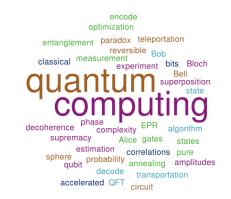

A conceptual framework for structural design and optimization using quantum computing

Matthias Möller Assistant Professor, Numerical Analysis Delft University of Technology Delft Institute of Applied Mathematics

Quantum Computing at TU Delft

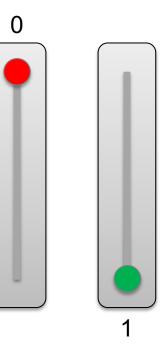

Delft Institute of Applied Mathematics

Quantum Computing at DIAM

- Bachelor projects
 - M. v.d. Lans: Multi-search Groover, Q-add/sub
 - M. Looman: Q-add with simulated quantum errors
 - R. Nugteren: Q-mul for Noisy Intermediate-Scale Quantum (NISQ)
 - S. v.d. Linde: Posit arithmetics
 - O. Ubbes: Quantum Linear Solver Algorithm (QLSA)
 - T. Driebergen: Posit arithmetics for QC
 - M. Schalkers (internship at TNO): LibKet, unitary decomposition
- Collaborations and support:
 - TNO, TU Delft Quantum & Computer Engineering, SURFsara, 4TU.CEE

Outlook

- Basic Concepts of quantum computing
 - Quantum bits, registers, gates, and algorithms
- Quantum-accelerated design optimization
 - A conceptual framework
- Practical aspects of quantum computing
 - SDKs and good practices
- Conclusion



QUANTUM BITS

Basic concepts of quantum computing

From bits to quantum bits

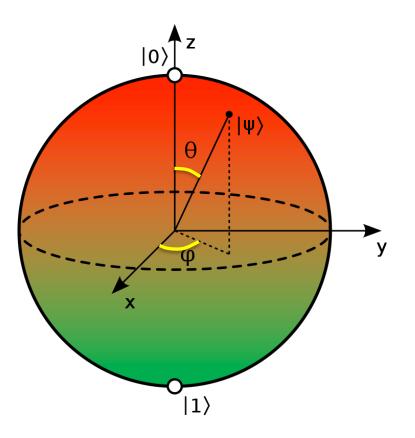
Classical bits

Quantum bits (qubits)

From bits to quantum bits

Classical bits

Quantum bits (qubits)



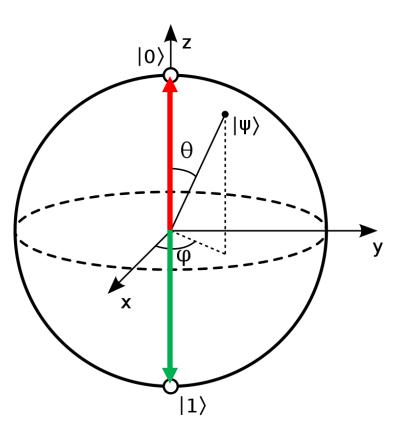
The Bloch sphere

Quantum state

$$|\psi\rangle = \cos\frac{\theta}{2} \cdot |0\rangle + e^{i\varphi} \cdot \sin\frac{\theta}{2} \cdot |1\rangle$$

- Basis states |0> and |1>
- Latitude $\theta \in [0, \pi]$
- Longitude $\varphi \in [0, 2\pi)$

The Bloch sphere, cont'd

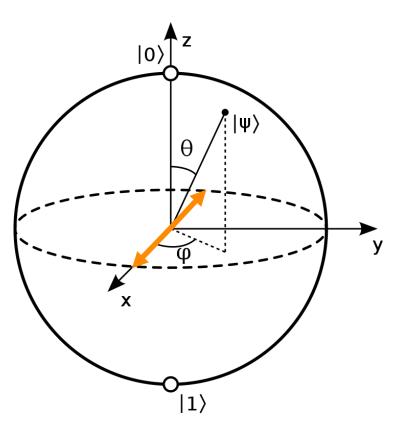

• $\theta = 0$ implies

 $|\psi\rangle = 1 \cdot |0\rangle + e^{i\varphi} \cdot 0 \cdot |1\rangle = |0\rangle$

• $\theta = \pi$ implies

 $|\psi\rangle = 0 \cdot |0\rangle + e^{i\varphi} \cdot 1 \cdot |1\rangle = |1\rangle$

Poles represent classical bits

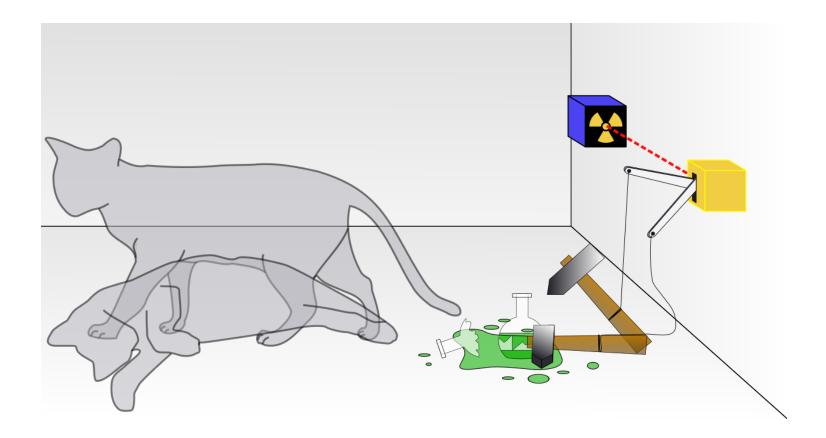

The Bloch sphere, cont'd

• $\theta = \frac{\pi}{2}$ and $\varphi = 0$ implies

$$|\psi\rangle = \frac{1}{\sqrt{2}} \cdot |0\rangle + \frac{e^{i0}}{\sqrt{2}} \cdot |1\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

• $\theta = \frac{\pi}{2}$ and $\varphi = \pi$ implies

$$|\psi\rangle = \frac{1}{\sqrt{2}} \cdot |0\rangle + \frac{e^{i\pi}}{\sqrt{2}} \cdot |1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$


What to do with this added value?

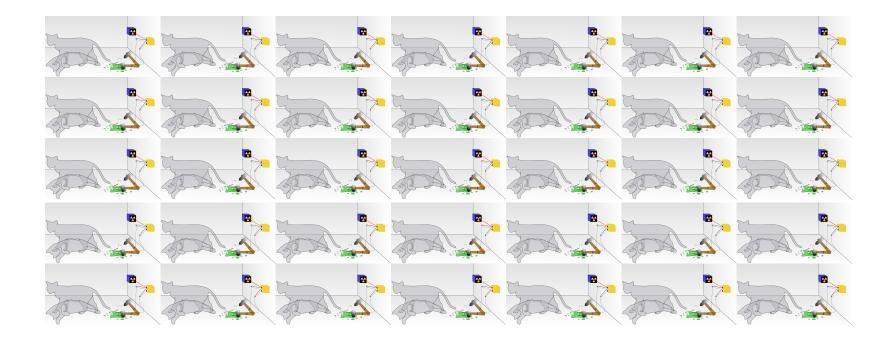
Classical bits

Quantum bits (qubits)

Intermezzo: Schrödinger's cat

Intermezzo: Schrödinger's cat, cont'd

Before opening the box

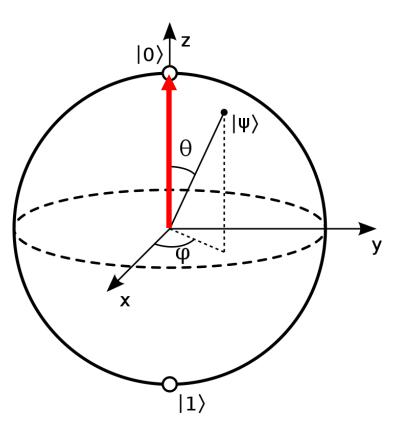

• After opening the box

Intermezzo: Schrödinger's cat, cont'd

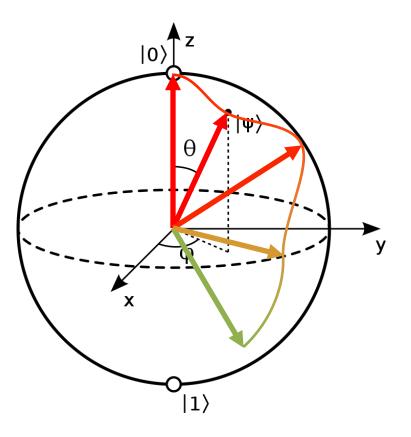
• Repeating the experiment many times 50% of the cats are dead, 50% alive

From Bloch's sphere to probabilities

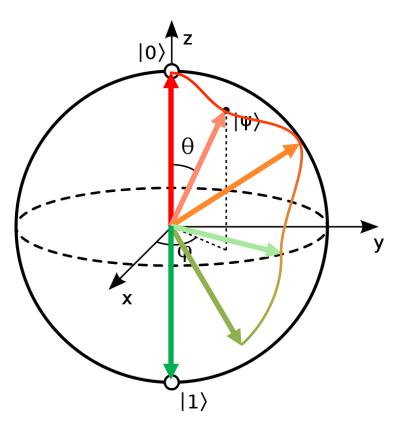
Coefficients of the basis expansion

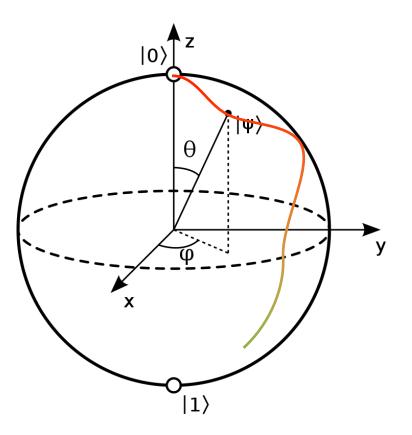

$$|\psi\rangle = \cos\frac{\theta}{2} \cdot |0\rangle + e^{i\varphi} \cdot \sin\frac{\theta}{2} \cdot |1\rangle$$

represent the probability amplitude that the quantum state $|\psi\rangle$ collapses to either of the two basis states $|0\rangle$ or $|1\rangle$ upon measurement since


$$\left|\cos\frac{\theta}{2}\right|^2 + \left|e^{i\varphi} \cdot \sin\frac{\theta}{2}\right|^2 = 1$$

for all latitudes $\theta \in [0, \pi]$ and longitudes $\varphi \in [0, 2\pi)$


Initialization into pure state |0>


- Initialization into pure state |0>
- Travelling on Bloch's sphere

- Initialization into pure state |0>
- Travelling on Bloch's sphere
- Collapsing to either |0> or |1>

- Initialization into pure state |0>
- Travelling on Bloch's sphere
- Collapsing to either |0> or |1>
- How to describe the travelling?

QUANTUM GATES

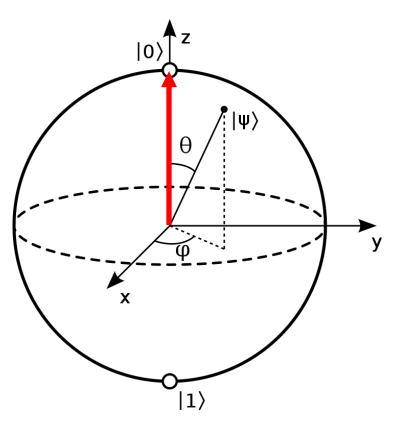
Basic concepts of quantum computing

Detour to linear algebra

Standard basis for a single-qubit state

$$E = (|0\rangle, |1\rangle)$$
 with $\begin{pmatrix} 1\\0 \end{pmatrix} \coloneqq |0\rangle, \begin{pmatrix} 0\\1 \end{pmatrix} \coloneqq |1\rangle$

• Probability amplitudes (= the coefficients $|\psi\rangle$ of w.r.t. to basis *E*)

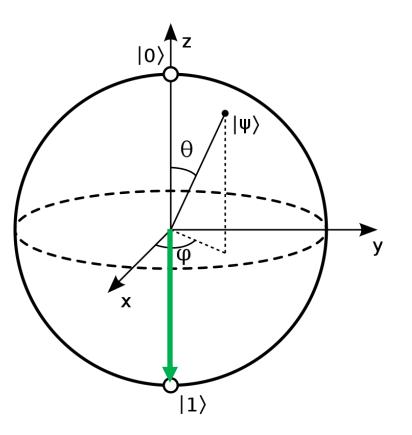

$$\alpha_0 \coloneqq \cos\frac{\theta}{2}, \qquad \alpha_1 \coloneqq e^{i\varphi} \cdot \sin\frac{\theta}{2}$$

Coordinate representation

$$|\psi\rangle = \alpha_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \alpha_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow [|\psi\rangle]_E = \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}$$

Initialization into pure state

$$|\psi\rangle = 1 \cdot {\binom{1}{0}} + 0 \cdot {\binom{0}{1}} = {\binom{1}{0}}$$



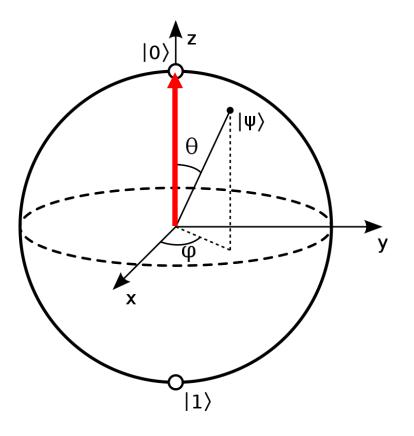
Initialization into pure state

$$|\psi\rangle = 1 \cdot {\binom{1}{0}} + 0 \cdot {\binom{0}{1}} = {\binom{1}{0}}$$

• Multiplication with *X*

 $X \cdot |\psi\rangle \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Initialization into pure state

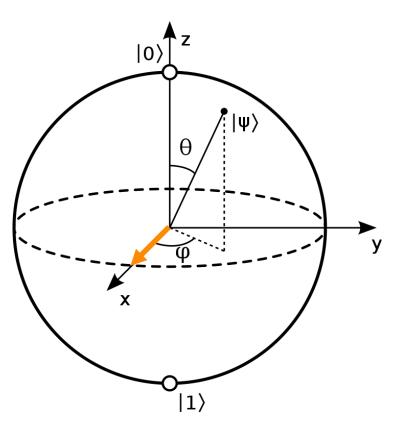

$$|\psi\rangle = 1 \cdot {\binom{1}{0}} + 0 \cdot {\binom{0}{1}} = {\binom{1}{0}}$$

• Multiplication with *X*

 $X \cdot |\psi\rangle \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Multiplication with X once more

$$X \cdot X \cdot |\psi\rangle \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$



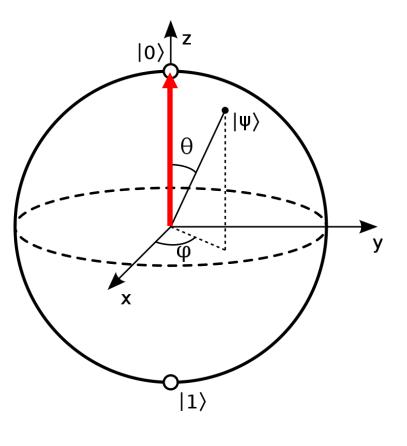
Initialization into pure state

$$|\psi\rangle = 1 \cdot {\binom{1}{0}} + 0 \cdot {\binom{0}{1}} = {\binom{1}{0}}$$

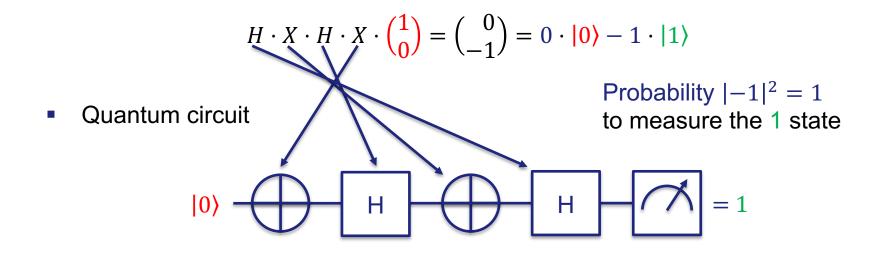
Multiplication with another matrix

$$H \cdot |\psi\rangle \coloneqq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Initialization into pure state


$$|\psi\rangle = 1 \cdot {\binom{1}{0}} + 0 \cdot {\binom{0}{1}} = {\binom{1}{0}}$$

Multiplication with another matrix


$$H \cdot |\psi\rangle \coloneqq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Double application of matrix *H* gives

$$H^2 \cdot |\psi\rangle \coloneqq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Et voilà, our first quantum algorithm

- 1 version 1.0
- 2
- 3 qubits 1
- 4 prep_z q[0]
- 5 X q[0]
- 6 H q[0]
- 7 X q[0]
- 8 H q[0]
- 9 measure q[0]

Detour to linear algebra, again

- Quantum gates can be expressed as unitary matrices
 - $U \cdot U^{\dagger} = I = U^{\dagger} \cdot U$
 - $\forall x \in \mathbb{C}^n$, ||Ux|| = ||x||
 - $\forall x, y \in \mathbb{C}^n, \langle Ux, Uy \rangle = \langle x, y \rangle$

(quantum gates are reversible)(length is preserved)(inner product is preserved)

Quantum algorithms can be expressed as chains of mat-vec multiplications

$$|\psi_{out}\rangle = U_d \cdot U_{d-1} \cdot \dots \cdot U_2 \cdot \underbrace{U_1 \cdot |\psi_{in}\rangle}_{|\psi'\rangle} = \underbrace{U \cdot |\psi_{in}\rangle}_{|\psi''\rangle}$$

Reversible computing

Quantum algorithms can be easily reversed (in theory!)

$$U_{d}^{\dagger} \cdot |\psi_{out}\rangle = U_{d}^{\dagger} \cdot U_{d} \cdot U_{d-1} \cdot \dots \cdot U_{2} \cdot U_{1} \cdot |\psi_{in}\rangle$$

$$U_{d-1}^{\dagger} \cdot U_{d}^{\dagger} \cdot |\psi_{out}\rangle = U_{d-1}^{\dagger} \cdot U_{d-1} \cdot U_{d-2} \cdot \dots \cdot U_{2} \cdot U_{1} \cdot |\psi_{in}\rangle$$

$$U_{d-1}^{\dagger} \cdot |\psi_{out}\rangle = U_{1}^{\dagger} \cdot U_{2}^{\dagger} \cdot \dots \cdot U_{d-1}^{\dagger} \cdot U_{d-1}^{\dagger} \cdot |\psi_{out}\rangle = |\psi_{in}\rangle$$

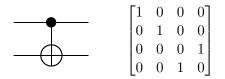
- Many 'nice' mathematical properties
 - unitary group U(n)
 - unitary decomposition,...

QUANTUM REGISTERS

Basic concepts of quantum computing

Detour to linear algebra, yet again

Tensor-product construction of single-qubit bases


 $|0\rangle \otimes |0\rangle, \quad |0\rangle \otimes |1\rangle, \quad |1\rangle \otimes |0\rangle, \quad |1\rangle \otimes |1\rangle$

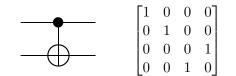
11

Unique labelling of multi-qubit state

$$|00\rangle = |0\rangle \otimes |0\rangle = \begin{pmatrix}1\\0\end{pmatrix} \otimes \begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}0\\0\\0\\0\end{pmatrix}$$
$$|01\rangle = |0\rangle \otimes |1\rangle = \begin{pmatrix}1\\0\end{pmatrix} \otimes \begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}0\\1\\0\\0\end{pmatrix}$$

Multiple qubits

Multi-qubit state


$$|\psi_1\psi_2\rangle = \alpha_0|00\rangle + \alpha_1|01\rangle + \alpha_2|10\rangle + \alpha_3|11\rangle$$

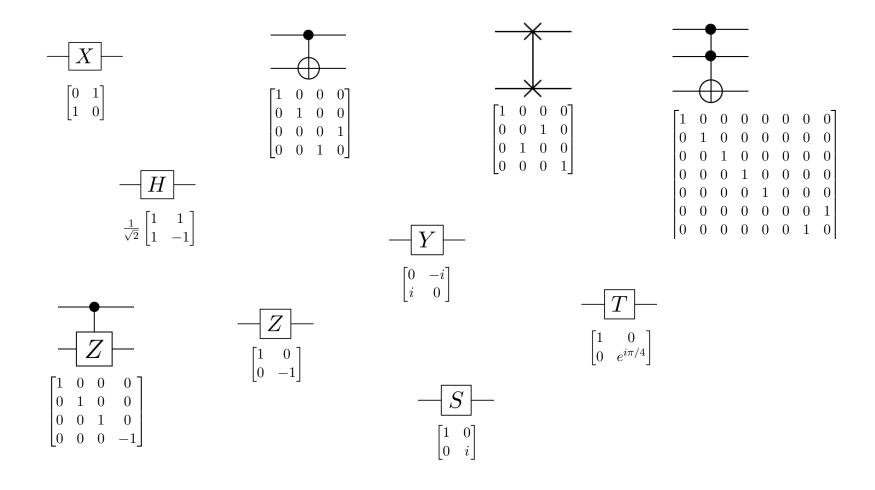
$$= \alpha_0 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \alpha_1 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

such that

$$|\alpha_0|^2 + |\alpha_1|^2 + |\alpha_2|^2 + |\alpha_3|^2 = 1$$

Multiple qubits, cont'd

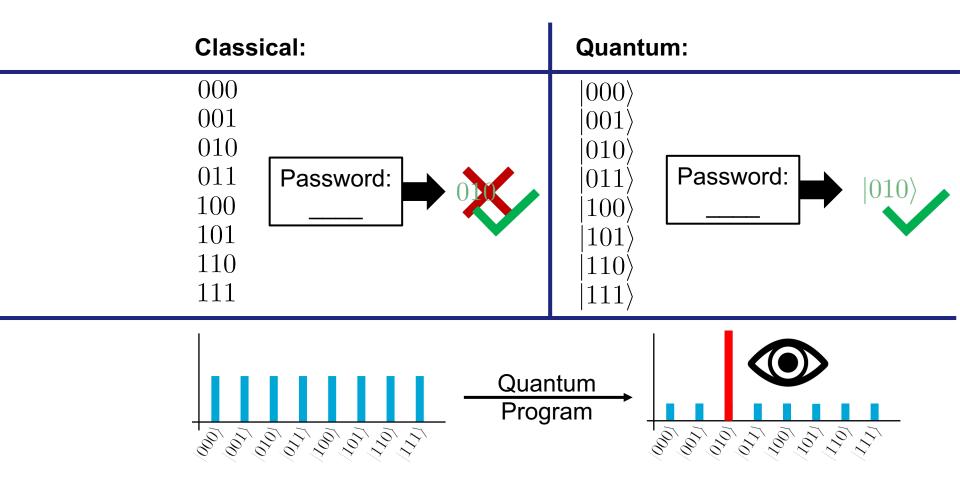
Controlled-NOT gate


$$CNOT_{12}|\psi_{1}\psi_{2}\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_{0} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} \alpha_{0} \\ \alpha_{1} \\ \alpha_{3} \\ \alpha_{2} \end{pmatrix}$$

Outcome

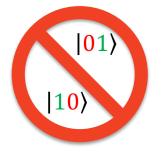
 $\alpha_{0}|00\rangle + \alpha_{1}|01\rangle + \alpha_{2}|10\rangle + \alpha_{3}|11\rangle$ $\mapsto \alpha_{0}|00\rangle + \alpha_{1}|01\rangle + \alpha_{3}|10\rangle + \alpha_{2}|11\rangle$

 $= \alpha_0 |00\rangle + \alpha_1 |01\rangle + \alpha_2 |11\rangle + \alpha_3 |10\rangle$

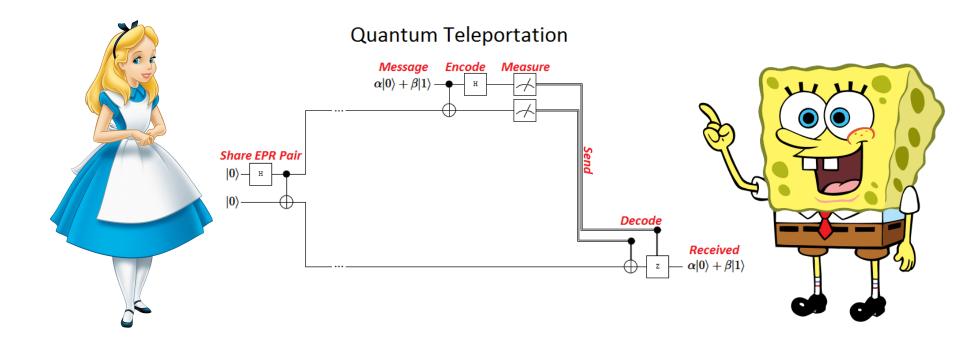

Zoo of quantum gates

QUANTUM ALGORITHMS

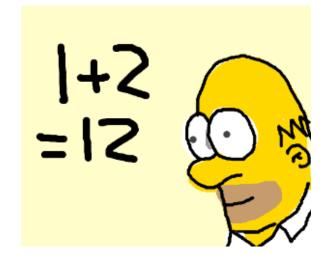
Basic concepts of quantum computing


Example: 3-bit password

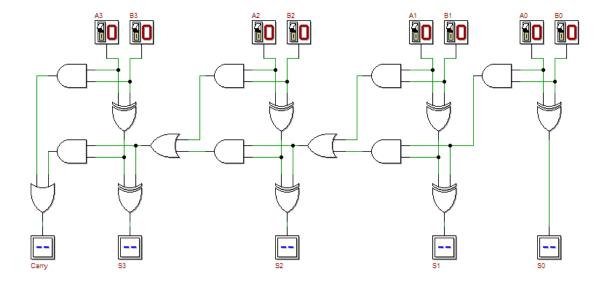
Bell state


$$|\beta_{00}\rangle = \frac{1}{\sqrt{2}} \cdot |00\rangle + 0 \cdot |01\rangle + 0 \cdot |10\rangle + \frac{1}{\sqrt{2}} \cdot |11\rangle$$
50:50 chance to measure $|0?\rangle$ or $|1?\rangle$

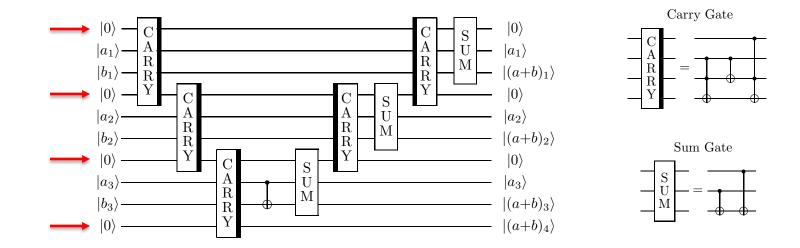
But then we know the value of the second qubit without measurement since



Bell state

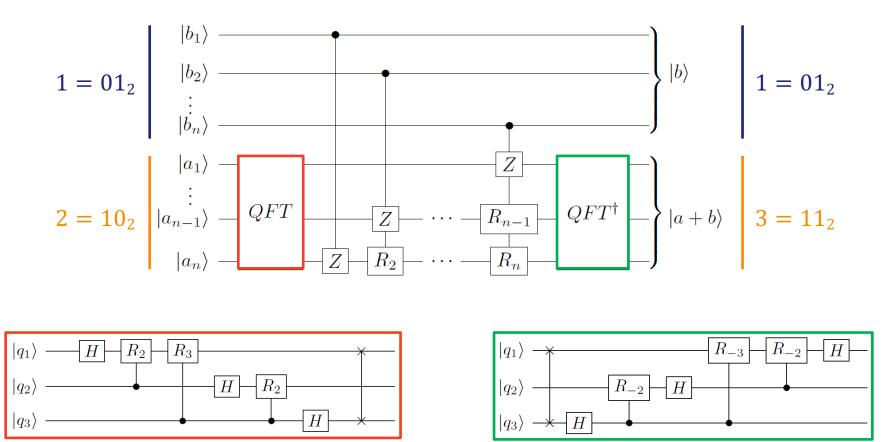

$$|\beta_{00}\rangle = \frac{1}{\sqrt{2}} \cdot |00\rangle + 0 \cdot |01\rangle + 0 \cdot |10\rangle + \frac{1}{\sqrt{2}} \cdot |11\rangle$$

Intermezzo: How difficult can it be to add two integers?



Intermezzo: How difficult can it be to add two integers?

D.E. Searls, Computer Organization & Systems, dsearls.org


A first quantum algorithm: 1+2=3

n extra ancilla qubits needed 🙁

Cuccaro et al.: A new quantum ripple-carry addition circuit (2008)

Another quantum algorithm: 1+2=3

M. vd. Lans: Quantum Algorithms and their Implementation on Quantum Computer Simulators, Master thesis, 2017

Towards practical QC: $1+2 \cong 3$

1000 QX simulator runs with depolarizing noise error model

I	0,1		$10^{-\frac{3}{2}}$		0,01		$10^{-\frac{5}{2}}$		
	1	0.27045	0.3793	0.50545	0.2752	0.78965	0.1233	0.92285	0.0463
nt <n></n>	2	0.134061	0.221523	0.165182	0.209176	0.451353	0.134284	0.762621	0.0570876
	3	0.0601436	0.112097	0.0683512	0.116162	0.191802	0.105916	0.540766	0.0754021
	4	0.0336509	0.0611537	0.0351125	0.0589036	0.064375	0.0645881	0.306778	0.0802711
	5					0.0224336	0.031892	0.154869	0.0575671
QI	6					0.00798384	0.0176539	0.0654961	0.033179
0	$\overline{7}$					0.00398747	0.0076473	0.0252142	0.0167067
	8					0.00254026	0.00363275	0.00834128	0.00823629

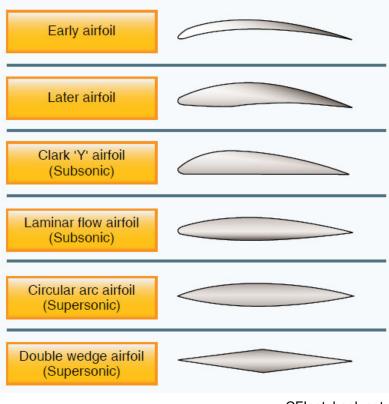
Standard circuit: prob. correct (left), largest prob. wrong answer (right)

Looman: Implementation and Analysis of an Algorithm on Positive Integer Addition for Quantum Computing (2018)

Towards practical QC: $1+2 \cong 3$

1000 QX simulator runs with depolarizing noise error model

		0,1		$10^{-\frac{3}{2}}$		0,01		$10^{-\frac{5}{2}}$	
	1	0.29475	0.3695	0.54555	0.27185	0.8158	0.11735	0.93645	0.04195
QInt <n></n>	2	0.110416	0.230068	0.239152	0.203304	0.569495	0.115691	0.837026	0.0445888
	3	0.0581316	0.114572	0.096711	0.122477	0.341537	0.102147	0.697436	0.0509187
	4	0.0259028	0.0583002	0.0382769	0.0672328	0.183066	0.0726129	0.543162	0.0579935
	5					0.0839273	0.0450361	0.407117	0.0574072
	6					0.0412412	0.0270095	0.283642	0.049151
	7					0.0177059	0.0131818	0.191996	0.0404665
	8					0.00647699	0.00675828	0.116269	0.0290022

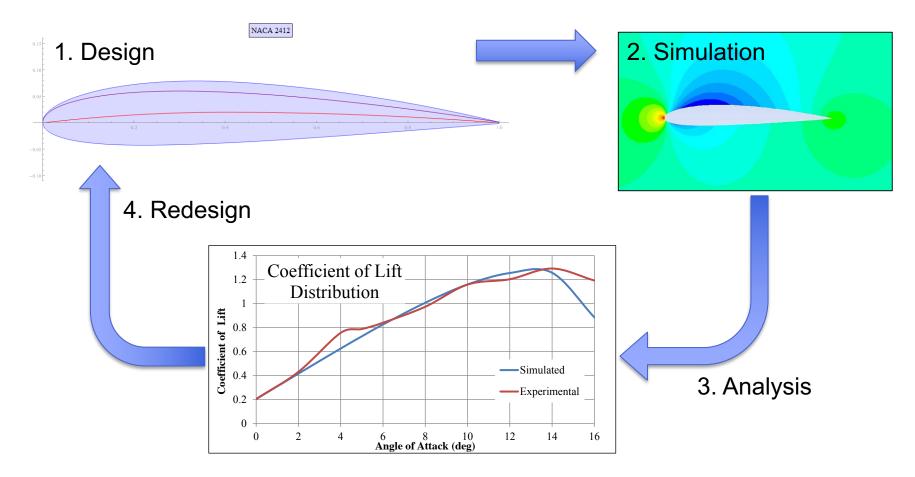

Optimized circuit: prob. correct (left), largest prob. wrong answer (right)

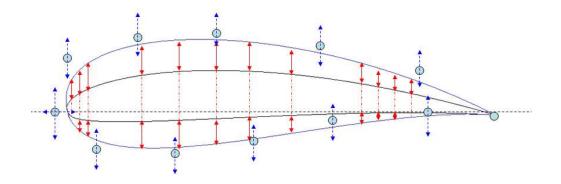
Looman: Implementation and Analysis of an Algorithm on Positive Integer Addition for Quantum Computing (2018)


Quantum-accelerated design optimization

CONCEPTUAL FRAMEWORK

Airfoil design




CFInotebook.net

Simulation-based design and analysis cycle

Matsson et al. Aerodynamic Performance of the NACA 2412 Airfoil at Low Reynolds Number, 2016 ASEE Annual Conference & Exposition

1. Design D(p)

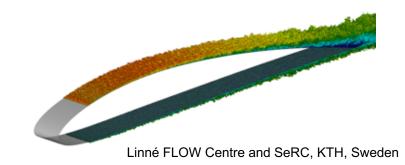
Design parameters

$$\boldsymbol{p} = (p_1, \dots, p_{12})$$

Admissible design space

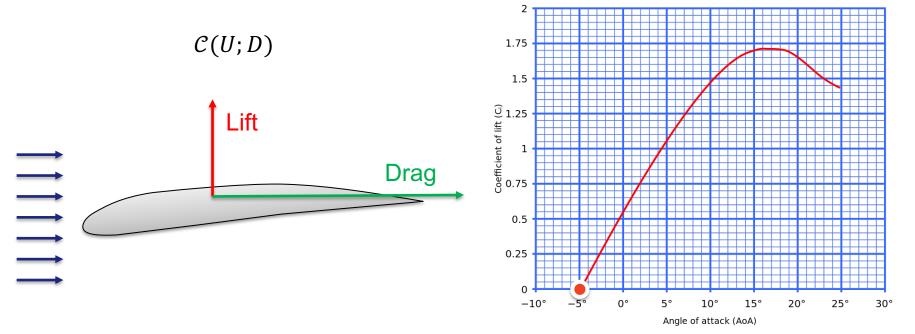
$$\mathcal{S} = \left[p_1^{\min}, p_1^{\max} \right] \times \cdots \times \left[p_{12}^{\min}, p_{12}^{\max} \right]$$

Mauclère, Automatic 2D Airfoil Generation, Evaluation and Optimisation using MATLAB and XFOIL, Master thesis, 2009


2. Simulation

Mathematical model

	Navier 3 - di	-Stokes	5 Equ – unste	atio ady	ns	Glenn Research Center
Coordinates: (x,y, Velocity Compor	,		Pressure: Stress: τ ıy: Et	p	•	x: q Number: Re Number: Pr
Continuity:	$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial}{\partial t}$	$\frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z}$	- = 0			
X – Momentum:	$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u^2)}{\partial x}$	$\frac{\partial}{\partial y} + \frac{\partial(\rho uv)}{\partial y} + \frac{\partial}{\partial y}$	$\frac{\partial(\rho uw)}{\partial z} =$	$-\frac{\partial p}{\partial x} + \frac{\partial p}{\partial x}$	$\frac{1}{Re_r} \left[\frac{\partial \tau_{xx}}{\partial x} \right]$	$+ \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} \bigg]$
Y – Momentum:	$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho u v}{\partial x}$	$\frac{\partial}{\partial y} + \frac{\partial(\rho v^2)}{\partial y} + \frac{\partial}{\partial y}$	$\frac{\partial(\rho vw)}{\partial z} =$	$-\frac{\partial p}{\partial y}+$	$\frac{1}{Re_r} \left[\frac{\partial \tau_{xy}}{\partial x} \right]$	$+\frac{\partial \tau_{yy}}{\partial y}+\frac{\partial \tau_{yz}}{\partial z}\bigg]$
Z – Momentum Energy:	$\frac{\partial(\rho w)}{\partial t} + \frac{\partial(\rho u w)}{\partial x}$	$\frac{\partial (\rho vw)}{\partial y} + \frac{\partial (\rho vw)}{\partial y} +$	$\frac{\partial(\rho w^2)}{\partial z} =$	$-\frac{\partial p}{\partial z}+$	$\frac{1}{Re_r} \left[\frac{\partial \tau_{xz}}{\partial x} \right]$	$+\frac{\partial \tau_{yz}}{\partial y}+\frac{\partial \tau_{zz}}{\partial z}\right]$
$\frac{\partial(E_T)}{\partial t} + \frac{\partial(uE_T)}{\partial x} + \frac{\partial(uE_T)}{$	•		+		· · · (
$+\frac{1}{Re_r}\left[\frac{\partial}{\partial x}(u)\right]$	$\tau_{xx} + v \tau_{xy} + w \tau_{x}$	$(u \tau_{xy} + \frac{\partial}{\partial y}(u \tau_{xy} +$	•ντ _{yy} +wτ	$y_z) + \frac{\partial}{\partial z}$	$(u \tau_{xz} + v \tau_{yz})$	$_{yz} + w \tau_{zz})$

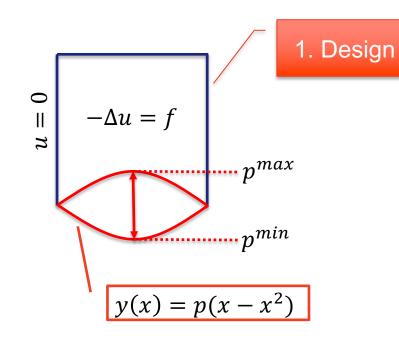

Solution for one particular design

$$U = U(D(\boldsymbol{p}))$$

3. Analysis

Cost functional

Operation conditions



Abstract design optimization

Problem: Find a set of admissible design parameters *p* such that solution U(D(*p*)) to the mathematical model M(U, D(*p*)) computed on the design D(*p*) optimizes the cost functional C(U, D(*p*)) for fixed operation condition

Academic model problem

4. Redesign

Problem: Minimize the difference

$$d_h = u_h - u_h^*$$

between the solution u_h and a given profile u_h^* w.r.t. 3. Analysis $C(d_h, p) = d_h^T M d_h$

such that d_h solves 2. Simulation $A_h d_h = f_h - A_h u_h^*$

Quantum acceleration

Best classical solution algorithm

 $\mathcal{O}(Ns\kappa\log(1/\epsilon))$

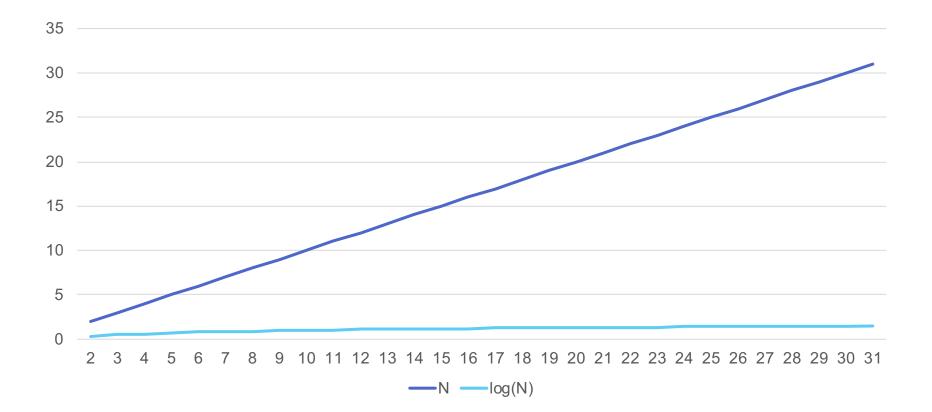
- Quantum Linear Solver Algorithm
 - HHL: $\mathcal{O}(\log(N)s^2\kappa^2/\epsilon)$
 - Ambainis: $O(\log(N)s^2\kappa/\epsilon)$

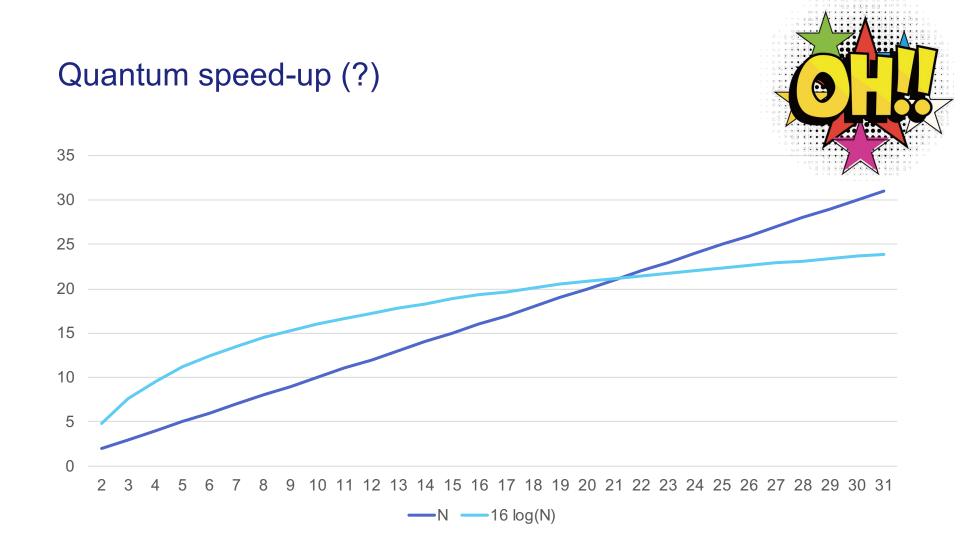
Quantum acceleration

Best classical solution algorithm

 $\mathcal{O}(Ns\kappa\log(1/\epsilon))$

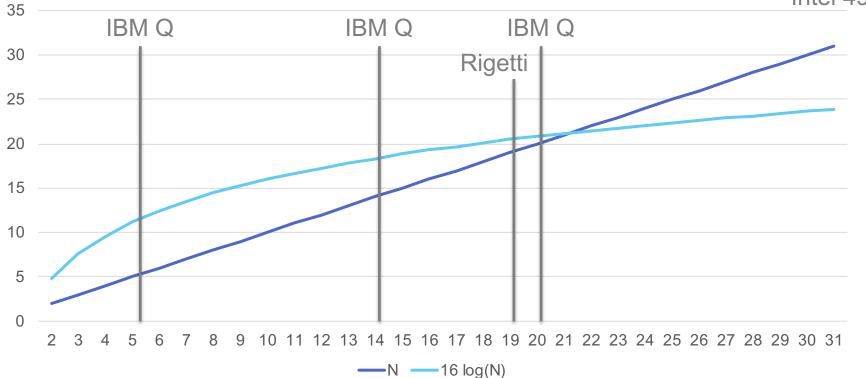
- Quantum Linear Solver Algorithm
 - HHL: $\mathcal{O}(\log(N)s^2\kappa^2/\epsilon)$
 - Ambainis: $O(\log(N)s^2\kappa/\epsilon)$

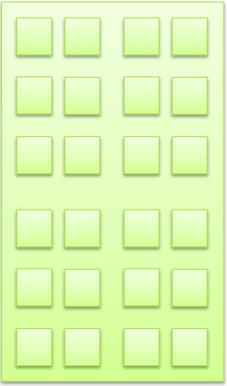

Quadratic form optimizer


 $O((\# design parameters)^2)$

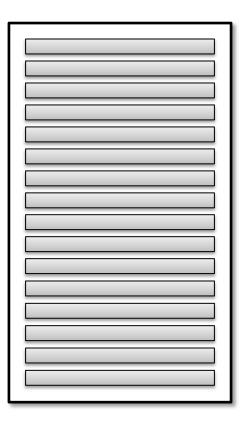
Jordan's QOPT

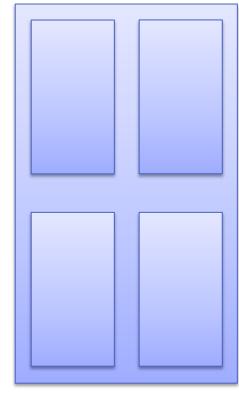
 $\mathcal{O}((\# design parameters)^1)$


Quantum speed-up

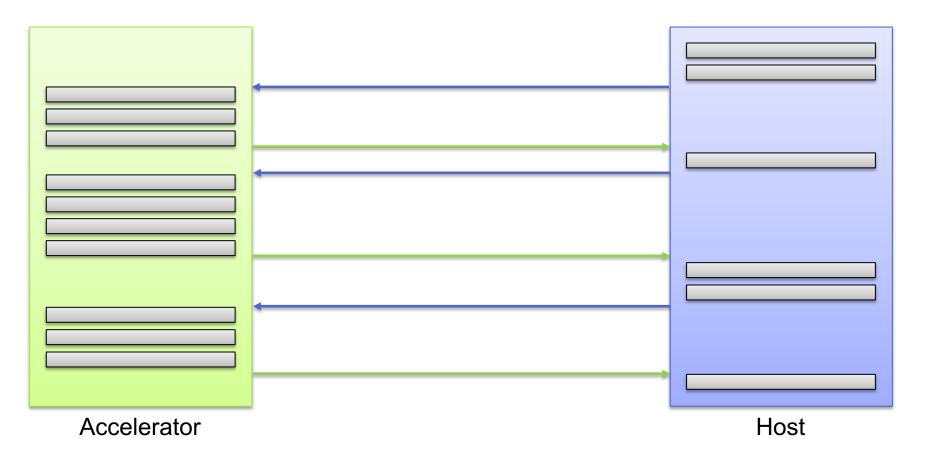

Quantum speed-up (?)

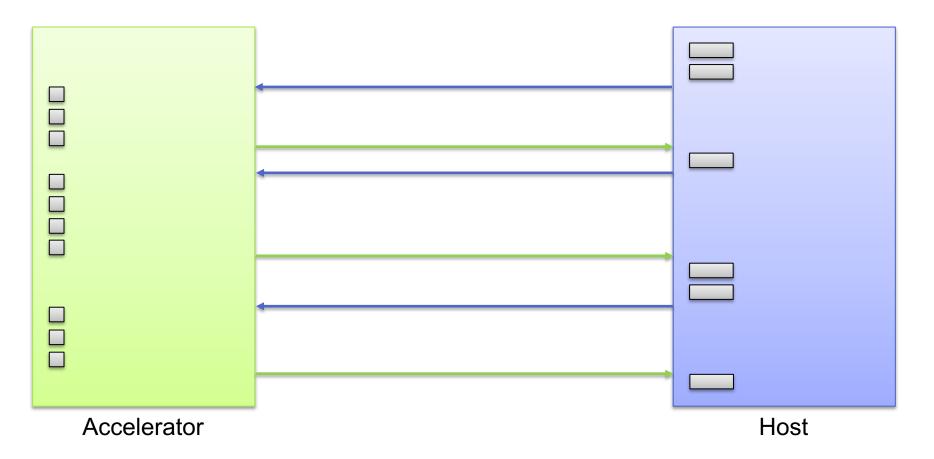
Rigetti 128 Google 72 Intel 49

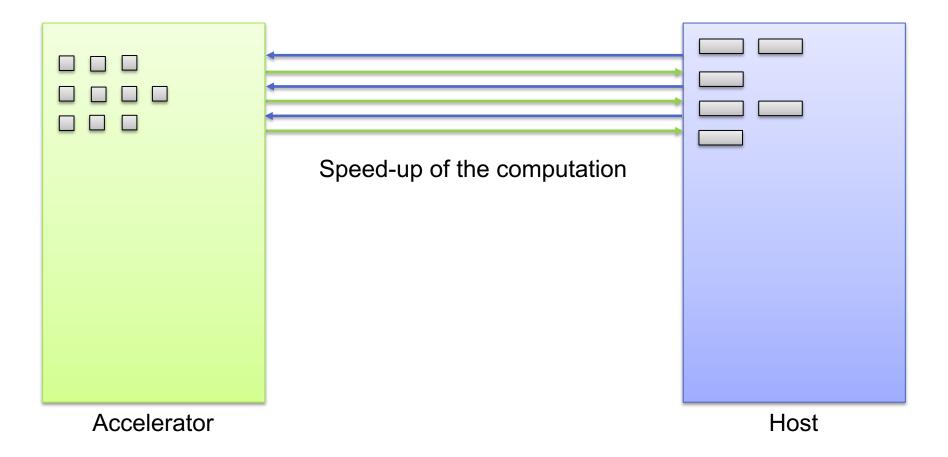


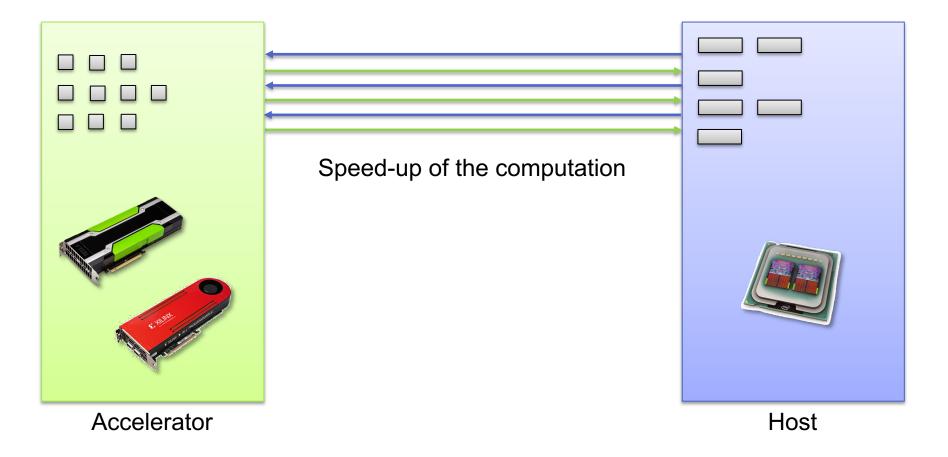

SDKS AND GOOD PRACTICES

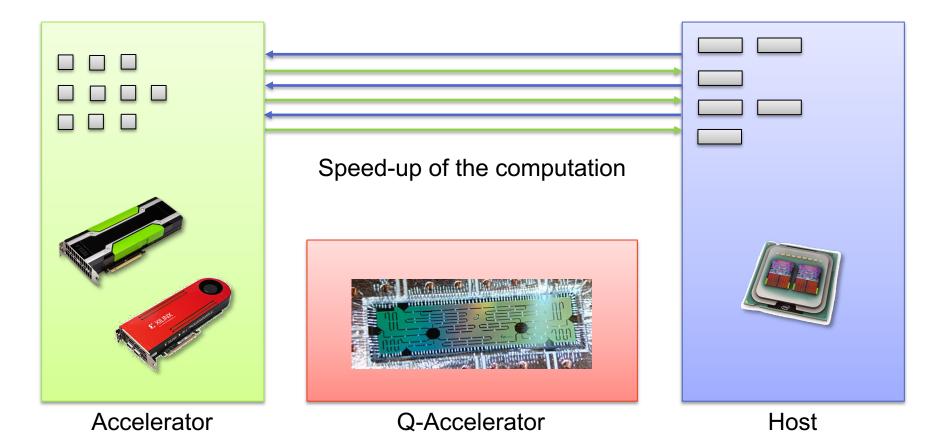
Practical aspects of quantum computing

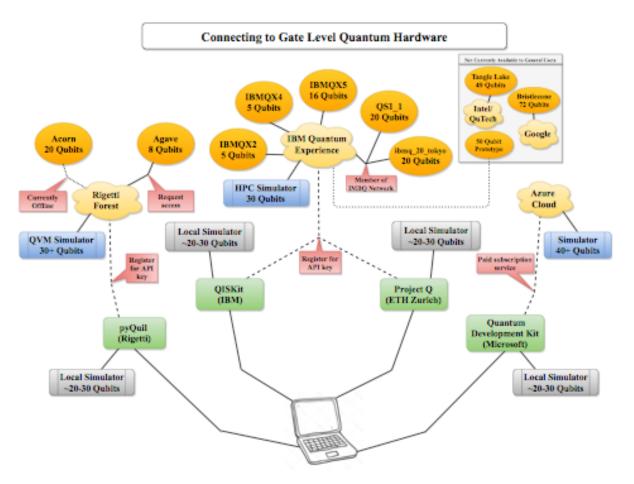



Accelerator








It feels like GPU-computing in the early 2000

- Quantum languages
 - AQASM: Atos QML
 - cQASM: QuTech QX, TNO QI
 - OpenQASM: IBM, Google
 - Quil: Rigetti
 - ...

- Quantum SDKs
 - pyAqasm
 - pyQuil
 - Circ
 - OpenQL/QX
 - ProjectQ
 - QisKit
 - Quantum Development Kit
 - Quirk
 - ...

It feels like GPU-computing in the early 2000

Algorithm	pyQuil	Qiskit	ProjectQ	QDK
Random Bit	✓(T)	(T)	(T)	√(T)
Generator				
Teleportation	✓(T)	(T)	✓(T)	√(T)
Swap Test	✓(T)			
Deutsch-Jozsa	✓(T)	(T)		√(T)
Grover's	✓(T)	√(T)	✓(T)	√ (B)
Algorithm				
Quantum	✓(T)	(T)	✓(B)	✓(B)
Fourier				
Transform				
Shor's			(T)	✓(D)
Algorithm				
Bernstein	✓(T)	(T)		√(T)
Vazirani				
Phase	✓(T)	√(T)		✓(B)
Estimation				
Optimization/	✓(T)	✓(T)		
QAOA				
Simon's	✓(T)	✓(T)		
Algorithm	• (•)	• (-)		
Variational	✓(T)	✓(T)	✓(P)	
Quantum	• (•)	• (-)	• (4)	
Eigensolver				
Amplitude	✓(T)			√ (B)
Amplification	• (•)			• (2)
Quantum		✓(T)		
Walks		• (1)		
Ising Solver	✓(T)			✓(T)
Quantum Gra-	✓ (1) ✓(T)			• (1)
dient Descent	• (1)			
Five Qubit				√ (B)
Code				• (2)
Repetition		(T)		
Code		•(1)		
Steane Code				✓(B)
Draper Adder				✓ (B) ✓ (D)
Beauregard			✓(T) ✓(T)	✓ (D) ✓ (D)
Beauregard Adder			V(1)	(D)
Arithmetic			✓(B)	✓(D)
Fermion	✓(T)	✓(T)	✓(B)	(D)
Transforms	V(1)	V(1)	✓ (P)	
Trotter				✔(D)
Simulation				• (D)
Electronic			((D)	
			✓(P)	
Structure				
(FCI, MP2,				
HF, etc.)	((77))	((77))		
Process	✓(T)	✓(T)		✓(D)
Tomography				
Vaidman De-		(T)		
tection Test				

LaRose: Overview and Comparison of Gate Level Quantum Software Platforms, ArXiv, 2019

LIB: Kwantum expression template LIBrary

- Header-only C++14 library
- Open-source release by summer
- Auto-generation of quantum code from C++ expression templates
- Bi-directional communication between host and quantum device
- Made for quantum-accelerated scientific computing

LIB: Kwantum expression template LIBrary

auto expr = measure(h(x(h(x(init())))));

Qdata<1, OpenQASMv2> backend; json result = expr(backend).execute();

> QInt<3> a(1); QInt<3> b(2); a += b;

Conclusion

- Quantum computers have huge potential as special-purpose accelerators to speed-up the solution of (mathematical) problems 'exponentially'
- Convergence towards common quantum programming language and development toolchain needed to make end-users interested (if at all!)
- To fully exploit the power of quantum computers don't mimic classical algorithms but redesign quantum algorithms from scratch based on quantum-mechanical principles like superposition and entanglement

Thank you very much!