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Outlook

Basic Concepts of quantum computing
= Quantum bits, gates, and algorithms

Quantum-accelerated design optimization
= A conceptual framework

Practical aspects of quantum computing
= SDKs and good practices
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Basic concepts of quantum computing

QUANTUM BITS



From bits to quantum bits

= Classical bits =  Quantum bits (qubits)
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From bits to quantum bits

= Classical bits =  Quantum bits (qubits)
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The Bloch sphere
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The Bloch sphere




The Bloch sphere

Quantum state
7] . 7]

|Y) = cos=-|0) + e'? -sin—- [1)
2 2

= Basis states |0) and |1)

= Latitude 6 € [0, ]

= Longitude ¢ € [0,2m)




The Bloch sphere, cont'd
= g =0 implies
W)y =1-10)+e'?-0-|1) = |0)

» = mimplies

[Y)=0-10)+e?-1-|1)=1)

= Poles represent classical bits




The Bloch sphere, cont'd
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What to do with this added value?

= Classical bits =  Quantum bits (qubits)
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Intermezzo: Schrodinger’s cat




Intermezzo: Schrodinger’s cat, cont'd

= Before opening the box = After opening the box
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Intermezzo: Schrodinger’s cat, cont'd

Repeating the experiment many times 50% of the cats are dead, 50% alive
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From Bloch’s sphere to probabilities

= Coefficients of the basis expansion

6 o
) = cos - |0) + e'? - sin - |1)

represent the probability amplitude that the quantum state |y) collapses to
either of the two basis states |0) or |1) upon measurement since
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for all latitudes 6 € [0, ] and longitudes ¢ € [0,2m)



Life of Phi

= |nitialization into pure state |0)
= Travelling on Bloch’s sphere
= Collapsing to either |0) or |1)




Life of Phi

= |nitialization into pure state |0)
= Travelling on Bloch’s sphere
= Collapsing to either |0) or |1)

= How to describe the travelling?




Basic concepts of quantum computing

QUANTUM GATES



Detour to linear algebra

= Unique basis state labels

B=o. (=1

= Probability amplitudes

0 o O
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= Yet another representation of a single quantum state

W) =ao () +ar () = (o)



Detour to linear algebra, cont'd

= [|nitialization into pure state

i =1-(o)+0-(}) = (o)

= Multiplication with X

=] o) ()=0)
= Multiplication with X once more

x-x-w=(7 o) ()=0)




Detour to linear algebra, cont'd

= [|nitialization into pure state

i =1-(o)+0-(}) = (o)

= Multiplication with another matrix

1
) ==5(1 0=

= Double application of matrix H gives

1
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Et voila, our first guantum algorithm

H-xHx-(3)=(_9)=0-100-1-11)

o Probability |—1]> = 1
=  Quantum circuit to measure the 1 state
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Basic concepts of quantum computing

QUANTUM ALGORITHMS



Bell state

1 1
|Boo) = ﬁ |00)+0-|01)+0-[10) +ﬁ- |11)
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7
= 50:50 chance to measure |0?) or |1?)

= But then we know the value of the second qubit without measurement since
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Intermezzo: How difficult can it be to add two integers?
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Intermezzo: How difficult can it be to add two integers?
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vd. Lans: Quantum Algorithms and their Implementation on Quantum Computer Simulators, Master thesis, 2017
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Intermezzo: How difficult can it be to add two integers?
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Intermezzo: How difficult can it be to add two integers?

def add(a: Int, b: Int) = a + b
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Quantum-accelerated design optimization

CONCEPTUAL FRAMEWORK



Airfoil design
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Simulation-based design and analysis cycle
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Matsson et al. Aerodynamic Performance of the NACA 2412 Airfoil at Low Reynolds Number, 2016 ASEE Annual Conference & Exposition



1. Design D(p)

= Design parameters = Admissible design space

p = (py, ., P12) S = [pI"™, 1| x - x[p{3™, p13*]

Mauclére, Automatic 2D Airfoil Generation, Evaluation and Optimisation using MATLAB and XFOIL, Master thesis, 2009



2. Simulation

= Mathematical model

@’ Navier-Stokes Equations  reemcs
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Linné FLOW Centre and SeRC, KTH, Sweden



3. Analysis
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Operation conditions




Abstract design optimization

= Problem: Find a set of admissible design parameters p such that solution
U(D(p)) to the mathematical model M (U, D(p)) computed on the design
D (p) optimizes the cost functional ¢ (U, D(p)) for fixed operation condition




Abstract design optimization

= Problem: Find a set of admissible design parameters p such that solution
U(D(p)) to the mathematical model M (U, D(p)) computed on the design
D (p) optimizes the cost functional ¢ (U, D(p)) for fixed operation condition

AIRBUS Commercial Alrcraft  Helicopters Defence Space Company Newsoom  Q

cessors and Microsystems 66 (2019) 67-71

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

A conceptual framework for quantum accelerated automated design Airbus Quantum Computing Challenge

optimization : A
Bringing flight physics into the Quantum Era
Matthias Méller®*, Cornelis Vuik*?

Delft University of Technology, Delft Institute of Applied Mathematics (DIAM), Van Mourik Broekmanweg 6, XE Delft 2628, The Netherlands




Academic model problem

= Change circumstances

“should be” “is”

PAtter kids |

S = —




Academic model problem

/= -

/ 4. Redesign

Problem: Minimize the difference

_ *
dh—uh—uh

between the solution u;, and a
given profile u;‘lyt m

C(dh, p) = d}'I;Mdh

such that d;, solve

2. Simulation

Apdp = fr — Apup,



Quantum acceleration

= Best classical solution algorithm

O(Nsklog(1/€))

= Quadratic form optimizer

O((#design parameters)?)

Quantum Linear Solver Algorithm
= HHL: O(log(N)s?k?/e)

= Ambainis: O(log(N)s?k/e)

Jordan’s QOPT

O ((#design parameters)?)



Quantum speed-up
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Quantum speed-up (?)
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Quantum speed-up (?) Rigetti 128
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Practical aspects of quantum computing

SDKS AND GOOD PRACTICES



How accelerated computing works

Accelerator Host



How accelerated computing works

Accelerator Host



How accelerated computing works
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How accelerated computing works
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Speed-up of the computation
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It feels like GPU-computing in the early 2000

= Quantum languages
= AQASM: Atos QML

cQASM: QuTech QX, TNO Ql
OpenQASM: IBM, Google
Quil: Rigetti

= Quantum SDKs

pyAgasm

pyQuil

Circ

OpenQL/QX

ProjectQ

QisKit

Quantum Development Kit
Quirk



It feels like GPU-computing in the early 2000
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LaRose: Overview and Comparison of Gate Level Quantum Software Platforms, ArXiv, 2019
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|LIB): Kwantum expression template LIBrary

Header-only C++14 library
Open-source release by summer

Auto-generation of quantum code
from C++ expression templates

Bi-directional communication
between host and quantum device

Made for quantum-accelerated
scientific computing




|LIB): Kwantum expression template LIBrary

auto expr = measure(h(x(h(x(init())))));

Qdata<l, OpenQASMv2> backend;
json result = expr(backend).execute();

QInt<3> a(1);
QInt<3> b(2);
a += b;



Conclusion

Quantum computers have huge potential as special-purpose accelerators
to speed-up the solution of (mathematical) problems ‘exponentially’

Convergence towards common quantum programming language and
development toolchain needed to make end-users interested (if at all!)

To fully exploit the power of quantum computers don’t mimic classical
algorithms but redesign quantum algorithms from scratch based on
guantum-mechanical principles like superposition and entanglement

Thank you very much!



