quantum
Walks

3(T)

Ising Solver 3(T) 3(T)
Quantum Gra-
dient Descent

3(T)

Five Qubit
Code

3(B)

Repetition
Code

3(T)

Steane Code 3(B)
Draper Adder 3(T) 3(D)
Beauregard
Adder

3(T) 3(D)

Arithmetic 3(B) 3(D)
Fermion
Transforms

3(T) 3(T) 3(P)

Trotter
Simulation

3(D)

Electronic
Structure
(FCI, MP2,
HF, etc.)

3(P)

Process
Tomography

3(T) 3(T) 3(D)

Vaidman De-
tection Test

3(T)

Figure 4: A table showing the library support for each of the
four software platforms. By “library support,” we mean a tuto-
rial notebook or program (T), an example in the documenta-
tion (D), a built-in function (B) to the language, or a supported
plug-in library (P).

times, gate error rates, and the topology/connectivity
of the qubits. Ideally, one would have infinite coher-
ence times, zero gate application time, zero error rates,
and all-to-all connectivity. In the following paragraphs
we document some of the parameters of IBMQX5 and
Agave, two of the largest publicly available quantum
computers. For full details, please see the online docu-
mentation of each platform.

IBMQX5 IBMQX5 is a superconducting qubit quan-
tum computer with nearest neighbor connectivity be-
tween its 16 qubits (see Figure 3). The minimum coher-
ence (T2) time is 31±5 microseconds on qubit 0 and the
maximum is 89 ± 17 microseconds on qubit 15. A sin-
gle qubit gate takes 80 nanoseconds to implement plus
a 10 nanosecond bu↵er after each pulse. CNOT gates
take about two to four times as long, ranging from 170
nanoseconds for cx q[6], q[7] to 348 nanoseconds for cx

q[3], q[14]. Single qubit gate fidelity is very good at over
99.5% fidelity for all qubits (fidelity = 1 - error). Multi-
qubit fidelity is above 94.9% for all qubit pairs in the
topology. The largest readout error is rather large at
about 12.4% with the average being around 6%. These
statistics were obtained from [32].
Lastly, we mention that to use any available quantum

computer by IBM, the user submits his/her job into a
queue, which determines when the job gets run. This
is in contrast to using Agave by Rigetti, in which users
have to request access first via an online form, then
schedule a time to get access to the device to run jobs.

Agave The Agave quantum computer consists of 8
superconducting transmon qubits with fixed capacitive
coupling and connectivity shown in Figure 2. The min-
imum coherence (T2) time is 9.2 microseconds on qubit
1 and the maximum is 15.52 microseconds on qubit 2.
The time to implement a Controlled-Z gate is between
118 and 195 nanoseconds. Single qubit gate fidelity is at
an average of 96.2% (again, fidelity = 1 - error) and min-
imum of 93.2%. Multi-qubit gate fidelity is on average
87% for all qubit-qubit pairs in the topology. Readout
errors are unknown. These statistics can be found in
the online documentation or through pyQuil.

3.3 Quantum Compilers
Platforms that provide connectivity to real quantum
devices must necessarily have a means of translating a
given circuit into operations the computer can under-
stand. This process is known as compilation, or more
verbosely quantum circuit compilation/quantum com-
pilation. Each computer has a basis set of gates and a
given connectivity—it is the compiler’s job to take in

Accepted in Quantum 2019-03-15, click title to verify 12



| ⟩LIB : Kwantum expression template LIBrary

§ Header-only C++14 library

§ Open-source release by summer

§ Auto-generation of quantum code 
from C++ expression templates

§ Bi-directional communication 
between host and quantum device

§ Made for quantum-accelerated 
scientific computing
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| ⟩LIB : Kwantum expression template LIBrary

auto expr = measure(h(x(h(x(init())))));

Qdata<1, OpenQASMv2> backend;
json result = expr(backend).execute();

QInt<3> a(1);
QInt<3> b(2);
a += b;
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Conclusion

§ Quantum computers have huge potential as special-purpose accelerators
to speed-up the solution of (mathematical) problems ‘exponentially’

§ Convergence towards common quantum programming language and 
development toolchain needed to make end-users interested (if at all!)

§ To fully exploit the power of quantum computers don’t mimic classical 
algorithms but redesign quantum algorithms from scratch based on 
quantum-mechanical principles like superposition and entanglement

Thank you very much!
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