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Motivation

FDM, FVM, FEM, BEM, IgA, ... PINNs, DeepONets, FourierNets, ...
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Motivation

FDM, FVM, FEM, BEM, IgA, ... PINNs, DeepONets, FourierNets, ...

) sound mathematical foundation ) fast evaluation (costly training!)
) established engineering workflows vs. @) inclusion of (measurement) data
) no cost amortization over multiple ) lack of convergence theory

runs, no real-time capability @3 lack of general acceptance

Common misconceptions
® “Method a is/is not as accurate as method b"

® “Method a is x-times faster/slower than method b"

Better question to ask

* What are the specific strengths/weaknesses of the different approaches?
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Motivation

FDM, FVM, FEM, BEM, IgA, ... PINNs, DeepONets, FourierNets, ...

) sound mathematical foundation ) fast evaluation (costly training!)

) established engineering workflows and | ) inclusion of (measurement) data

Common misconceptions
® “Method a is/is not as accurate as method b"

® “Method a is x-times faster/slower than method b"

Better questions to ask
* What are the specific strengths/weaknesses of the different approaches?
® How can we combine the strengths of both classes of methods?
e What is the envisaged purpose of the new approach?
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Interactive Design-through-Analysis

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the
same computational framework with seamless switching between both approaches

Photo: Siemens — Simulation for Design Engineers
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

") easy to implement for ‘any' PDE

because AD magic does it for you
F= 8,0 +7-£U) ) combined un-/supervised learning

L) poor extrapolation/generalization

~

L) point-based approach requires
re-evaluation of NN at every point

) rudimentary convergence theory
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

") easy to implement for ‘any' PDE

because AD magic does it for you
F= 8,0 +7-£U) ) combined un-/supervised learning
L) poor extrapolation/generalization

L) point-based approach requires
re-evaluation of NN at every point

) rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Go(u)(y) = ,;: be(ul(zr), u(@a), .., wl@m)) s (y)

branch trunk
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

") easy to implement for ‘any' PDE

because AD magic does it for you
F= 8,0 +7-£U) ) combined un-/supervised learning
L) poor extrapolation/generalization

L) point-based approach requires
re-evaluation of NN at every point

) rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

q
G ~3 RN . ,
o(u)(y) kgl k(u(@1), u(@2) u(@m) () Don't we know good bases?

branch trunk
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Bases

Al/ML community: Fourier series, orthogonal polynomials, problem-specific basis
functions — impractical for practical computer-aided geometric design
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Bases

Al/ML community: Fourier series, orthogonal polynomials, problem-specific basis
functions — impractical for practical computer-aided geometric design

FEM community: plethora of finite element basis functions defined on the computational
mesh — impractical for a priori training of generic networks

CAGD community: trimmed NURBS — maybe, but we're not yet there

IGA community: multi-patch tensor-product or locally adaptive B-splines — Let's do it!
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B-spline basis functions

Cox de Boor recursion formula

1:k b0 bl bo(f):{ 1 if&<E<é&m

b2 b3 ‘ 0 otherwise
B(e) = =5 e
. . : L () — ()
0 1 2 3 4 o
- TR s (5
knot vector Z = [0, 1, 2,3, 4] Sitpr1 — &it1
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B-spline basis functions

Cox de Boor recursion formula

v . b0(5)={ 1 if& <€E<é&n

b2 i

b3 0 otherwise
P(E) = 58 pp1e
+ | | > a5 Sitp— & ©)
0 1 2 3 4 i _ .
_ + §+p+1 § blp+11(€)
knot vector Z = [0, 1, 2,3, 4] Sitpr1 — &it1

Many good properties: compact support [&;,&ip+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...
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Isogeometric Analysis

Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(&,n) = b7 (€) - b(n), ir=(k—1)-ni+1i, 1<i<n; 1<k<mny,
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Isogeometric Analysis

Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

B;(&,n) :==bL(&) - bl(n), i=k-1)n+i 1<i<n;, 1<k<ng,

n
Many more good properties: partition of unity > B;(£,7) = 1, CP~! continuity, ...
i=1
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Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain Q; C R?

n

xp(&m) =Y Bi(&n)-xi  V(n) €01 = O

i=1

® the shape of €}, is fully specified by the
set of control points x; € R¢
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Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain Q; C R?

n

xn(&m) =D Bi(&,n) - x;  ¥(En) €[0,1]* =

i=1

® the shape of €}, is fully specified by the
set of control points x; € R¢

® interior control points must be chosen
such that ‘grid lines' do not fold as this
violates the bijectivity of x5 : 0 —
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Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain Q; C R?

n

xn(&m) =D Bi(&,n) - x;  ¥(En) €[0,1]* =

i=1

® the shape of €}, is fully specified by the
set of control points x; € R¢

® interior control points must be chosen
such that ‘grid lines' do not fold as this
violates the bijectivity of x5 : 0 —

e refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Qp and can be used to generate finer
computational ‘grids’ for the analysis
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Isogeometric Analysis
Model problem: Poisson’s equation

—Auh:fh in Qh, Up = gn ON 8Qh

with
(geometry) xp(&n) = > _Bi(&,n) xi  V(&n) €[0,1]?
i=1
(solution) up o xp(€,m) = Y Bi(&m)-ui V(&) €[0,1]
i=1

(r.h.s vector) froxn(&,m) = ZBz‘({fﬂ?) fi V(& m) €0,1)?

(boundary conditions) grnoxp(&,m) = ZBz’(ﬁ;??) i v(&,m) € 0[0, 1]2
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Isogeometric Analysis

Abstract representation
Given x; (geometry), f; (r.h.s. vector), and g; (boundary conditions), compute

U x| [91 xi] [A] [9
= A_l N N -b o I I
Un, Xn dn Xn In n
Any point of the solution can afterwards be obtained by a simple function evaluation

a1
(6777) € [07 1]2 = up OXh(fa'U) = [Bl(gvn)’ e 7Bn(§777)] ’

Un,
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Isogeometric Analysis
Abstract representation
Given x; (geometry), f; (r.h.s. vector), and g; (boundary conditions), compute
U x| [91 xi] [A] [9
= A_l N -b R
Un, Xn dn Xn In n
Any point of the solution can afterwards be obtained by a simple function evaluation

a1
(6777) € [07 1]2 = up OXh(fa'U) = [Bl(gvn)’ e 7Bn(§777)] ’

Un,

Let us interpret the sets of B-spline coefficients {x;}, {fi}, and {g;} as an efficient
encoding of our PDE problem that is fed into our IgA machinery as input.

The output of our IgA machinery are the B-spline coefficients {u;} of the solution.
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Isogeometric Analysis + Physics-Informed Machine Learning

HERIRARARR]

IgANet: replace computation

3}
=471
Un,
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Isogeometric Analysis + Physics-Informed Machine Learning

IgANet: replace computation by physics-informed machine learning

uy x1] [fi] [o
—1gANet [ | = |, ||| | (e, pth) e

Unp, Xn fn dn
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Isogeometric Analysis + Physics-Informed Machine Learning
IgANet: replace computation by physics-informed machine learning

Uy x1] [fi] [9n

= lgANet P R N I I

: ; (é(k)’ n(k))Nsamples
Un Xn fn 9n

k=1

Compute the solution from the trained neural network as follows

Ul Ul X1 J1 g1
uh(§777) = [Bl(faﬁ)a---,Bn(f,U)] N = IgANet R

Un, Un, Xn fn gn
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lgANet architecture

o))
SRR
i ¢ Xe e‘ ——— loss = lossppE + lossgpr
R

“A\e,‘\ ,‘\e' @ end training

coords (€™, n™*))iL,

E Oloss
) 9w, b)
and continue training

— update w, b
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Loss function

Model problem: Poisson’s equation with Dirichlet boundary conditions

lossppg = N&Q 3 A [uh oxp, (ﬁ(k)yﬂ(k))] — fnoxp (5(’6),,7(16)) ‘2
k=1

I b\ (k) (k) *k) ()|

OSSBDR = Nr 2= up © Xp, (f i ) —YghOXp (5 i ))

Express derivatives with respect to physical space variables using the Jacobian J, the
Hessian H and the matrix of squared first derivatives @) (Schillinger et al. 2013):

9B 9°B
Ox2 €2 8B
2B | _ H-T 82B T =T | 9
oxdy | — Q oton | H"J la_B
92B 92B o
oy on?
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Two-level training strategy

For [Xla o 7xn] € SgeOr [fla o 7fn] € Srh5y [917 s 7gn] € Sbcond do
For a batch of randomly sampled (£x, k) € [0,1]2 (or the Greville abscissae) do

X1 f1 9 Ul
Train IgANet N I I I ;(£k7nk)ivj;1p\es o

Xn fn dn Un

EndFor
EndFor

Details:
® 7 x T bi-cubic tensor-product B-splines for x;, and wj,, C%-continuous

® TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and RelLU activation
function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped
after 3.000 epochs w/o improvement of the loss value

Master thesis work by Frank van Ruiten, TU Delft
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Test case: Poisson's equation on a variable annulus

2rad

3rad

Master thesis work by Frank van Ruiten, TU Delft
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Preliminary results

0.30-‘4777«T777——7 — ——T———r—\\
0.25——‘777 n 777}{\\ \
0.201 — NN\

3rad

Master thesis work by Frank van Ruiten, TU Delft
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Preliminary results

3rad

Master thesis work by Frank van Ruiten, TU Delft
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Preliminary results

3rad

Master thesis work by Frank van Ruiten, TU Delft




Let's have a look under the hood

Computational costs of PINN vs. IgANets, implementation aspects, ...
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Computational costs

Working principle of PINNs
x = u(x) := NN(x; f, 9, G) = oL(Wro(... (01(Wix +b1))) + by)

® use AD engine (automated chain rule) to compute derivatives, e.g., u, = NN,

® use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training
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Computational costs

Working principle of PINNs
x — u(x) :=NN(x; f,9,G) = o,(Wro(...(c1(Wix+by))) + byp)

® use AD engine (automated chain rule) to compute derivatives, e.g., u, = NN,

® use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgANets
(%i, fi, Gili=1,...n = [Wi)i=1,..n == NN(x4, fi, 05,0 =1,...,n)

* use mathematics to compute derivatives, e.g., Vyu = (3, Ve Bi(&)u;) Jét

® use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

A(dgu(§) A(dgbju;) & ryp Ou;
——z i —M@%

[

7
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Towards an ML-friendly B-spline evaluation

Major computational task (illustrated in 1D)

Given sampling point £ € [£;,&+1) compute for r > 0

dgu(€) = [dg?_,(8), -, G (E)] - [uipy - -, i

network’s output

Textbook derivatives

r—1 r—1pp—1
dzb’%@:(p—l)( —d 1 © | A “’)

Sitp — i1 Sitp—1—&i

with

Sivp — & Civpr1 — Eip1 T g 0 otherwise

] bo(g):{ LG <6< b

z
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Towards an ML-friendly B-spline evaluation

Matrix representation of B-splines (Lyche and Morken 2011)

|
[dg i—p(g)v s ’dgbf(g)} = p—Rl (6) T Rp—r(g)déRp—r-i-l T ngp

with k& x k 4+ 1 matrices R (§), e.g.

B TS o S e Y
R1(§) - [&-5-1—52‘ fi+1—§i]

5§i+1g€ 55—&5—1 0
_ i+1—GQi—1 i+1—GQi—1
Ry(€) = 0 &ita—¢& E=¢i

Sita—&i Eit2—&;
Ry(€) = ...
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An ML-friendly B-spline evaluation
Algorithm 2.22 from (Lyche and Morken 2011)

®b=1
®@Fork=1,....p—r
o t]. (gl k+17"'7§l)

(G5 &itn)
(€ —t1) + (b2 —t1)
=[(1-—w)®b,0]+[0,w ® b]
(3] Fork—p—r—i—l,...,
Ot =(Cikr1,-,6)
D t2 = (§iv1,-- -, 8itk)
(3) W—l—(tg—tl)
®b=[-wOb,0+[0,wob]
where +— and ® denote the element-wise division and multiplication of vectors, respectively.
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An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Morken 2011) with slight modifications
®b=1
®Fork=1,....p—r
O t1=(Ei—kt15---, &)
O tor = (&1, &ivr) — 1
© mask = (tg; < tol)
O w = (¢ — ty—mask) + (tg; —mask)
Ob=[(1-w)©b,0]+[0,wOb]
®@Fork=p—r+1,...,p
@t = (Sikr15---580)
@ tor = (&ir1s-- 5 &irk) — b1
© mask = (tg; < tol)
O w = (1-mask) + (t9; —mask)
O b=[-wOb,0+[0,wOb]
where = and © denote the element-wise division and multiplication of vectors, respectively.

3
TUDelft 22 /31



TTT T T T T T T T
3,
©
Y

LML L L B O
3, 3,
o ©
Y Y

TTT T T T T T T T
g,
il
Y

@
[ Tesla V100S PCle 32G mmm AMD EPYC 7402 24-Core Processor Il reference

\‘|||“\m.\.|.|,|,|,| |‘||||“hm.\.\.m |“|||W|\M.\.\.U I“|||W|\M.\.\.\.\ “|||“NM.LM.\

) -
o =] o (=) =]
— - - - =

102
100

-
|
=]
=

Anqua/su ur swi 20BN

Performance evaluation - bivariate B-splines




TTT T T T T T T T
3,
©
Y

TTT T T T T T T T
3,
©
Y

TTT T T T T T T T
3,
o
Y

TTT T T T T T T T
g,
il
Y

@
[ Tesla V100S PCle 32G mmm AMD EPYC 7402 24-Core Processor Il reference

|‘||||W|m.\.\.u,\ “|||W|M.\.\.\.U “|||\m|\|u.\.\.\ “||||“\\|\M.W “||||\|\M|\MM

-
=]
=

o =] o
— - -

10°
102
100

-
|
=]
=

Anqua/su ur swi 20BN

Performance evaluation - trivariate B-splines




Performance evaluation - bivariate B-splines

Wallclock time in ns/entry

10°

1071

I Fujitsu A64FX 48-Core Processor mmm AMD EPYC 7402 24-Core Processor Il reference

Ookami Cluster @ Stony Brook: gcc12.2 ’-0fast -mcpu=a64fx’
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Performance evaluation - trivariate B-splines

10°

Wallclock time in ns/entry
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Interactive Design-through-Analysis

Front-ends
o o )
> gustaf Three.js modeler .
by TU Vienna by SURF

WebSockets protocol for interactive spline modeling and visualization

Back-ends




Conclusion and outlook

IgANets combine classical numerics with physics-informed machine learning and may finally

g

enable integrated and interactive design-through-analysis workflows

WIP
* interactive DTA workflow (/w SURF)
® use of IgA and IgANets in concert

® transfer learning upon basis refinement
MATHEMATICS:

KEY ENABLING TECHNOLOGY
FOR SCIENTIFIC MACHINE
LEARNING

Short paper: Moller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. '~

What's next
@ Journal paper and code release (including Python API) in preparation
® CISM-ECCOMAS Summer School Scientific Machine Learning in Design Optimization
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