
Quantum Computers
Will they change the way in which we solve

(mathematical) problems in the future?

Dr. rer. nat. Matthias Möller
Assistant Professor, Numerical Analysis
Delft University of Technology
Delft Institute of Applied Mathematics

TU Delft

§ 8 Faculties
§ 16 Bachelor programmes
§ 32 Master programmes
§ 23,460 Students
§ 2,800 PhD students
§ 3,448 Scientific staff
§ 253 Professors

2

Quantum Computing at TU Delft

3

Delft
Institute of
Applied
Mathematics

4

Outlook

§ Basic Concepts of quantum computing
§ Quantum bits, gates, and algorithms

§ Quantum-accelerated design optimization
§ A conceptual framework

§ Practical aspects of quantum computing
§ SDKs and good practices

§ Conclusion

5

QUANTUM BITS
Basic concepts of quantum computing

6

From bits to quantum bits

§ Classical bits § Quantum bits (qubits)

7
1

0 0

1

From bits to quantum bits

§ Classical bits § Quantum bits (qubits)

8
1

0 | ⟩0

| ⟩1

The Bloch sphere

9

The Bloch sphere

10

The Bloch sphere

§ Quantum state

| ⟩# = cos (2 ⋅ | ⟩0 + -./ ⋅ sin (2 ⋅ | ⟩1

§ Basis states | ⟩0 and | ⟩1

§ Latitude (∈ 0, 5

§ Longitude 6 ∈ [)0,25

11

The Bloch sphere, cont’d

§ ! = 0 implies

| ⟩& = 1 ⋅ | ⟩0 + *+, ⋅ 0 ⋅ | ⟩1 = | ⟩0

§ ! = - implies

| ⟩& = 0 ⋅ | ⟩0 + *+, ⋅ 1 ⋅ | ⟩1 = | ⟩1

§ Poles represent classical bits

12

The Bloch sphere, cont’d

§ ! = #
$ and % = 0 implies

| ⟩) = 1
2 ⋅
| ⟩0 + .

/0

2 ⋅
| ⟩1 = | ⟩0 +| ⟩1

2

§ ! = #
$ and % = π implies

| ⟩) = 1
2 ⋅
| ⟩0 + .

/#

2 ⋅
| ⟩1 = | ⟩0 −| ⟩1

2

13

What to do with this added value?

§ Classical bits § Quantum bits (qubits)

14
1

0 | ⟩0

| ⟩1

Intermezzo: Schrödinger’s cat

15

Intermezzo: Schrödinger’s cat, cont’d

§ Before opening the box § After opening the box

OR

16

Intermezzo: Schrödinger’s cat, cont’d

§ Repeating the experiment many times 50% of the cats are dead, 50% alive

17

From Bloch’s sphere to probabilities

§ Coefficients of the basis expansion

| ⟩# = cos (2 ⋅ | ⟩0 + -./ ⋅ sin (2 ⋅ | ⟩1

represent the probability amplitude that the quantum state | ⟩# collapses to
either of the two basis states | ⟩0 or | ⟩1 upon measurement since

cos (2
3
+ -./ ⋅ sin (2

3
= 1

for all latitudes (∈ 0, 6 and longitudes 7 ∈ [)0,26

18

1:16

Life of Phi

§ Initialization into pure state | ⟩0
§ Travelling on Bloch’s sphere
§ Collapsing to either | ⟩0 or | ⟩1

19

Life of Phi

§ Initialization into pure state | ⟩0
§ Travelling on Bloch’s sphere
§ Collapsing to either | ⟩0 or | ⟩1

§ How to describe the travelling?

20

QUANTUM GATES
Basic concepts of quantum computing

21

Detour to linear algebra

§ Unique basis state labels

1
0 ≔ | ⟩0 , 0

1 ≔ | ⟩1

§ Probability amplitudes

'(≔ cos ,2 , '. ≔ /01 ⋅ sin ,2

§ Yet another representation of a single quantum state

| ⟩5 = '(1
0 + '. 0

1 = '(
'.

22

Detour to linear algebra, cont’d

§ Initialization into pure state

| ⟩# = 1 ⋅ 1
0 + 0 ⋅ 0

1 = 1
0

§ Multiplication with)

) ⋅ | ⟩# ≔ 0 1
1 0 ⋅ 1

0 = 0
1

§ Multiplication with) once more

) ⋅) ⋅ | ⟩# ≔ 0 1
1 0 ⋅ 0

1 = 1
0

23

Detour to linear algebra, cont’d

§ Initialization into pure state

| ⟩# = 1 ⋅ 1
0 + 0 ⋅ 0

1 = 1
0

§ Multiplication with another matrix

) ⋅ | ⟩# ≔ 1
2
1 1
1 −1

1
0 = 1

2
1
1

§ Double application of matrix) gives

)- ⋅ | ⟩# ≔ 1
2
1 1
1 −1

1
2
1
1 = 1

0
24

Et voilà, our first quantum algorithm

! ⋅ # ⋅ ! ⋅ # ⋅ 1
0 = 0

−1 = 0 ⋅ | ⟩0 − 1 ⋅ | ⟩1

§ Quantum circuit

25

| ⟩0 H H = 1

Probability −1 * = 1
to measure the 1 state

1 version 1.0
2
3 qubits 1
4 prep_z q[0]
5 X q[0]
6 H q[0]
7 X q[0]
8 H q[0]
9 measure q[0]

26

H H

quantum-inspire.com

QUANTUM ALGORITHMS
Basic concepts of quantum computing

27

Bell state

§ 50:50 chance to measure | ⟩0? or | ⟩1?

§ But then we know the value of the second qubit without measurement since

| ⟩01

| ⟩10

28

| ⟩()) = 1
2 ⋅
| ⟩00 + 0 ⋅ | ⟩01 + 0 ⋅ | ⟩10 + 1

2 ⋅
| ⟩11

Bell state

29

| ⟩#$$ = 1
2 ⋅
| ⟩00 + 0 ⋅ | ⟩01 + 0 ⋅ | ⟩10 + 1

2 ⋅
| ⟩11

Intermezzo: How difficult can it be to add two integers?

30

Intermezzo: How difficult can it be to add two integers?

31

as well be interchanged according to the changes in the order of the rotation gates.

[H,Rx] = HRx �RxH
1
p
2

✓
1 e2⇡i/2x

1 �e2⇡i/2x

◆
�

1
p
2

✓
1 1

e2⇡i/2x �e2⇡i/2x

◆
6= 02,2 (4.7)

[Rx, Ry] = RxRy �RyRx

✓
1 0
0 e2⇡i/2(x+y)

◆
�

✓
1 0
0 e2⇡i/2(x+y)

◆
= 02,2 (4.8)

With this in mind, the quantum circuit from figure 4.1 could be tidied up. This results
in the quantum circuit in figure 4.7 that adds two arbitrary n-qubit registers.

Figure 4.7. The tidied up quantum circuit that adds |b1b2 · · · bni to |a1a2 · · · ani.

The short-hand notation for quantum addition is given in figure 4.8.

Figure 4.8. The addition gate that adds b to a.

To illustrate the quantum addition routine outlined in this section, consider a = 6 and
b = 3. Then n = 4 in order to satisfy a, b < 2n�1, so no overflow can occur. a = 6

62

Finally, equation (3.41) is the result of the QFT.

| i =
1

p
N

⇣
|0i+ e2⇡i[0.qn] |1i

⌘⇣
|0i+ e2⇡i[0.qn�1qn] |1i

⌘
· · ·

⇣
|0i+ e2⇡i[0.q1q2···qn] |1i

⌘

(3.41)

Using this general circuit, the circuit that applies the QFT to some quantum register
can be obtained. For example, the QFT on three qubit is performed by the circuit in
figure 3.6.

Figure 3.6. The quantum circuit that performs the QFT on three qubits.

If the QFT is used in a more extensive circuit, not all gates will be included in the
schematic circuit. Else, the schematic will quickly become cluttered. Because the QFT is
such a general routine, it will be represented in a circuit as in figure 3.7.

Figure 3.7. The representation for the QFT performed on all six qubits.

3.4 Implementation of the Inverse Quantum Fourier Transform

Similarly to the classical case, in order to transform a specific quantum register back
from the Fourier domain an inverse QFT is needed. Because the QFT is (as all quantum
gates) a unitary gate, the inverse QFT is obtained by reversing the order of all gates that
constitute the QFT and taking their hermitian conjugate. It is easily seen that H† = H

54

and SWAP† = SWAP. On the other hand,

R†

' =


1 0
0 e2⇡i/2

'

�†
=


1 0
0 e�2⇡i/2'

�
:= R�' (3.42)

The inverse QFT circuit is thus obtained by reversing the order of the gates and replacing
R' by R�'. For example, the inverse circuit for the three qubit QFT from figure 3.6 is
given in figure 3.8.

Figure 3.8. The quantum circuit that performs the inverse QFT on three qubits.

Just like the QFT, in a more extensive circuit the inverse QFT is represented as shown
in figure 3.9.

Figure 3.9. The representation for the inverse QFT on all six qubits.

3.4.1 Time Complexity

The quantum circuit to Fourier transform or inverse Fourier transform a register of n
qubits uses a Hadamard gate and n� 1 controlled phase shift gates on the first qubit, a
Hadamard and n � 2 controlled phase shift gates on the second qubit and so on, and
only a Hadamard gate on the last qubit. The swaps in the end require a maximum of n

2
SWAP gates (if n is odd, the precise number is n�1

2). Therefore, the total number of

55

vd. Lans: Quantum Algorithms and their Implementation on Quantum Computer Simulators, Master thesis, 2017

1 = 012

2 = 102

1 = 012

3 = 112

Intermezzo: How difficult can it be to add two integers?

32
D.E. Searls, Computer Organization & Systems, dsearls.org

Intermezzo: How difficult can it be to add two integers?

33

def add(a: Int, b: Int) = a + b

add(1, 2)

cse-resetsg.blogspot.com

CONCEPTUAL FRAMEWORK
Quantum-accelerated design optimization

34

Airfoil design

35

Image gallery at nasa.gov

airspacemag.com

CFInotebook.net

Simulation-based design and analysis cycle

36

ANSYS Calculations

Using several tutorials and the professor’s instruction, one of the students conducted analysis of
the NACA 2412’s aerodynamics on ANSYS’s Fluid Flow (Fluent) solver. Rather than rotating
the wind velocity’s angle of attack, a formula was derived to rotate the base coordinates of the
NACA 2412 by a certain angle ϴ. This method ensured the most consistent mesh across all
angles that were tested. After importing the airfoil’s rotated coordinates, a mesh was generated
that would strategically measure the aerodynamics of the airfoil at key regions. Across all angle
measurements, three mesh qualities— course, refined, and fine— were tested to determine which
degree of mesh quality produced the most accurate result. After generating the mesh, Fluent
simulations with a constant wind velocity V∞ = 30 m/s were run until convergence or 150000
iterations. The numerical coefficients of lift and drag were recorded alongside images of the
velocity vectors (Figure 3) and pressure contours (Figure 4). The wind velocity produced the low
Reynold’s Number of Re = 426,248 for all three mesh qualities across ten angles of attack
between 0 to 16 degrees, resulting in thirty full simulations.

 Figure 3: Velocity Vectors (ϴ = 0°) Figure 4: Pressure Contours (ϴ = 0°)

In addition, the angle of attack ϴ = 10° was specifically tested across 5 levels of increasing mesh
quality. The summary of the tests is displayed in Figure 5 below. This graph’s X values of 1, 2,
and 3 correspond to the coarse, refined, and fine mesh qualities, respectively, which all
simulations were run with. Only the 10° angle of attack was tested at the mesh qualities 4 and 5,
deemed ultra-fine extremely fine, to investigate how ANSYS’s results vary as mesh quality
increases.

Figure 8: Coefficient of Lift vs. Angle of Attack

Assessment

The honors students acquired new knowledge and skills by creating equipment and testing
procedures to provide learning opportunities for future engineering students. Instead of learning
information from separate classes where practical applications are often rare, the students were
given a hands-on project that required knowledge previously unknown to them. With their
professor’s instructions and examples, the students gradually and effectively developed the
necessary knowledge for implementing their research. This new knowledge includes deeper
understanding of SOLIDWORKS, ANSYS, MATLAB, and machining techniques, giving the
students real-world skills that will be used in their future engineering endeavors.

A particular example of the dynamic learning environment created by this project may be seen in
the expansion of the students’ knowledge of SOLIDWORKS. The honors students had already
learned the basics of the CAD program through a required course, but they did not have all of the
knowledge they needed to design the airfoil and the multi-manometer. The nature of creating
these two models produced several difficulties that the university’s course did not cover. For
example, the students searched for several days for a method to input the exact coordinates of the
holes along the airfoil’s surface. Through trial and error tests, along with the guidance of the
professor, the team was able to find a solution that provided the desired result in the
SOLIDWORKS model. This gradual and experimental form of learning vastly expanded the
students’ knowledge of SOLIDWORKS, giving them confidence to complete the rest of the
challenges in the project’s design process. Additionally, the knowledge gained from the
experimental nature of this learning process was more effectively retained than in a common
classroom setting.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16

C
oe

ff
ic

ie
nt

 o
f

Li
ft

Angle of Attack (deg)

Coefficient of Lift
Distribution

Simulated

Experimental

1. Design 2. Simulation

3. Analysis

4. Redesign

Matsson et al. Aerodynamic Performance of the NACA 2412 Airfoil at Low Reynolds Number, 2016 ASEE Annual Conference & Exposition

1. Design ! "

§ Design parameters

" = $%, … , $%(

§ Admissible design space

) = $%*+,, $%*-. ×⋯× $%(*+,, $%(*-.

37

 8

• 4th control point distribution:

Figure 6

The B-spline curve is defined by 14
control points with different degrees
of freedom.

In order to increase the accuracy at
the leading edge, two control points
are used to define this region. These
points are free to move in both x
and y directions.

The distribution is refined at the
leading and trailing edges.

Number of design variables = 14

2.2.1. Geometrical flexibility

A simple test is performed with MATLAB to test the flexibility of the distributions described
above. In principle, any physically realistic shape should be achievable to allow design from
an initial arbitrary shape. Hence, the aim of the test is to try reproduce different existing
airfoil profiles using a given distribution and evaluate the maximal geometrical difference
between the two profiles.

The geometrical difference between the two curves is evaluated vertically at 100 different
points not equally spaced along the chord length. Indeed the density of evaluation points is
higher at the leading and trailing edges. The test is directed by the MATLAB function
lsqnonlin developed to solve nonlinear least-squares (nonlinear data-fitting) problems. The
input parameters are the coordinates of the control points (according to their degrees of
freedom) and the output is the vector of geometrical differences computed at each evaluation
point. The function minimizes the difference between the two curves by gradually moving the
control points (see figure below).

Figure 7: Test of the validation of the control point distribution

Mauclère, Automatic 2D Airfoil Generation, Evaluation and Optimisation using MATLAB and XFOIL, Master thesis, 2009

2. Simulation

§ Mathematical model

ℳ ";$ = 0

§ Solution for one particular design

" = "($ ()

38

Linné FLOW Centre and SeRC, KTH, Sweden

3. Analysis

§ Cost functional

!(#;%)

39

Lift

Drag

Operation conditions

40

Abstract design optimization

§ Problem: Find a set of admissible design parameters ! such that solution
"($!) to the mathematical model ℳ(",$!) computed on the design
$(!) optimizes the cost functional (", $(!) for fixed operation condition

41

Yes No

Abstract design optimization

§ Problem: Find a set of admissible design parameters ! such that solution
"($!) to the mathematical model ℳ(",$!) computed on the design
$(!) optimizes the cost functional (", $(!) for fixed operation condition

42

Microprocessors and Microsystems 66 (2019) 67–71
Contents lists available at ScienceDirect

Microprocessors and Microsystems
journal homepage: www.elsevier.com/locate/micpro

A conceptual framework for quantum accelerated automated design
optimization
Matthias Möller a , ∗, Cornelis Vuik a
Delft University of Technology, Delft Institute of Applied Mathematics (DIAM), Van Mourik Broekmanweg 6, XE Delft 2628, The Netherlands
a r t i c l e i n f o
Article history:
Received 20 June 2018
Revised 6 January 2019
Accepted 12 February 2019
Available online 13 February 2019
Keywords:
Automated design optimization
High-performance computing
Quantum algorithms
Quantum-accelerated computing
Scientific computing

a b s t r a c t
The development of practical quantum computers that can be used to solve real-world problems is in full
swing driven by the ambitious expectation that quantum supremacy will be able to outperform classical
super-computers. Like with any emerging compute technology, it needs early adopters in the scientific
computing community to identify problems of practical interest that are suitable as proof-of-concept ap-
plications and to revise existing solution strategies and develop new ones that exploit the capabilities of
the novel compute hardware.

In this article we describe a conceptual framework for reducing the computational complexity
of simulation-driven automated design optimization processes, which are nowadays widely used in
computer-aided product development, by exploiting quantum supremacy. Our approach is based on the
assumption that quantum computers will become part of hybrid high-performance computing platforms
and can then be used as application-specific accelerator devices.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

The era of accelerated computing started in the mid-20 0 0s,
when CPU clock speeds approached the 4 GHz barrier and a fur-
ther increase beyond this barrier would have required enormous
effort s f or cooling the processor to prevent spurious malfunc-
tioning and even permanent hardware damage from overheating.
All major chip vendors followed the paradigm shift from chasing
ultimate single-core performance towards developing parallel
high-performance computing (HPC) technologies and flooded the
market with multi-core CPUs and many-core accelerator cards like
programmable GPUs and dedicated co-processor devices.
1.1. Accelerated computing

The key idea of accelerated computing is to offload computa-
tionally expensive tasks from the host, a classical multi-core and
possibly multi-socket CPU-based computer, to the attached accel-
erator devices, which altogether form the so-called compute node.
Modern HPC systems consist of hundreds and thousands of com-
pute nodes, which are interconnected by high-speed networks.

∗ Corresponding author.
E-mail address: m.moller@tudelft.nl (M. Möller).
URL: http://www.ta.twi.tudelft.nl/nw/users/matthias/ (M. Möller)

In classical accelerated computing, the role of the host com-
puter is threefold: Firstly, tasks that do not benefit from the
compute capabilities of the accelerator devices such as in- and out-
put of data from and to the global filesystem and intrinsically se-
quential (parts of) algorithms are executed by the host. Secondly,
the host is responsible for orchestrating the interplay of acceler-
ator devices among each other and with the CPU and for man-
aging the communication between the distributed compute nodes.
Finally, since modern CPUs have up to 20–32 cores with integrated
vector-processing units, heterogeneous HPC systems also use the
massive compute power of the host to perform actual computa-
tions.

Most of today’s many-core accelerators are designed for exe-
cuting parallelizable and/or vectorizable instructions of SIMD-type
(single instruction multiple data) exceptionally fast. Consider, for
instance, the multiplication of an m × n matrix with a column vec-
tor of length n . Each matrix row gives rise to a separate dot prod-
uct, i.e. an accumulated multiply-add operation that can be carried
out in a parallel and, ideally, vectorized loop over all rows even
on multiple devices with distributed memory architecture. This so-
called divide-and-conquer approach is a common building block in
classical HPC applications and it is supported by most program-
ming models like OpenMP [1] and MPI [2] .

Recently, application-specific accelerator technologies are
emerging, which offer extra functionality that is not available
in commodity hardware. Consider, for instance, Google’s tensor
processing units [3] , which is an application-specific integrated

https://doi.org/10.1016/j.micpro.2019.02.009
0141-9331/© 2019 Elsevier B.V. All rights reserved.

Academic model problem

§ Change circumstances

43

“is”“should be”

Academic model problem

§ Problem: Minimize the difference

!" = $" − $"∗

between the solution $" and a
given profile $"∗ w.r.t. the costs

' !",) =!"*+!"

such that !" solves the system

,"!" = -" − ,"$"∗

44

−Δ$ = -

$
=
0

0 1 =)(1 − 13)

)567

)589

1. Design

3. Analysis

2. Simulation

4. Redesign

Quantum acceleration

§ Best classical solution algorithm

! "#$ log 1/*

§ Quadratic form optimizer

! (#design parameters)8

§ Quantum Linear Solver Algorithm

§ HHL: ! log " #8$8/*

§ Ambainis: ! log " #8$/*

§ Jordan’s QOPT

! (#design parameters)9

45

Quantum speed-up

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N log(N)

46

Quantum speed-up (?)

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N 16 log(N)

47

Quantum speed-up (?)

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N 16 log(N)

48

IBM Q IBM Q IBM Q
Rigetti

Rigetti 128
Google 72

Intel 49

SDKS AND GOOD PRACTICES
Practical aspects of quantum computing

49

How accelerated computing works

50

Accelerator Host

How accelerated computing works

51

HostAccelerator

How accelerated computing works

52

HostAccelerator

How accelerated computing works

53

Speed-up of the computation

HostAccelerator Q-Accelerator

It feels like GPU-computing in the early 2000

§ Quantum languages

§ AQASM: Atos QML

§ cQASM: QuTech QX, TNO QI

§ OpenQASM: IBM, Google

§ Quil: Rigetti

§ …

§ Quantum SDKs

§ pyAqasm

§ pyQuil

§ Circ

§ OpenQL/QX

§ ProjectQ

§ QisKit

§ Quantum Development Kit

§ Quirk

§ …

54

It feels like GPU-computing in the early 2000

55
LaRose: Overview and Comparison of Gate Level Quantum Software Platforms, ArXiv, 2019

Algorithm pyQuil Qiskit ProjectQ QDK
Random Bit
Generator

3(T) 3(T) 3(T) 3(T)

Teleportation 3(T) 3(T) 3(T) 3(T)
Swap Test 3(T)
Deutsch-Jozsa 3(T) 3(T) 3(T)
Grover’s
Algorithm

3(T) 3(T) 3(T) 3(B)

Quantum
Fourier
Transform

3(T) 3(T) 3(B) 3(B)

Shor’s
Algorithm

3(T) 3(D)

Bernstein
Vazirani

3(T) 3(T) 3(T)

Phase
Estimation

3(T) 3(T) 3(B)

Optimization/
QAOA

3(T) 3(T)

Simon’s
Algorithm

3(T) 3(T)

Variational
Quantum
Eigensolver

3(T) 3(T) 3(P)

Amplitude
Amplification

3(T) 3(B)

Quantum
Walks

3(T)

Ising Solver 3(T) 3(T)
Quantum Gra-
dient Descent

3(T)

Five Qubit
Code

3(B)

Repetition
Code

3(T)

Steane Code 3(B)
Draper Adder 3(T) 3(D)
Beauregard
Adder

3(T) 3(D)

Arithmetic 3(B) 3(D)
Fermion
Transforms

3(T) 3(T) 3(P)

Trotter
Simulation

3(D)

Electronic
Structure
(FCI, MP2,
HF, etc.)

3(P)

Process
Tomography

3(T) 3(T) 3(D)

Vaidman De-
tection Test

3(T)

Figure 4: A table showing the library support for each of the
four software platforms. By “library support,” we mean a tuto-
rial notebook or program (T), an example in the documenta-
tion (D), a built-in function (B) to the language, or a supported
plug-in library (P).

times, gate error rates, and the topology/connectivity
of the qubits. Ideally, one would have infinite coher-
ence times, zero gate application time, zero error rates,
and all-to-all connectivity. In the following paragraphs
we document some of the parameters of IBMQX5 and
Agave, two of the largest publicly available quantum
computers. For full details, please see the online docu-
mentation of each platform.

IBMQX5 IBMQX5 is a superconducting qubit quan-
tum computer with nearest neighbor connectivity be-
tween its 16 qubits (see Figure 3). The minimum coher-
ence (T2) time is 31±5 microseconds on qubit 0 and the
maximum is 89 ± 17 microseconds on qubit 15. A sin-
gle qubit gate takes 80 nanoseconds to implement plus
a 10 nanosecond bu↵er after each pulse. CNOT gates
take about two to four times as long, ranging from 170
nanoseconds for cx q[6], q[7] to 348 nanoseconds for cx

q[3], q[14]. Single qubit gate fidelity is very good at over
99.5% fidelity for all qubits (fidelity = 1 - error). Multi-
qubit fidelity is above 94.9% for all qubit pairs in the
topology. The largest readout error is rather large at
about 12.4% with the average being around 6%. These
statistics were obtained from [32].
Lastly, we mention that to use any available quantum

computer by IBM, the user submits his/her job into a
queue, which determines when the job gets run. This
is in contrast to using Agave by Rigetti, in which users
have to request access first via an online form, then
schedule a time to get access to the device to run jobs.

Agave The Agave quantum computer consists of 8
superconducting transmon qubits with fixed capacitive
coupling and connectivity shown in Figure 2. The min-
imum coherence (T2) time is 9.2 microseconds on qubit
1 and the maximum is 15.52 microseconds on qubit 2.
The time to implement a Controlled-Z gate is between
118 and 195 nanoseconds. Single qubit gate fidelity is at
an average of 96.2% (again, fidelity = 1 - error) and min-
imum of 93.2%. Multi-qubit gate fidelity is on average
87% for all qubit-qubit pairs in the topology. Readout
errors are unknown. These statistics can be found in
the online documentation or through pyQuil.

3.3 Quantum Compilers
Platforms that provide connectivity to real quantum
devices must necessarily have a means of translating a
given circuit into operations the computer can under-
stand. This process is known as compilation, or more
verbosely quantum circuit compilation/quantum com-
pilation. Each computer has a basis set of gates and a
given connectivity—it is the compiler’s job to take in

Accepted in Quantum 2019-03-15, click title to verify 12

| ⟩LIB : Kwantum expression template LIBrary

§ Header-only C++14 library

§ Open-source release by summer

§ Auto-generation of quantum code
from C++ expression templates

§ Bi-directional communication
between host and quantum device

§ Made for quantum-accelerated
scientific computing

56

| ⟩LIB : Kwantum expression template LIBrary

auto expr = measure(h(x(h(x(init())))));

Qdata<1, OpenQASMv2> backend;
json result = expr(backend).execute();

QInt<3> a(1);
QInt<3> b(2);
a += b;

57

Conclusion

§ Quantum computers have huge potential as special-purpose accelerators
to speed-up the solution of (mathematical) problems ‘exponentially’

§ Convergence towards common quantum programming language and
development toolchain needed to make end-users interested (if at all!)

§ To fully exploit the power of quantum computers don’t mimic classical
algorithms but redesign quantum algorithms from scratch based on
quantum-mechanical principles like superposition and entanglement

Thank you very much!

58

