
1

Open-source CFD software: FeatFlow

The FEA(S)T groups

Institute of Applied Mathematics, LS III

Dortmund University of Technology, Germany

matthias.moeller@math.tu-dortmund.de

Lake Tahoe, January 7, 2009



2

Overview

1 FeatFlow
FeatFlow 1.x
FeatFlow 2.0

2 Preprocessing
DeViSoR Grid3D

3 Example application
Poisson equation

4 Postprocessing
General Mesh Viewer

5 UnConventional HPC
FEAST



3

FeatFlow 1.x

Finite Element Analysis Toolbox + Flow solver
High performance unstructured finite element package for the

numerical solution of the incompressible Navier-Stokes equations

based on the finite element packages Feat2D and Feat3D
written in Fortran 77 (and some C routines) by Stefan Turek
designed for education, scientific research and industrial applications
full source-code and user manuals are available online
many extensions are not included in the official release

Visit the FeatFlow homepage
http://www.featflow.de



4

FeatFlow 1.x

The Virtual Album of Fluid Motion http://www.featflow.de/album/index.html

1 von 1 27.12.2008 15:34

http://www.featflow.de/album Theoretical background



5

Discretization techniques

Incompressible Navier-Stokes equations
ut − ν∆u + u · ∇u +∇p = f , ∇ · u = 0, in Ω× (0, T ]

Spatial discretization techniques

nonconforming rotated multilinear finite elements for u
piecewise constant pressure approximation for p
Samarskĳ upwind or streamline diffusion stabilization

Temporal discretization techniques

implicit one-step-θ-scheme (Backward Euler, Crank-Nicolson)
implicit fractional-step-θ scheme (second-order accurate)
adaptive time-stepping based on local discretization error



6

Solution techniques

Discretized incompressible Navier-Stokes equations
Given un, g and k, solve for u = un+1 and p = pn+1

[M + θkN(u)]u + kBp = g, BTu = 0

where g = [M − θ1kN(un)]un + θ2kfn+1 + θ3kfn

Nonlinear/linear solution strategies

coupled fixed point defect correction method CC2D/CC3D

nonlinear discrete projection scheme PP2D/PP3D

linear multigrid techniques with adaptive step-length control
ILU/SOR or Vanka-like block Gauß-Seidel smoother/solver



7

FeatFlow 2.0

Finite Element Analysis Toolbox + Flow solver
The modern successor of FeatFlow 1.x for the numerical
solution of flow problems by the finite element method

modular object-oriented design by Michael Köster et al.
written in Fortran 95 (kernel + applications)
external libraries in F77/C (BLAS, UMFPACK, LAPACK)
designed for education of students and scientific research
detailed in-place documentation of the source-code

Official release not yet available; get the ALPHA snapshot
http://www.featflow.de/download/Featflow2_2.0ALPHA.tar.gz



8

Prerequisites

Unix/Linux and Mac OS X
compatible C and F95 compiler

GCC and G95 version 0.91
Intel R© C++/Fortran
Compilers for Linux
Sun Studio C, C++ and
Fortran Compilers

GNU make utility
Makefiles are provided
for all applications

Linux is used for this workshop

Windows XP, Vista
Microsoft R© VisualStudio
2003, 2005 or 2008

Project files are provided
for all applications

Intel R© C++/Fortran
Compilers for Windows

CygwinTM environment
General Mesh Viewer (GMV)



8

Prerequisites

Unix/Linux and Mac OS X
compatible C and F95 compiler

GCC and G95 version 0.91
Intel R© C++/Fortran
Compilers for Linux
Sun Studio C, C++ and
Fortran Compilers

GNU make utility
Makefiles are provided
for all applications

Linux is used for this workshop

Windows XP, Vista
Microsoft R© VisualStudio
2003, 2005 or 2008

Project files are provided
for all applications

Intel R© C++/Fortran
Compilers for Windows

CygwinTM environment
General Mesh Viewer (GMV)



9

Getting FeatFlow 2.0

Unpack the downloaded archive file
$ tar xvzf Featflow2_2.0ALPHA.tar.gz

Change into the base directory
$ cd Featflow2 ; ls

applications Globals.power object
bin Globals.sparc readme.txt
codefragments Globals.x86 Rules_apps_f90.mk
feat2win.txt Globals.x86_64 Rules_apps.mk
Globals.alpha kernel Rules_libs.mk
Globals.ia64 libraries VERSIONS
Globals.mac Makefile
Globals.mk matlab



9

Getting FeatFlow 2.0

Unpack the downloaded archive file
$ tar xvzf Featflow2_2.0ALPHA.tar.gz

Change into the base directory
$ cd Featflow2 ; ls

applications Globals.power object
bin Globals.sparc readme.txt
codefragments Globals.x86 Rules_apps_f90.mk
feat2win.txt Globals.x86_64 Rules_apps.mk
Globals.alpha kernel Rules_libs.mk
Globals.ia64 libraries VERSIONS
Globals.mac Makefile
Globals.mk matlab



9

Getting FeatFlow 2.0

Unpack the downloaded archive file
$ tar xvzf Featflow2_2.0ALPHA.tar.gz

Change into the base directory
$ cd Featflow2 ; ls

applications Globals.power object
bin Globals.sparc readme.txt
codefragments Globals.x86 Rules_apps_f90.mk
feat2win.txt Globals.x86_64 Rules_apps.mk
Globals.alpha kernel Rules_libs.mk
Globals.ia64 libraries VERSIONS
Globals.mac Makefile
Globals.mk matlab



10

Building FeatFlow 2.0

Top-level build options
$ make [ALT=xxx] [ID=yyy] <target>

Some values for target

help - print additional help and further option
id - print out settings for current ID
all - compile all libraries and application modules
apps - compile all application modules
libs - compile all libraries

Some available make modifiers
ALT=xxx - specify alternative ID-xxx to use
ID=yyy - override the autodetected architecture ID by yyy



10

Building FeatFlow 2.0

Top-level build options
$ make [ALT=xxx] [ID=yyy] <target>

Some values for target

help - print additional help and further option
id - print out settings for current ID
all - compile all libraries and application modules
apps - compile all application modules
libs - compile all libraries

Some available make modifiers
ALT=xxx - specify alternative ID-xxx to use
ID=yyy - override the autodetected architecture ID by yyy



11

Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make id run on x86_64 GNU/Linux

Machine-ID (Barracuda) : pc64-core2-linux

Compilers to be used:
C compiler: /usr/bin/gcc
C++ compiler: /usr/bin/g++
Fortran compiler: /usr/local/g95/32bit_integers/0.91/bin/g95
F-Library archiver: /usr/bin/ar
C-Library archiver: /usr/bin/ar

Flags to be used:
OPTFLAGS = -O3 -m64 -ffast-math -fexpensive-optimizations -fprefetch-loop-arrays -mmmx -msse -msse2 -msse3
OPTFLAGSC =
OPTFLAGSCPP =
OPTFLAGSF =
OPTFLAGSDEBUG = -g
OPTFLAGSCDEBUG =
OPTFLAGSCPPDEBUG=
OPTFLAGSFDEBUG = -O0 -g -Wall -fbounds-check -ftrace=full
FCFLAGS = -pipe -fmod= -march=nocona
CCFLAGS = -pipe -march=nocona
CPPFLAGS = -pipe -march=nocona
BUILDLIB = feat3d feat2d sysutils umfpack2 amd umfpack4 minisplib lapack blas
BLASLIB = (standard BLAS, included in installation package)
LAPACKLIB = (standard LAPACK, included in installation package)
LDLIBS =
LDFLAGS =



11

Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make ID=pc-core2-linux id run on x86_64 GNU/Linux

Machine-ID (Barracuda) : pc-core2-linux

Compilers to be used:
C compiler: /usr/bin/gcc
C++ compiler: /usr/bin/g++
Fortran compiler: /usr/local/g95/32bit_integers/0.91/bin/g95
F-Library archiver: /usr/bin/ar
C-Library archiver: /usr/bin/ar

Flags to be used:
OPTFLAGS = -O3 -m32 -ffast-math -fexpensive-optimizations -fprefetch-loop-arrays -mmmx -msse -msse2 -msse3
OPTFLAGSC =
OPTFLAGSCPP =
OPTFLAGSF =
OPTFLAGSDEBUG = -g
OPTFLAGSCDEBUG =
OPTFLAGSCPPDEBUG=
OPTFLAGSFDEBUG = -O0 -g -Wall -fbounds-check -ftrace=full
FCFLAGS = -pipe -fmod= -march=nocona
CCFLAGS = -pipe -march=nocona
CPPFLAGS = -pipe -march=nocona
BUILDLIB = feat3d feat2d sysutils umfpack2 amd umfpack4 minisplib lapack blas
BLASLIB = (standard BLAS, included in installation package)
LAPACKLIB = (standard LAPACK, included in installation package)
LDLIBS =
LDFLAGS =



11

Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make ALT=ifc id run on x86_64 GNU/Linux

Machine-ID (Barracuda) : pc64-core2-linux-ifc

Compilers to be used:
C compiler: /usr/local/intel/cce/10.1.021/bin/icc
C++ compiler: /usr/local/intel/cce/10.1.021/bin/icpc
Fortran compiler: /usr/local/intel/fce/10.1.021/bin/ifort
F-Library archiver: /usr/local/intel/fce/10.1.021/bin/xiar
C-Library archiver: /usr/local/intel/fce/10.1.021/bin/xiar

Flags to be used:
OPTFLAGS = -O3 -ipo -xT
OPTFLAGSC =
OPTFLAGSCPP =
OPTFLAGSF =
OPTFLAGSDEBUG = -g
OPTFLAGSCDEBUG = -traceback
OPTFLAGSCPPDEBUG= -traceback
OPTFLAGSFDEBUG = -warn all -check all -traceback
FCFLAGS = -cm -fpe0 -vec-report0 -module
CCFLAGS = -vec-report0
CPPFLAGS = -vec-report0
BUILDLIB = feat3d feat2d sysutils umfpack2 amd umfpack4 minisplib lapack blas
BLASLIB = (standard BLAS, included in installation package)
LAPACKLIB = (standard LAPACK, included in installation package)
LDLIBS =
LDFLAGS = -lsvml



11

Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make [ALT=xxx] [ID=yyy] <target>

compiler settings are defined in the global configuration files
Global.[alpha,ia64,mac,power,sparc,x86,x86_64]

new compilers and/or architectures can be easily included

special purpose settings, e.g. pc64-opteron-linux-ifclarge

Building the Poisson example application
$ cd applications/poisson
$ make debug turn on debugging facilities of the compiler
... after some time ...
Done, poisson-pc64-core2-linux is ready.



11

Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make [ALT=xxx] [ID=yyy] <target>

compiler settings are defined in the global configuration files
Global.[alpha,ia64,mac,power,sparc,x86,x86_64]

new compilers and/or architectures can be easily included

special purpose settings, e.g. pc64-opteron-linux-ifclarge

Building the Poisson example application
$ cd applications/poisson
$ make

debug turn on debugging facilities of the compiler

... after some time ...
Done, poisson-pc64-core2-linux is ready.



11

Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make [ALT=xxx] [ID=yyy] <target>

compiler settings are defined in the global configuration files
Global.[alpha,ia64,mac,power,sparc,x86,x86_64]

new compilers and/or architectures can be easily included

special purpose settings, e.g. pc64-opteron-linux-ifclarge

Building the Poisson example application
$ cd applications/poisson
$ make debug turn on debugging facilities of the compiler
... after some time ...
Done, poisson-pc64-core2-linux is ready.



12

Preprocessing: Grid generation



13

Geometric multigrid approach

1 Construct initial coarse grid in the external preprocessing step
2 Generate hierarchy of regularly refined meshes in the application

Two-level ordering strategy
adopt all coordinates from coarser grid levels unchanged
introduce new coordinates at edge/face/cell midpoints



13

Geometric multigrid approach

1 Construct initial coarse grid in the external preprocessing step
2 Generate hierarchy of regularly refined meshes in the application

1 2

4

3

5

7

8 9

6

1 2

4

3

5

7

8 9

6

1 2

4

3

10

13

14

16

17

18

15

11

19

20
12

21

22 23

24
25

Two-level ordering strategy
adopt all coordinates from coarser grid levels unchanged
introduce new coordinates at edge/face/cell midpoints



14

Coarse grid description

File format is described in the Feat2D/Feat3D manuals

Supported element types: triangles, quads (2D) and hexahedra (3D)

Domain triangulation is specified in TRI file (2D/3D)
coordinate values of vertices in the interior
parameter values of vertices at the boundary
elements in terms of their corner nodes
first two lines are treated as header/comments!

Boundary parametrization is specified in PRM file (only 2D)
each boundary component is described by p ∈ [0, pmax]
the ‘interior’ is located left to the boundary
→ do not mix up (counter-)clockwise orientation
supported boundary types: lines, (arcs of) circles



14

Coarse grid description

File format is described in the Feat2D/Feat3D manuals

Supported element types: triangles, quads (2D) and hexahedra (3D)

Domain triangulation is specified in TRI file (2D/3D)
coordinate values of vertices in the interior
parameter values of vertices at the boundary
elements in terms of their corner nodes
first two lines are treated as header/comments!

Boundary parametrization is specified in PRM file (only 2D)
each boundary component is described by p ∈ [0, pmax]
the ‘interior’ is located left to the boundary
→ do not mix up (counter-)clockwise orientation
supported boundary types: lines, (arcs of) circles



14

Coarse grid description

File format is described in the Feat2D/Feat3D manuals

Supported element types: triangles, quads (2D) and hexahedra (3D)

Domain triangulation is specified in TRI file (2D/3D)
coordinate values of vertices in the interior
parameter values of vertices at the boundary
elements in terms of their corner nodes
first two lines are treated as header/comments!

Boundary parametrization is specified in PRM file (only 2D)
each boundary component is described by p ∈ [0, pmax]
the ‘interior’ is located left to the boundary
→ do not mix up (counter-)clockwise orientation
supported boundary types: lines, (arcs of) circles



15

DeViSoR Grid3D

Coarse grid generator for FeatFlow and Feast
written in Java + OpenGL and published under the GPL
available at http://www.feast.uni-dortmund.de

send requests, bug reports to devisor@featflow.de

on-line help system and self-contained tutorial included

Unpack the downloaded archive file
$ unzip grid-3.0.21.zip

Start the application
$ cd grid-3.0.21
$ java -jar grid3d.jar



16

Alternative grid generators

GiD – the personal pre- and post-processor
evaluation version is available at http://gid.cimne.upc.es
fully automatic structured and unstructured coarse grid generator
supports triangular, quadrilateral, tetrahedral, hexahedral elements
provides an effective easy-to-use and geometric user interface

GiD2Feat – set of tools to convert GiD meshes to PRM/TRI files



17

Example application: Poisson equation



18

Possion equation

Change into the application source directory
$ cd applications/poisson/src; ls

poissonXd_callback.f90 poisson.f90
poissonXd_methodYYY.f90

Open the application main source file
$ emacs poisson.f90

Initialization and finalization
system_init() initialize system-wide settings

storage_init(999, 100) initialize storage management

storage_done() finalize storage management



18

Possion equation

Change into the application source directory
$ cd applications/poisson/src; ls

poissonXd_callback.f90 poisson.f90
poissonXd_methodYYY.f90

Open the application main source file
$ emacs poisson.f90

Initialization and finalization
system_init() initialize system-wide settings

storage_init(999, 100) initialize storage management

storage_done() finalize storage management



19

Possion equation, cont’d.

Sample problem: −∆u = f in Ω = (0, 1)2, u = 0 on ∂Ω
right hand side f(x, y) = 32(x(1− x) + y(1− y))

analytical solution u(x, y) = 16x(1− x)y(1− y)

Open the demonstration module file
$ emacs poisson2d_method0_simple.f90

contains the corresponding subroutine
includes all required kernel modules
provides detailed step-by-step tutorial

Open the callback function module file
$ emacs poisson2d_callback.f90



20

Possion equation, cont’d.

Grid generation
boundary_read_prm read boundary parametrization
tria_readTriFile2D read domain triangulation
tria_quickRefine2LevelOrdering perform regular refinement
tria_initStandardMeshFromRaw generate data structures

Spatial discretization
spdiscr_initBlockDiscr2D prepare block discretization
spdiscr_initDiscr_simple initialize spatial discretization
bilf_createMatrixStructure create scalar matrix structure
bilf_buildMatrixScalar discretize the bilinear form
linf_buildVectorScalar discretize the linear form/r.h.s.



21

Possion equation, cont’d.

Dirichlet boundary conditions
boundary_createRegion specify boundary segment
bcasm_newDirichletBConRealBD calculate discrete b.c.’s
matfil_discreteBC set b.c.’s in system matrix
vecfil_discreteBCrhs set b.c.’s in right hand side
vecfil_discreteBCsol set b.c.’s in solution vector

Linear BiCGStab solver
linsol_initBiCGStab initialize linear solver
linsol_setMatrices attach system matrix
linsol_initStructure, linsol_initData

linsol_solveAdaptively solve linear system



22

Possion equation, cont’d.

Solution output
ucd_startGMV start export on GMV format
ucd_addVariableVertexBased add vertex-based solution data
ucd_addVariableElementBased add cell-based solution data
ucd_write write solution data to file

Clean-up and finalization
XXX_release, XXX_releaseYYY free allocated memory
XXX_done stop sub-system

General naming convention of subroutines
abbreviatedModulefile_NameOfSubroutine



23

Postprocessing: Visualization of the solution



24

General Mesh Viewer

3D scientific visualization tool
developed at Los Alamos National Lab by Frank Ortega
available at http://www-xdiv.lanl.gov/XCM/gmv/

supported OS: UNIX/Linux, Mac OS X, Windows (Cygwin)

unstructured meshes in 2D/3D

cutlines, cutplanes, cutspheres

vertex-based, cell-based data sets

contour, vector plots

Alternative: importer for ParaView
based on development CVS-version



25

Advanced topics: Multigrid, Mesh Adaptation, . . .



26

Possion equation, revisited

Sample problem: −∆u = f in Ω = (0, 1)2, u = 0 on ∂Ω
right hand side f(x, y) = 32(x(1− x) + y(1− y))

analytical solution u(x, y) = 16x(1− x)y(1− y)

Open the demonstration module file
$ emacs poisson2d_method1_mg.f90

linear geometric multigrid solver
Jacobi or ILU(0) smoother
direct coarse grid solver (UMFPACK)



27

Anisotropic diffusion

Example: applications/anisotropicdiffusion.f90

D =
(

cos θ − sin θ
sin θ cos θ

)(
k1 0
0 k2

)(
cos θ sin θ
− sin θ cos θ

)
 −∇ · (D∇u) = 0 in Ω

u = 0 on Γ0
u = 2 on Γ1

k1 = 100, k2 = 1, θ = −π6
linear finite elements, h = 1/36

Galerkin fails: umin = −0.0553

h-adaptation: umin = −0.0068



27

Anisotropic diffusion

Example: applications/anisotropicdiffusion.f90

D =
(

cos θ − sin θ
sin θ cos θ

)(
k1 0
0 k2

)(
cos θ sin θ
− sin θ cos θ

)



28

Mesh adaptation

conformal mesh refinement based on red-green strategy

vertex-locking algorithm for mesh re-coarsening procedure
nodal generation function stores birth certificates

provides complete characterization of elements
youngest node corresponds to refinement level
is required for the vertex-locking algorithm

state function for element characterization

local two-level ordering strategy

This has been addressed in the talk on Monday



28

Mesh adaptation

conformal mesh refinement based on red-green strategy

vertex-locking algorithm for mesh re-coarsening procedure
nodal generation function stores birth certificates

provides complete characterization of elements
youngest node corresponds to refinement level
is required for the vertex-locking algorithm

state function for element characterization

local two-level ordering strategy

This has been addressed in the talk on Monday



28

Mesh adaptation

conformal mesh refinement based on red-green strategy

vertex-locking algorithm for mesh re-coarsening procedure
nodal generation function stores birth certificates

provides complete characterization of elements
youngest node corresponds to refinement level
is required for the vertex-locking algorithm

state function for element characterization

local two-level ordering strategy

This has been addressed in the talk on Monday



29

Mesh genealogy, revisited

Triangulation Tm(Em,Vm), m = 0, 1, 2, . . . consists of
Em = {Ωk : k = 1, . . . , NE} and Vm = {vi : i = 1, . . . , NV}

nodal generation function g : Vm → N0 is defined recursively

g(vi) :=


0 if vi ∈ V0

max
vj∈Γkl

g(vj) + 1 if vi ∈ Γkl := Ω̄k ∩ Ω̄l

max
vj∈∂Ωk

g(vj) + 1 if vi ∈ Ωk \ ∂Ωk



30

Characterization of elements

Idea I: State function s : Em → Z (in MSB representation)
Set Bit[0] to 1 for quadrilateral, otherwise set it to zero
Set Bit[k=1..4] to 1 if both endpoints of edge k have same age
If no two endpoints have same age, then find local position k
of the youngest vertex, set Bit[k] to 1 and negate the state

Idea II: Define local ordering strategy within each element a priori

element characterization element state
triangle/quadrilateral from T0 0/1
green quadrilateral 3, 5, 9, 11,17, 21
red quadrilateral 7, 13, 19, 25
inner red triangle 14
’other’ triangle 2, 4, 8
green triangle -8, -4, -2



30

Characterization of elements

Idea I: State function s : Em → Z (in MSB representation)
Set Bit[0] to 1 for quadrilateral, otherwise set it to zero
Set Bit[k=1..4] to 1 if both endpoints of edge k have same age
If no two endpoints have same age, then find local position k
of the youngest vertex, set Bit[k] to 1 and negate the state

Idea II: Define local ordering strategy within each element a priori

element characterization element state
triangle/quadrilateral from T0 0/1
green quadrilateral 3, 5, 9, 11,17, 21
red quadrilateral 7, 13, 19, 25
inner red triangle 14
’other’ triangle 2, 4, 8
green triangle -8, -4, -2



30

Characterization of elements

Idea I: State function s : Em → Z (in MSB representation)
Set Bit[0] to 1 for quadrilateral, otherwise set it to zero
Set Bit[k=1..4] to 1 if both endpoints of edge k have same age
If no two endpoints have same age, then find local position k
of the youngest vertex, set Bit[k] to 1 and negate the state

Idea II: Define local ordering strategy within each element a priori

element characterization element state
triangle/quadrilateral from T0 0/1
green quadrilateral 3, 5, 9, 11,17, 21
red quadrilateral 7, 13, 19, 25
inner red triangle 14
’other’ triangle 2, 4, 8
green triangle -8, -4, -2



30

Characterization of elements

Idea I: State function s : Em → Z (in MSB representation)
Set Bit[0] to 1 for quadrilateral, otherwise set it to zero
Set Bit[k=1..4] to 1 if both endpoints of edge k have same age
If no two endpoints have same age, then find local position k
of the youngest vertex, set Bit[k] to 1 and negate the state

Idea II: Define local ordering strategy within each element a priori

element characterization element state
triangle/quadrilateral from T0 0/1
green quadrilateral 3, 5, 9, 11,17, 21
red quadrilateral 7, 13, 19, 25
inner red triangle 14
’other’ triangle 2, 4, 8
green triangle -8, -4, -2



30

Characterization of elements

Idea I: State function s : Em → Z (in MSB representation)
Set Bit[0] to 1 for quadrilateral, otherwise set it to zero
Set Bit[k=1..4] to 1 if both endpoints of edge k have same age
If no two endpoints have same age, then find local position k
of the youngest vertex, set Bit[k] to 1 and negate the state

Idea II: Define local ordering strategy within each element a priori

element characterization element state
triangle/quadrilateral from T0 0/1
green quadrilateral 3, 5, 9, 11,17, 21
red quadrilateral 7, 13, 19, 25
inner red triangle 14
’other’ triangle 2, 4, 8
green triangle -8, -4, -2

#el+3

a b

cd

1 2

34

1 1

11

a b

cd

#el+1

#el+2#el+4
#el+5



31

Storage management

Concept of dynamically allocatable arrays in Fortran 9x
integer, dimension(:), allocatable :: Iarray

allocate(Iarray(n)) allocate array of size n dynamically

deallocate(Iarray) deallocate dynamically allocated array

Concept of dynamically allocatable arrays in FeatFlow
storage_init, storage_done initialize/finalize storage

storage_new allocate new memory storage

storage_realloc re-allocate memory storage

storage_free deallocate memory storage

storage_getbase_XXX access memory storage



31

Storage management

Concept of dynamically allocatable arrays in Fortran 9x
integer, dimension(:), allocatable :: Iarray

allocate(Iarray(n)) allocate array of size n dynamically

deallocate(Iarray) deallocate dynamically allocated array

Concept of dynamically allocatable arrays in FeatFlow
storage_init, storage_done initialize/finalize storage

storage_new allocate new memory storage

storage_realloc re-allocate memory storage

storage_free deallocate memory storage

storage_getbase_XXX access memory storage



32

Storage management, cont’d.

Supported data: 8/16/32/64 integer, SP/DP real, logical, strings

Memory storage is accessible via integer handle ihandle

Pointer to the memory is assigned via storage_getbase_XXX

Implementation details
memory storage handling is internally mapped to de/allocate

different storage management can be implemented without changes

handles can be easily passed to subroutines and functions

derived types typically consist of a set of handles + scalar data



32

Storage management, cont’d.

Supported data: 8/16/32/64 integer, SP/DP real, logical, strings

Memory storage is accessible via integer handle ihandle

Pointer to the memory is assigned via storage_getbase_XXX

Implementation details
memory storage handling is internally mapped to de/allocate

different storage management can be implemented without changes

handles can be easily passed to subroutines and functions

derived types typically consist of a set of handles + scalar data

Derived type for triangulation structure

type t_triangulation
integer :: ndim = 0
integer :: NVT = 0
integer :: NMT = 0
integer :: NAT = 0
integer :: NEL = 0
. . .
integer :: h_DvertexCoords = ST_NOHANDLE
integer :: h_IverticesAtElement = ST_NOHANDLE
integer :: h_IneighboursAtElement = ST_NOHANDLE

end type



33

Example: Using handles

Create new storage
storage_new (scall, sname, Isize, ctype, ihandle, &

cinitNewBlock, <rheap>)

ctype ∈ {ST_DOUBLE,ST_SINGLE,ST_INTx,ST_CHAR,ST_LOGICAL}

cinitNewBlock ∈ {ST_NEWBLOCK_ZERO,ST_NEWBLOCK_NOINIT}

Accessing storage, e.g. 2-dimensional double array
real(DP), dimension(:,:), pointer :: p_Darray

storage_getbase_double2D (ihandle, p_Darray, <rheap>)

Releasing storage
storage_free (ihandle)



34

UnConventional High Performance Computing



35

Feast

Finite Element Analysis & Solution Tools
High performance finite element package for the efficient

simulation of large scale problems on heterogeneous hardware

written in Fortran 90 and C (MPI communication)
CFD (Stokes, Navier-Stokes), CSM (Elasticity)
macro-wise domain decomposition approach
fast and robust parallel multigrid methods
unconventional hardware as FEM co-processors

Visit the Feast homepage
http://www.feast.uni-dortmund.de



36

Hardware-oriented Numerics

Scalable Recursive Clustering (ScaRC) solver
Combine domain decomposition and cascaded multigrid methods

Globally unstructured

hide anisotropies to improve robustness

Locally structured



37

UnConventional HPC

Graphic processing unit (GPU)
128 parallel scalar processors
@ 1.35 GHz, ≈ 350 GFLOP/s
GDDR3 memory @ 900 MHz

Cell multi-core processor (PS3)
7 synergistic processing units
@ 3.2 GHz, 218 GFLOPS/s
Memory @ 3.2 GHz



38

Future vision

Unified Feat+Feast finite element package

Decompose the domain into globally unstructured macro-cells

Use generalized tensor product grid or unstructured mesh locally

Reuse FEM co-processors in the FeatFlow package

Enable special features, (e.g. h-adaptation) per macro-cell

On-line resources and additional material

FeatFlow project: http://www.featflow.de

Feast project: http://www.feast.uni-dortmund.de


	Titelfolie
	FeatFlow
	FeatFlow 1.x
	FeatFlow 2.0

	Preprocessing
	DeViSoR Grid3D

	Example application
	Poisson equation

	Postprocessing
	General Mesh Viewer

	UnConventional HPC
	FEAST


