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QUANTUM BITS AND GATES
Basic concepts of quantum computing
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Schrödinger’s cat
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Schrödinger’s cat, cont’d

§ Before opening the box: 
superposition of two states

§ After opening the box:
collapse to a single state

OR
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§ Further examples of two-state quantum-mechanical system
§ spin of an electron (up, down)
§ polarization of a photon (vertical, horizontal)



Quantum bits

§ Qubit: basic unit of quantum information (quantum version of a bit)

| ⟩𝜓 = 𝛼| ⟩0 + 𝛽| ⟩1 , 𝛼, 𝛽 ∈ ℂ, 𝛼 ! + 𝛽 ! = 1

§ Computational basis

ℰ = | ⟩0 , | ⟩1 = 1
0 , 01

§ Coefficients 𝛼, 𝛽 are the probability amplitues and 𝛼 ! and 𝛽 ! are the 
probabilities of measuring the basis states | ⟩0 and | ⟩1 , respectively
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Single-qubit states

§ Bloch sphere

| ⟩𝜓 = 𝑒"# cos
𝜃
2
| ⟩0 + 𝑒"$ sin

𝜃
2
| ⟩1

§ polar angle 𝜃 ∈ 0, 𝜋

§ azimutal angle 𝜑 ∈ [ )0,2𝜋

§ global phase 𝛿
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Classical gates

§ NOT § NAND
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A out

0 1
1 0

A B out

0 0 1
0 1 1
1 0 1
1 1 0

§ Logical operations based on truth tables
§ Most classical gates are not reversible



Quantum gates

§ Pauli X § Hadamard
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§ Unitary operations represented by unitary matrices
§ All quantum gates are reversible, e.g. 𝐻𝐻% = 𝐼
§ Universal gate set 𝐻, 𝑆, 𝑇, 𝐶𝑁𝑂𝑇

X 0 1
1 0 H 1

2
1 1
1 −1



Single-qubit gates
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X

H

| ⟩0 | ⟩1

| ⟩0 | ⟩+ ≔
1
2
| ⟩0 + | ⟩1



Single-qubit gates
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X

H

| ⟩0

| ⟩1 | ⟩0

| ⟩1

| ⟩0

| ⟩1

| ⟩+ ≔
1
2
| ⟩0 + | ⟩1

| ⟩− ≔
1
2
| ⟩0 − | ⟩1



Single-qubit circuits

§ Single-qubit gates D𝑈& are unitary matrices, i.e.

D𝑈& D𝑈&
% = D𝑈&

% D𝑈& = F𝐼

§ Quantum circuits are sequences of matrix-vector multiplications

| ⟩𝜓'() = D𝑈* D𝑈! D𝑈+ | ⟩𝜓",
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Û1
ψin ψoutÛ2 Û3



Multi-qubit states

§ | ⟩𝜓- = 𝛼-| ⟩0 + 𝛽-| ⟩1 = 𝛼-
1
0 + 𝛽-

0
1

§ | ⟩𝜓+ = 𝛼+| ⟩0 + 𝛽+| ⟩1 = 𝛼+
1
0 + 𝛽+

0
1

§ Tensor product of two single-qubit states

| ⟩𝜓- ⊗ | ⟩𝜓+ = 𝛼-𝛼+| ⟩00 + 𝛼-𝛽+| ⟩01 + 𝛽-𝛼+| ⟩10 + 𝛽-𝛽+| ⟩11 =: | ⟩𝜓-𝜓+

with
𝛼-𝛼+ ! + 𝛼-𝛽+ ! + 𝛽-𝛼+ ! + 𝛽-𝛽+ ! =

𝛼- ! 𝛼+ ! + 𝛽+ ! + 𝛼+ ! 𝛼+ ! + 𝛽+ ! = 1
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Tensor product

| ⟩𝐴 ⊗| ⟩𝐵 = 𝑎++𝐵 𝑎+!𝐵
𝑎!+𝐵 𝑎!!𝐵



Multi-qubit states, cont’d

§ Tensor product of 𝑛 single-qubit states

| ⟩𝜓-…𝜓, = 𝛾-…--| ⟩0…00 + 𝛾-…-+| ⟩0…01 +⋯+ 𝛾+…++| ⟩1…11

§ An 𝑛-qubit register can hold the 2, inputs ‘simultaneously’ in superposition

§ A word of caution: it is impossible to obtain the 𝛾’s; one obtains a single 
binary answer, say, | ⟩001101 with probability 𝛾--++-+ ! upon measuring

§ A single run of a quantum circuit is not very useful; many runs are required 
to measure the correct answer to the problem with sufficient certainty
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Example: 3-bit password

Password:
____

Password:
____

Classical: Quantum:

Grover’s 
algorithm



Multi-qubit gates

𝐻⊗ 𝐼| ⟩00 =
1
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

1
0
0
0

=
1
2

1
0
1
0

=
| ⟩00 + | ⟩10

2
=

, ⟩0 + | ⟩1 ⊗ | ⟩0
2
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H

I

| ⟩0

| ⟩0

| ⟩Ψ'() = 𝐻⊗ 𝐼| ⟩Ψ",| ⟩Ψ",



SIMPLE QUANTUM ALGORITHMS
Basic concepts of quantum computing
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Bell state

𝐶𝑁𝑂𝑇 𝐻 ⊗ 𝐼 | ⟩00 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
2

1
0
1
0

=
| ⟩00 + | ⟩11

2

§ The Bell state is maximally entangled. By measuring one of the two qubits 
one knows the value of the other qubit without a further measurement
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Quantum teleportation
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Quantum teleportation
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| ⟩010 − | ⟩110 + | ⟩001 − | ⟩101
2

1



Quantum teleportation
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| ⟩010 − | ⟩110 + | ⟩001 − | ⟩101
2

0

0

1

1

1



Quantum teleportation
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| ⟩010 − | ⟩110 + | ⟩001 − | ⟩101
2

0

1

1

1

0



Quantum teleportation
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| ⟩010 − | ⟩110 + | ⟩001 − | ⟩101
2

1

0

1

1

−1



Quantum teleportation
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| ⟩010 − | ⟩110 + | ⟩001 − | ⟩101
2

1

1

1

1

−0



How difficult can it be to add two integers?
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Classical integer adder

26
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A first quantum integer adder

Reversible Adder for Two 3-bit Numbers

|0〉
|a1〉
|b1〉
|0〉
|a2〉
|b2〉
|0〉
|a3〉
|b3〉
|0〉

|0〉
|a1〉
|(a+b)1〉
|0〉
|a2〉
|(a+b)2〉
|0〉
|a3〉
|(a+b)3〉
|(a+b)4〉

C
A
R
R
Y

C
A
R
R
Y

C
A
R
R
Y

!
"

S
U
M

C
A
R
R
Y

S
U
M

C
A
R
R
Y

S
U
M

The construction of an n-bit reversible adder is a straightforward extension
of the 3-bit adder. Note that an additional n qubits were needed as temporary
carry bits. These qubits are reversibly set back to zero after they are used so
they may be used for later computation. Therefore, even though the input and
output may be stored using only 2n qubits, 3n qubits must be used for the
computation.

3 The Quantum Fourier Transform

For simplification of notation, let e(t) = e2πit. Let a ∈ Z2n , the additive group
of integers modulo 2n. Let anan−1 · · · a2a1 be the binary representation for a,
where a = an2n−1 + an−12n−2 + · · ·+ a221 + a120. Then |a〉 = |an〉 ⊗ |an−1〉 ⊗
· · ·⊗ |a2〉 ⊗ |a1〉. The quantum Fourier transform (QFT) of |a〉 is the mapping

|a〉 F2n−→
1

2
n

2

2
n
−1∑

k=0

e(ak/2n)|k〉. (1)

It turns out that (1) is unentangled[3]. Let

|φk(a)〉 =
1√
2
(|0〉 + e(a/2k)|1〉). (2)

Then (1) factors as

2
n
−1

∑

k=0

e(ak/2n)|k〉 = |φn(a)〉 ⊗ · · ·⊗ |φ2(a)〉 ⊗ |φ1(a)〉.

It is also helpful to notice that e(a/2k) = e(0.ak . . . a1), where (0.ak . . . a1)
is a binary fraction. Therefore, each |φk(a)〉 contains the lower k binary digits
of a. Consider the following two gate operations:
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1 Introduction

Traditionally, addition algorithms designed for a quantum computer have mir-
rored their classical counterparts[2, 6, 9], with the necessary extensions for re-
versible computation. Faster quantum addition algorithms implement carry-
save techniques[5, 10], but still follow a classical model. However, the ideal
addition algorithm for a quantum computer may not be similar to its classical
counterpart. This paper presents a new paradigm for addition on a quantum
computer.

The addition method used takes two values a and b, computes F (a) the
quantum Fourier transform (QFT) of a and then uses b to evolve F (a) into
F (a + b). The inverse quantum Fourier transform may then be applied and the
sum recovered. Since there is a cost of computing the transform before and after
the sum, as much computation as possible should be performed in the transform
range before leaving.

This paper assumes a rudimentary background in the ideas of quantum
computation. For an introduction to quantum computation the reader is en-
couraged to read Art Pittenger’s, ”An Introduction to Quantum Computing
Algorithms”[7] or Andrew Steane’s, ”Quantum Computing”[8]. For further
study, an excellent searchable pre-print server is maintained by Los Alamos
laboratories. Papers on quantum computing/cryptography may be found at
http://xxx.lanl.gov/quant-ph.

2 Classical Addition

A number of papers have been published concerning the implementation of
addition on a quantum computer [2, 5, 7, 9, 10]. All of the implementations use
at least 3n qubits to add two n-bit numbers. The method presented here follows
the outline in [7]. The adder is composed of two basic unitary computational
units.

Carry Gate

C
A
R
R
Y

=

!
! !
! " !
" "

Sum Gate

S
U
M

=

!
!
" "

A carry gate with the dark bar on the left side is considered to be a normal
carry gate executed in reverse order. The following diagram shows how these
two unitary gates are combined to form a reversible adder.
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n extra ancilla qubits needed L

Cuccaro et al.: A new quantum ripple-carry addition circuit, arXiv:quant-ph/0410184, 2004



Another quantum integer adder

28

as well be interchanged according to the changes in the order of the rotation gates.

[H,Rx] = HRx �RxH
1
p
2

✓
1 e2⇡i/2x

1 �e2⇡i/2x

◆
�

1
p
2

✓
1 1

e2⇡i/2x �e2⇡i/2x

◆
6= 02,2 (4.7)

[Rx, Ry] = RxRy �RyRx

✓
1 0
0 e2⇡i/2(x+y)

◆
�

✓
1 0
0 e2⇡i/2(x+y)

◆
= 02,2 (4.8)

With this in mind, the quantum circuit from figure 4.1 could be tidied up. This results
in the quantum circuit in figure 4.7 that adds two arbitrary n-qubit registers.

Figure 4.7. The tidied up quantum circuit that adds |b1b2 · · · bni to |a1a2 · · · ani.

The short-hand notation for quantum addition is given in figure 4.8.

Figure 4.8. The addition gate that adds b to a.

To illustrate the quantum addition routine outlined in this section, consider a = 6 and
b = 3. Then n = 4 in order to satisfy a, b < 2n�1, so no overflow can occur. a = 6

62

Finally, equation (3.41) is the result of the QFT.

| i =
1

p
N

⇣
|0i+ e2⇡i[0.qn] |1i

⌘⇣
|0i+ e2⇡i[0.qn�1qn] |1i

⌘
· · ·

⇣
|0i+ e2⇡i[0.q1q2···qn] |1i

⌘

(3.41)

Using this general circuit, the circuit that applies the QFT to some quantum register
can be obtained. For example, the QFT on three qubit is performed by the circuit in
figure 3.6.

Figure 3.6. The quantum circuit that performs the QFT on three qubits.

If the QFT is used in a more extensive circuit, not all gates will be included in the
schematic circuit. Else, the schematic will quickly become cluttered. Because the QFT is
such a general routine, it will be represented in a circuit as in figure 3.7.

Figure 3.7. The representation for the QFT performed on all six qubits.

3.4 Implementation of the Inverse Quantum Fourier Transform

Similarly to the classical case, in order to transform a specific quantum register back
from the Fourier domain an inverse QFT is needed. Because the QFT is (as all quantum
gates) a unitary gate, the inverse QFT is obtained by reversing the order of all gates that
constitute the QFT and taking their hermitian conjugate. It is easily seen that H† = H

54

and SWAP† = SWAP. On the other hand,

R†

' =


1 0
0 e2⇡i/2

'

�†
=


1 0
0 e�2⇡i/2'

�
:= R�' (3.42)

The inverse QFT circuit is thus obtained by reversing the order of the gates and replacing
R' by R�'. For example, the inverse circuit for the three qubit QFT from figure 3.6 is
given in figure 3.8.

Figure 3.8. The quantum circuit that performs the inverse QFT on three qubits.

Just like the QFT, in a more extensive circuit the inverse QFT is represented as shown
in figure 3.9.

Figure 3.9. The representation for the inverse QFT on all six qubits.

3.4.1 Time Complexity

The quantum circuit to Fourier transform or inverse Fourier transform a register of n
qubits uses a Hadamard gate and n� 1 controlled phase shift gates on the first qubit, a
Hadamard and n � 2 controlled phase shift gates on the second qubit and so on, and
only a Hadamard gate on the last qubit. The swaps in the end require a maximum of n

2
SWAP gates (if n is odd, the precise number is n�1

2 ). Therefore, the total number of

55

Draper: Addition on a quantum computer, arXiv:quant-ph/0008033, 2000

1 = 012

2 = 102

1 = 012

3 = 112



Towards a practical quantum integer adder

32 6. ANALYSIS

In the tables 3 and 4, the error rate is given in the upper row and the input size N is given in
the left column. In every cell, there are two values: the left value is the probability of the correct
answer; the right value is the biggest probability of every value except the correct value. These
values are imported, because if the first value is smaller than the second one, the algorithm
is unable to preform any calculation corresponding to the given input size N and error rate.
Those cells are marked red and the others are marked green. Notice that the values of some
cells are relatively close to each other. For example look at table 3 with input size N = 8

and error rate 10�
5
2 . The probability that the correct value is measured is: 0.00834128 and

the biggest probability a specific wrong answer is measured is 0.00823629. Someone could say
that with enough measurements you can distinguish the correct from the wrong answer because
0.00834128 > 0.00823629. Notice that we have two problems. Since the values are very close
together you would need a lot of measurements before you could say with a given certainty what
the correct answer is. In theory this is not a limit so it should be possible. The second and more
serious problem is that another 10000 runs may give slightly di↵erent values, because we only
use a finite amount of runs and we are trying to approximate the true value1. It is possible that
for the true values the opposite is true. For this reason, this cell is marked red instead of green.
Notice we have some white spots in the tables. These cells are not interesting since the algorithm
is already not able to give the right answer for a lower input size N . For unity reasons we have
chosen to only leave out the same values in both the tables.

0,1 10�
3
2 0,01 10�

5
2

1 0.27045 0.3793 0.50545 0.2752 0.78965 0.1233 0.92285 0.0463
2 0.134061 0.221523 0.165182 0.209176 0.451353 0.134284 0.762621 0.0570876
3 0.0601436 0.112097 0.0683512 0.116162 0.191802 0.105916 0.540766 0.0754021
4 0.0336509 0.0611537 0.0351125 0.0589036 0.064375 0.0645881 0.306778 0.0802711
5 0.0224336 0.031892 0.154869 0.0575671
6 0.00798384 0.0176539 0.0654961 0.033179
7 0.00398747 0.0076473 0.0252142 0.0167067
8 0.00254026 0.00363275 0.00834128 0.00823629

Table 3. Results: Normal circuit

0,1 10�
3
2 0,01 10�

5
2

1 0.29475 0.3695 0.54555 0.27185 0.8158 0.11735 0.93645 0.04195
2 0.110416 0.230068 0.239152 0.203304 0.569495 0.115691 0.837026 0.0445888
3 0.0581316 0.114572 0.096711 0.122477 0.341537 0.102147 0.697436 0.0509187
4 0.0259028 0.0583002 0.0382769 0.0672328 0.183066 0.0726129 0.543162 0.0579935
5 0.0839273 0.0450361 0.407117 0.0574072
6 0.0412412 0.0270095 0.283642 0.049151
7 0.0177059 0.0131818 0.191996 0.0404665
8 0.00647699 0.00675828 0.116269 0.0290022

Table 4. Results: Parallelization of the circuit

1Note that their is not really a true value since we are using random noise, our true value is an average of all
possible conditions

QI
nt
<n
>

1000 QX simulator runs with depolarizing noise error model

Standard circuit: prob. correct (left), largest prob. wrong answer (right)

M. Looman: Implementation and Analysis of an Algorithm on Positive Integer Addition for Quantum Computing, Bachelor thesis, 2018



Towards a practical quantum integer adder
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QI
nt
<n
>

Optimized circuit: prob. correct (left), largest prob. wrong answer (right)

1000 QX simulator runs with depolarizing noise error model

M. Looman: Implementation and Analysis of an Algorithm on Positive Integer Addition for Quantum Computing, Bachelor thesis, 2018



NISQ DEVICES, PROGRAMMING 
MODELS, AND ALGORITHMS

Quantum-accelerated scientific computing

31



NISQ era

§ Noisy Intermediate-Scale Quantum technology
arXiv:1801.00862, 2018

§ Noisy emphasizes that we’ll have imperfect control over qubits

§ application of 𝑅/ =
1 0
0 𝑒"/ is inaccurate, i.e. 𝑅/±1

§ quantum state decoheres, i.e. 𝛼 ! + 𝛽 ! ≠ 1

§ Intermediate-Scale refers to the size of the current and near-future 
quantum computers which will have between 50 to a few hundred qubits

32
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Quantum processors

Manufacturer #qubits
IBM 5-53
Rigetti 8-32
Intel 17-49
Google 20-72
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IBM Q16 Melbourne

Rigetti’s Aspen-7-28Q-A§ In-memory computing
§ Optimal placement and

routing of information is
crucial; many extra ops



Quantum software platforms
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LaRose: Overview and Comparison of Gate Level Quantum Software Platforms, arXiv:1807.02500, 2018



Q-programming model – today
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C-hardware

Q-hardware 1

0 2 3

4

mem

mem

CPU

CPU

QASM code +
Python API

Q = { X q0; 
H q1;
CNOT q1 q2; 
... }

Q.compile(“IBM-Q16”)
result = Q.exec(“IBM”)
print result[“hist”]

cQASM

eQASM

JSON

pulses

server

vendor 
specific

vendoryou



vendoryou

Q-accelerated programming model – our vision
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C-hardware

Q-hardware 1

0 2 3

4

mem

mem

CPU

CPU

C/C++/Python
Q = teleport(q[0:2])
h = Q.exec(“IBM”)

// Classical compute

if (h.status() != 0)
throw “Error”

// Classical compute

cQASM

eQASM

JSON

pulses

server
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Q-accelerated programming model – our vision
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C-hardware

Q-hardware 1

0 2 3

4

mem

mem

CPU

CPU

C/C++/Python
Q = teleport(q[0:2])
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// Classical compute
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eQASM

pulses
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cQASM

JSON



Quantum algorithms with potential use in SciComp

§ Quantum linear solvers

§ HHL-type ‘solver’ algorithms: 𝑥%𝑀𝑥 such that 𝐴𝑥 = 𝑏
§ sparse matrices [Harrow, Hassidim, Lloyd 2009]   𝑂(log 𝑁 𝜅!/𝜖)
§ dense matrices [Wossnig et al. 2018] 𝑂( 𝑁 log 𝑁 𝜅!/𝜖)

§ Hybrid Variational QC Algorithms (HVQCA)
§ sparse matrices [Bravo-Prieto et al. 2019 & Xu et al. 2019]

linear scaling in 𝜅 and super-linear scaling in #qubits

41
S. Aaronson: Read the fine print. Nature Physics 11, 2015.



Quantum algorithms with potential use in SciComp, cont’d

§ Quantum algorithms for …
§ linear differential equations [Berry 2010, Xin et al. 2018]
§ nonlinear differential equations [Leyton, Osborne 2008]
§ Poisson equation [Cao et al. 2013]
§ principal component analysis [Lloyd et al. 2014]
§ data fitting [Wiebe et al. 2012]
§ machine learning [Lloyd et al. 2013, Adcock et al. 2015, Biamonte et al. 

2017, Schuld et al. 2018, Perdomo-Ortiz et al. 2018, …]

42



DESIGN PRINCIPLES
LibKet: The Kwantum expression template LIBrary

43



Kwantum expression template LIBrary
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Kwantum expression template LIBrary
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Expression templates

§ C++ metaprogramming technique 
to create lightweight expressions 
whose evaluation is delayed until 
their values are really needed

Vector x(n), y(n);

46
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Expression templates

§ C++ metaprogramming technique 
to create lightweight expressions 
whose evaluation is delayed until 
their values are really needed

Vector x(n), y(n);
auto e0 = x + y;
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Expression templates

§ C++ metaprogramming technique 
to create lightweight expressions 
whose evaluation is delayed until 
their values are really needed

Vector x(n), y(n);
auto e0 = x + y;
auto e1 = 2*e0 + 1;
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Expression templates

§ C++ metaprogramming technique 
to create lightweight expressions 
whose evaluation is delayed until 
their values are really needed

Vector x(n), y(n);
auto e0 = x + y;
auto e1 = 2*e0 + 1;
auto e2 = sin(e1);
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Expression templates

§ C++ metaprogramming technique 
to create lightweight expressions 
whose evaluation is delayed until 
their values are really needed

Vector x(n), y(n);
auto e0 = x + y;
auto e1 = 2*e0 + 1;
auto e2 = sin(e1);
Vector z = e2;

-> z[i] = sin(2*(x[i]+y[i])+1);
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Filters – views on the global Q-memory

§ Starting from the full Q-memory 
filters restrict qubits step by step

auto f0 = select<0,2,3>();

51
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Filters – views on the global Q-memory

§ Starting from the full Q-memory 
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
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Filters – views on the global Q-memory

§ Starting from the full Q-memory 
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
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Filters – views on the global Q-memory

§ Starting from the full Q-memory 
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
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Filters – views on the global Q-memory

§ Starting from the full Q-memory 
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
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Filters – views on the global Q-memory

§ Starting from the full Q-memory 
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
auto f5 = gototag<0>(f4);
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Filters – views on the global Q-memory

§ Starting from the full Q-memory 
filters restrict qubits step by step

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
auto f5 = gototag<0>(f4);
auto f6 = gototag<1>(f5);
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Gates – the salt of in-memory computing

§ Gates apply to all qubits of the 
current filter chain (SIMD-ish)

auto e0 = init();
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Gates – the salt of in-memory computing

§ Gates apply to all qubits of the 
current filter chain (SIMD-ish)

auto e0 = init();
auto e1 = sel<0,2>(e0);
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Gates – the salt of in-memory computing

§ Gates apply to all qubits of the 
current filter chain (SIMD-ish)

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
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Gates – the salt of in-memory computing

§ Gates apply to all qubits of the 
current filter chain (SIMD-ish)

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
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Gates – the salt of in-memory computing

§ Gates apply to all qubits of the 
current filter chain (SIMD-ish)

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
auto e4 = cnot(

sel<0,2>(),
sel<1,4>(e3)

);
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Gates – the salt of in-memory computing

§ Gates apply to all qubits of the 
current filter chain (SIMD-ish)

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
auto e4 = cnot(

sel<0,2>(),
sel<1,4>(e3)

);
auto e5 = measure(all(e4));
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Circuits – pre-cooked quantum building blocks

§ Generic quantum algorithms that can be applied to registers of arbitrary size

auto expr = qft(…);

64

Animation created with Quirk https://algassert.com/quirk



Rule-based optimization

§ Unitarity of quantum gates

𝑆 ∘ 𝑆% = 𝑆% ∘ 𝑆 = 𝑖𝑑

§ Template metaprogramming

template<class Expr>
auto s(Expr&& expr) 
{

return QGate_S(expr);
}

auto expr = s(sdag(…));
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Rule-based optimization

§ Unitarity of quantum gates

𝑆 ∘ 𝑆% = 𝑆% ∘ 𝑆 = 𝑖𝑑

§ Template metaprogramming

template<class Expr>
auto s(Expr&& expr) 
{

return QGate_S(expr);
}

auto expr = …;

§ Explicit template specialization

template<>
auto s(QGate_Sdag&& expr)
{
return expr.getSubexpr();

}
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Compile-time loops

§ For-loop call

auto expr =
static_for<1,5,2,body>(…);

§ For-loop body

struct body
{
template<size_t k,          

class  Expr>
static constexpr auto
func(Expr&& expr) noexcept
{
return crk<k>(
sel<k-1>(all( )),
sel<k  >(all(expr)));

}
};
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Advanced techniques

§ Hook gate for user-defined mini-circuits
§ Just-in-time compilation of run-time generated quantum expressions

Work in progress
§ Decomposition gates, e.g. 𝑈 = 𝑅2 𝜑+ 𝑅3 𝜑! 𝑅2 𝜑*
§ QInteger and QPosit arithmetics
§ C and Python API using JIT compilation
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FPGA-ish ‘synthesis’

§ Generic quantum expression
auto expr = qft(init());

is independent of
§ Q-device type
§ Q-memory size (#qubits)
§ concrete input data
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FPGA-ish ‘synthesis’

§ Generic quantum expression
auto expr = qft(init());

is independent of
§ Q-device type
§ Q-memory size (#qubits)
§ concrete input data

§ Q-device specific kernel code
QData<6, cQASMv1> data;
cout << expr(data);

version 1.0
qubits 6
h q[0]
cr q[1], q[0], 1.570796326794896558
cr q[2], q[0], 0.785398163397448279
cr q[3], q[0], 0.392699081698724139
cr q[4], q[0], 0.196349540849362070
cr q[5], q[0], 0.098174770424681035
h q[1]
cr q[2], q[1], 1.570796326794896558
cr q[3], q[1], 0.785398163397448279
cr q[4], q[1], 0.392699081698724139
cr q[5], q[1], 0.196349540849362070
h q[2]
cr q[3], q[2], 1.570796326794896558
cr q[4], q[2], 0.785398163397448279
cr q[5], q[2], 0.392699081698724139
h q[3]
cr q[4], q[3], 1.570796326794896558
cr q[5], q[3], 0.785398163397448279
h q[4]
cr q[5], q[4], 1.570796326794896558
h q[5]
swap q[0], q[5]
swap q[1], q[4]
swap q[2], q[3]
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FPGA-ish ‘synthesis’

§ Generic quantum expression
auto expr = qft(init());

is independent of
§ Q-device type
§ Q-memory size (#qubits)
§ concrete input data

§ Q-device specific kernel code
QData<6, openQASMv2> data;
cout << expr(data);

version 1.0
qubits 6
h q[0]
cr q[1], q[0], 1.570796326794896558
cr q[2], q[0], 0.785398163397448279
cr q[3], q[0], 0.392699081698724139
cr q[4], q[0], 0.196349540849362070
cr q[5], q[0], 0.098174770424681035
h q[1]
cr q[2], q[1], 1.570796326794896558
cr q[3], q[1], 0.785398163397448279
cr q[4], q[1], 0.392699081698724139
cr q[5], q[1], 0.196349540849362070
h q[2]
cr q[3], q[2], 1.570796326794896558
cr q[4], q[2], 0.785398163397448279
cr q[5], q[2], 0.392699081698724139
h q[3]
cr q[4], q[3], 1.570796326794896558
cr q[5], q[3], 0.785398163397448279
h q[4]
cr q[5], q[4], 1.570796326794896558
h q[5]
swap q[0], q[5]
swap q[1], q[4]
swap q[2], q[3]
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OPENQASM 2.0;
include "qelib1.inc";
qreg q[6];
creg c[6];
h q[0];
cu1(1.570796326794896558) q[1], q[0];
cu1(0.785398163397448279) q[2], q[0];
cu1(0.392699081698724139) q[3], q[0];
cu1(0.196349540849362070) q[4], q[0];
cu1(0.098174770424681035) q[5], q[0];
h q[1];
cu1(1.570796326794896558) q[2], q[1];
cu1(0.785398163397448279) q[3], q[1];
cu1(0.392699081698724139) q[4], q[1];
cu1(0.196349540849362070) q[5], q[1];
h q[2];
cu1(1.570796326794896558) q[3], q[2];
cu1(0.785398163397448279) q[4], q[2];
cu1(0.392699081698724139) q[5], q[2];
h q[3];
cu1(1.570796326794896558) q[4], q[3];
cu1(0.785398163397448279) q[5], q[3];
h q[4];
cu1(1.570796326794896558) q[5], q[4];
h q[5];
swap q[0], q[5];
swap q[1], q[4];
swap q[2], q[3];

Quantum-Inspire IBM Q Experience



CUDA-ish stream execution model

§ High latency is caused by
§ Python-based vendor tools 

and complexity of the process
§ remote access to cloud-based 

Q-devices with waiting queues

72

// Blocking execution
QJob* job = data.execute(…);

// Result as JSON object
json result = job->get();



CUDA-ish stream execution model

§ High latency is caused by
§ Python-based vendor tools 

and complexity of the process
§ remote access to cloud-based 

Q-devices with waiting queues

§ Asynchronous execution
§ hides latencies by continuing 

the classical program flow

// Non-blocking execution
QJob* job = data.execute_async(…);

// do other tasks

// Wait for completion
job->wait();
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CUDA-ish stream execution model

§ High latency is caused by
§ Python-based vendor tools 

and complexity of the process
§ remote access to cloud-based 

Q-devices with waiting queues

§ Asynchronous execution
§ hides latencies by continuing 

the classical program flow
§ enables concurrent execution 

of kernels via multiple streams

QStream stream0, stream1;

QJob* job0 =
data0.execute_async(stream0,…);

QJob* job1 =
data1.execute_async(stream1,…);

// do other tasks

if (job0->query()) { … }
if (job1->query()) { … }
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ONGOING DEVELOPMENTS
LibKet: The Kwantum expression template LIBrary
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Real-valued data

§ IEEE-754 floating points require 32-64 qubits per datum à impractical
§ Encoding real-number in a single qubit à tempting but not succeeded yet
§ More (qu)bit efficient number formats à Posits (Type III UNUMs)
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sign regime exponent fraction

J. Gustafson: Beating floating point at its own game: posit arithmetic



Posits
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Posit arithmetic

§ Example:

3 = +1011
4 = +1100

8 = +1101
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Posit arithmetic on quantum computers

79T. Driebergen: Designing a Quantum Algorithm for Real-Valued Addition Using Posit Arithmetic, BSc Thesis, TU Delft, 2019
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Posit arithmetic on quantum computers

80T. Driebergen: Designing a Quantum Algorithm for Real-Valued Addition Using Posit Arithmetic, BSc Thesis, TU Delft, 2019

3

4

0 3

4

4

swap & ‘copy’ Lookup table based adder

3

4

8
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Conclusion

§ A cross-platform SDK for Q-accelerated scientific computing
§ Rapid prototyping and testing of quantum expressions
§ Seamless integration into (C-accelerated) applications

§ Ongoing work
§ Implementation of HHL and QInteger/QPosit arithmetics
§ Cloud platform https://INGInious.ewi.tudelft.nl

§ Publications
§ MM, Schalkers: A cross-platform programming framework for quantum-

accelerated scientific computing. Submitted to ICCS 2020
§ Driebergen, MM: A novel quantum algorithm for adding real-valued 

numbers using posit arithmetic. Submitted to RC 2020
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Simulation-based design and analysis cycle

83

ANSYS Calculations 

Using several tutorials and Whe pUofeVVoU¶V inVWUXcWion, one of Whe VWXdenWV conducted analysis of 
Whe NACA 2412¶V aeUod\namicV on ANSYS¶V FlXid FloZ (FlXenW) VolYeU. RaWheU Whan UoWaWing 
Whe Zind YelociW\¶V angle of aWWack, a foUmXla ZaV deUiYed Wo UoWaWe Whe baVe cooUdinaWeV of Whe 
NACA 2412 by a certain angle ϴ. This method ensured the most consistent mesh across all 
angleV WhaW ZeUe WeVWed. AfWeU impoUWing Whe aiUfoil¶V UoWaWed cooUdinaWeV, a meVh ZaV geneUaWed 
that would strategically measure the aerodynamics of the airfoil at key regions. Across all angle 
measurements, three mesh qualities² course, refined, and fine² were tested to determine which 
degree of mesh quality produced the most accurate result. After generating the mesh, Fluent 
simulations with a constant wind velocity V� = 30 m/s were run until convergence or 150000 
iterations. The numerical coefficients of lift and drag were recorded alongside images of the 
velocity vectors (Figure 3) and pressure contours (Figure 4). The wind velocity produced the low 
Re\nold¶V NXmbeU of Re = 426,248 for all three mesh qualities across ten angles of attack 
between 0 to 16 degrees, resulting in thirty full simulations.  

 

  Figure 3: Velocity Vectors (ϴ = 0°)           Figure 4: Pressure Contours (ϴ = 0°) 

In addition, the angle of attack ϴ = 10° was specifically tested across 5 levels of increasing mesh 
quality. The summary of the tests is displayed in Figure 5 below. ThiV gUaph¶V X YalXeV of 1, 2, 
and 3 correspond to the coarse, refined, and fine mesh qualities, respectively, which all 
simulations were run with. Only the 10° angle of attack was tested at the mesh qualities 4 and 5, 
deemed ultra-fine e[WUemel\ fine, Wo inYeVWigaWe hoZ ANSYS¶V UeVXlWV YaU\ aV meVh TXaliW\ 
increases.  

 

Figure 8: Coefficient of Lift vs. Angle of Attack 

Assessment 

The honors students acquired new knowledge and skills by creating equipment and testing 
procedures to provide learning opportunities for future engineering students. Instead of learning 
information from separate classes where practical applications are often rare, the students were 
given a hands-on project that required knowledge previously unknown to them. With their 
professor¶s instructions and examples, the students gradually and effectively developed the 
necessary knowledge for implementing their research. This new knowledge includes deeper 
understanding of SOLIDWORKS, ANSYS, MATLAB, and machining techniques, giving the 
students real-world skills that will be used in their future engineering endeavors. 

A particular example of the dynamic learning environment created by this project may be seen in 
the expansion of the students¶ knowledge of SOLIDWORKS. The honors students had already 
learned the basics of the CAD program through a required course, but they did not have all of the 
knowledge they needed to design the airfoil and the multi-manometer. The nature of creating 
these two models produced several difficulties that the university¶s course did not cover. For 
example, the students searched for several days for a method to input the exact coordinates of the 
holes along the airfoil¶s surface. Through trial and error tests, along with the guidance of the 
professor, the team was able to find a solution that provided the desired result in the 
SOLIDWORKS model. This gradual and experimental form of learning vastly expanded the 
students¶ knowledge of SOLIDWORKS, giving them confidence to complete the rest of the 
challenges in the project¶s design process. Additionally, the knowledge gained from the 
experimental nature of this learning process was more effectively retained than in a common 
classroom setting.  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16

C
oe

ff
ic

ie
nt

 o
f  

Li
ft

 

Angle of Attack (deg) 

Coefficient of Lift 
Distribution 

Simulated

Experimental

1. Design 2. Simulation

3. Analysis

4. Redesign

Matsson et al. Aerodynamic Performance of the NACA 2412 Airfoil at Low Reynolds Number, 2016 ASEE Annual Conference & Exposition



Academic model problem

§ Problem: Minimize the difference

𝑑4 = 𝑢4 − 𝑢4∗

between the solution 𝑢4 and a 
given profile 𝑢4∗ w.r.t. the costs

𝒞 𝑑4 , 𝑝 =𝑑46𝑀𝑑4

such that 𝑑4 solves the system

𝐴4𝑑4 = 𝑓4 − 𝐴4𝑢4∗
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