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FeatFlow 1.x

Finite Element Analysis Toolbox + Flow solver
High performance unstructured finite element package for the

numerical solution of the incompressible Navier-Stokes equations

based on the finite element packages Feat2D and Feat3D
written in Fortran 77 (and some C routines) by Stefan Turek
designed for education, scientific research and industrial applications
full source-code and user manuals are available online
many extensions are not included in the official release

Visit the FeatFlow homepage
http://www.featflow.de
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FeatFlow 1.x

The Virtual Album of Fluid Motion http://www.featflow.de/album/index.html

1 von 1 27.12.2008 15:34

http://www.featflow.de/album Theoretical background
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Discretization techniques

Incompressible Navier-Stokes equations
ut − ν∆u + u · ∇u +∇p = f , ∇ · u = 0, in Ω× (0, T ]

Spatial discretization techniques

nonconforming rotated multilinear finite elements for u
piecewise constant pressure approximation for p
Samarskĳ upwind or streamline diffusion stabilization

Temporal discretization techniques

implicit one-step-θ-scheme (Backward Euler, Crank-Nicolson)
implicit fractional-step-θ scheme (second-order accurate)
adaptive time-stepping based on local discretization error
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Solution techniques

Discretized incompressible Navier-Stokes equations
Given un, g and k, solve for u = un+1 and p = pn+1

[M + θkN(u)]u + kBp = g, BTu = 0

where g = [M − θ1kN(un)]un + θ2kfn+1 + θ3kfn

Nonlinear/linear solution strategies

coupled fixed point defect correction method CC2D/CC3D

nonlinear discrete projection scheme PP2D/PP3D

linear multigrid techniques with adaptive step-length control
ILU/SOR or Vanka-like block Gauß-Seidel smoother/solver



7

FeatFlow 2.0

Finite Element Analysis Toolbox + Flow solver
The modern successor of FeatFlow 1.x for the numerical
solution of flow problems by the finite element method

modular object-oriented design by Michael Köster et al.
written in Fortran 95 (kernel + applications)
external libraries in F77/C (BLAS, UMFPACK, LAPACK)
designed for education of students and scientific research
detailed in-place documentation of the source-code

Official release not yet available; get the ALPHA snapshot
http://www.featflow.de/download/Featflow2_2.0ALPHA.tar.gz
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Prerequisites

Unix/Linux and Mac OS X
compatible C and F95 compiler

GCC and G95 version 0.91
Intel R© C++/Fortran
Compilers for Linux
Sun Studio C, C++ and
Fortran Compilers

GNU make utility
Makefiles are provided
for all applications

Linux is used for this workshop

Windows XP, Vista
Microsoft R© VisualStudio
2003, 2005 or 2008

Project files are provided
for all applications

Intel R© C++/Fortran
Compilers for Windows

CygwinTM environment
General Mesh Viewer (GMV)
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Getting FeatFlow 2.0

Unpack the downloaded archive file
$ tar xvzf Featflow2_2.0ALPHA.tar.gz

Change into the base directory
$ cd Featflow2 ; ls

applications Globals.power object
bin Globals.sparc readme.txt
codefragments Globals.x86 Rules_apps_f90.mk
feat2win.txt Globals.x86_64 Rules_apps.mk
Globals.alpha kernel Rules_libs.mk
Globals.ia64 libraries VERSIONS
Globals.mac Makefile
Globals.mk matlab
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Building FeatFlow 2.0

Top-level build options
$ make [ALT=xxx] [ID=yyy] <target>

Some values for target

help - print additional help and further option
id - print out settings for current ID
all - compile all libraries and application modules
apps - compile all application modules
libs - compile all libraries

Some available make modifiers
ALT=xxx - specify alternative ID-xxx to use
ID=yyy - override the autodetected architecture ID by yyy
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Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make id run on x86_64 GNU/Linux

Machine-ID (Barracuda) : pc64-core2-linux

Compilers to be used:
C compiler: /usr/bin/gcc
C++ compiler: /usr/bin/g++
Fortran compiler: /usr/local/g95/32bit_integers/0.91/bin/g95
F-Library archiver: /usr/bin/ar
C-Library archiver: /usr/bin/ar

Flags to be used:
OPTFLAGS = -O3 -m64 -ffast-math -fexpensive-optimizations -fprefetch-loop-arrays -mmmx -msse -msse2 -msse3
OPTFLAGSC =
OPTFLAGSCPP =
OPTFLAGSF =
OPTFLAGSDEBUG = -g
OPTFLAGSCDEBUG =
OPTFLAGSCPPDEBUG=
OPTFLAGSFDEBUG = -O0 -g -Wall -fbounds-check -ftrace=full
FCFLAGS = -pipe -fmod= -march=nocona
CCFLAGS = -pipe -march=nocona
CPPFLAGS = -pipe -march=nocona
BUILDLIB = feat3d feat2d sysutils umfpack2 amd umfpack4 minisplib lapack blas
BLASLIB = (standard BLAS, included in installation package)
LAPACKLIB = (standard LAPACK, included in installation package)
LDLIBS =
LDFLAGS =
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Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make ID=pc-core2-linux id run on x86_64 GNU/Linux

Machine-ID (Barracuda) : pc-core2-linux

Compilers to be used:
C compiler: /usr/bin/gcc
C++ compiler: /usr/bin/g++
Fortran compiler: /usr/local/g95/32bit_integers/0.91/bin/g95
F-Library archiver: /usr/bin/ar
C-Library archiver: /usr/bin/ar

Flags to be used:
OPTFLAGS = -O3 -m32 -ffast-math -fexpensive-optimizations -fprefetch-loop-arrays -mmmx -msse -msse2 -msse3
OPTFLAGSC =
OPTFLAGSCPP =
OPTFLAGSF =
OPTFLAGSDEBUG = -g
OPTFLAGSCDEBUG =
OPTFLAGSCPPDEBUG=
OPTFLAGSFDEBUG = -O0 -g -Wall -fbounds-check -ftrace=full
FCFLAGS = -pipe -fmod= -march=nocona
CCFLAGS = -pipe -march=nocona
CPPFLAGS = -pipe -march=nocona
BUILDLIB = feat3d feat2d sysutils umfpack2 amd umfpack4 minisplib lapack blas
BLASLIB = (standard BLAS, included in installation package)
LAPACKLIB = (standard LAPACK, included in installation package)
LDLIBS =
LDFLAGS =
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Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make ALT=ifc id run on x86_64 GNU/Linux

Machine-ID (Barracuda) : pc64-core2-linux-ifc

Compilers to be used:
C compiler: /usr/local/intel/cce/10.1.021/bin/icc
C++ compiler: /usr/local/intel/cce/10.1.021/bin/icpc
Fortran compiler: /usr/local/intel/fce/10.1.021/bin/ifort
F-Library archiver: /usr/local/intel/fce/10.1.021/bin/xiar
C-Library archiver: /usr/local/intel/fce/10.1.021/bin/xiar

Flags to be used:
OPTFLAGS = -O3 -ipo -xT
OPTFLAGSC =
OPTFLAGSCPP =
OPTFLAGSF =
OPTFLAGSDEBUG = -g
OPTFLAGSCDEBUG = -traceback
OPTFLAGSCPPDEBUG= -traceback
OPTFLAGSFDEBUG = -warn all -check all -traceback
FCFLAGS = -cm -fpe0 -vec-report0 -module
CCFLAGS = -vec-report0
CPPFLAGS = -vec-report0
BUILDLIB = feat3d feat2d sysutils umfpack2 amd umfpack4 minisplib lapack blas
BLASLIB = (standard BLAS, included in installation package)
LAPACKLIB = (standard LAPACK, included in installation package)
LDLIBS =
LDFLAGS = -lsvml
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Building FeatFlow 2.0, cont’d.

Understanding the ALT/ID concept
$ make [ALT=xxx] [ID=yyy] <target>

compiler settings are defined in the global configuration files
Global.[alpha,ia64,mac,power,sparc,x86,x86_64]

new compilers and/or architectures can be easily included

special purpose settings, e.g. pc64-opteron-linux-ifclarge

Building the Poisson example application
$ cd applications/poisson
$ make debug turn on debugging facilities of the compiler
... after some time ...
Done, poisson-pc64-core2-linux is ready.
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Preprocessing: Grid generation
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Geometric multigrid approach

1 Construct initial coarse grid in the external preprocessing step
2 Generate hierarchy of regularly refined meshes in the application

Two-level ordering strategy
adopt all coordinates from coarser grid levels unchanged
introduce new coordinates at edge/face/cell midpoints



13

Geometric multigrid approach

1 Construct initial coarse grid in the external preprocessing step
2 Generate hierarchy of regularly refined meshes in the application

1 2

4

3

5

7

8 9

6

1 2

4

3

5

7

8 9

6

1 2

4

3

10

13

14

16

17

18

15

11

19

20
12

21

22 23

24
25

Two-level ordering strategy
adopt all coordinates from coarser grid levels unchanged
introduce new coordinates at edge/face/cell midpoints



14

Coarse grid description

File format is described in the Feat2D/Feat3D manuals

Supported element types: triangles, quads (2D) and hexahedra (3D)

Domain triangulation is specified in TRI file (2D/3D)
coordinate values of vertices in the interior
parameter values of vertices at the boundary
elements in terms of their corner nodes
first two lines are treated as header/comments!

Boundary parametrization is specified in PRM file (only 2D)
each boundary component is described by p ∈ [0, pmax]
the ‘interior’ is located left to the boundary
→ do not mix up (counter-)clockwise orientation
supported boundary types: lines, (arcs of) circles
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DeViSoR Grid3D

Coarse grid generator for FeatFlow and Feast
written in Java + OpenGL and published under the GPL
available at http://www.feast.uni-dortmund.de

send requests, bug reports to devisor@featflow.de

on-line help system and self-contained tutorial included

Unpack the downloaded archive file
$ unzip grid-3.0.21.zip

Start the application
$ cd grid-3.0.21
$ java -jar grid3d.jar



16

Alternative grid generators

GiD – the personal pre- and post-processor
evaluation version is available at http://gid.cimne.upc.es
fully automatic structured and unstructured coarse grid generator
supports triangular, quadrilateral, tetrahedral, hexahedral elements
provides an effective easy-to-use and geometric user interface

GiD2Feat – set of tools to convert GiD meshes to PRM/TRI files
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Example application: Poisson equation



18

Possion equation

Change into the application source directory
$ cd applications/poisson/src; ls

poissonXd_callback.f90 poisson.f90
poissonXd_methodYYY.f90

Open the application main source file
$ emacs poisson.f90

Initialization and finalization
system_init() initialize system-wide settings

storage_init(999, 100) initialize storage management

storage_done() finalize storage management
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Possion equation, cont’d.

Sample problem: −∆u = f in Ω = (0, 1)2, u = 0 on ∂Ω
right hand side f(x, y) = 32(x(1− x) + y(1− y))

analytical solution u(x, y) = 16x(1− x)y(1− y)

Open the demonstration module file
$ emacs poisson2d_method0_simple.f90

contains the corresponding subroutine
includes all required kernel modules
provides detailed step-by-step tutorial

Open the callback function module file
$ emacs poisson2d_callback.f90
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Possion equation, cont’d.

Grid generation
boundary_read_prm read boundary parametrization
tria_readTriFile2D read domain triangulation
tria_quickRefine2LevelOrdering perform regular refinement
tria_initStandardMeshFromRaw generate data structures

Spatial discretization
spdiscr_initBlockDiscr2D prepare block discretization
spdiscr_initDiscr_simple initialize spatial discretization
bilf_createMatrixStructure create scalar matrix structure
bilf_buildMatrixScalar discretize the bilinear form
linf_buildVectorScalar discretize the linear form/r.h.s.
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Possion equation, cont’d.

Dirichlet boundary conditions
boundary_createRegion specify boundary segment
bcasm_newDirichletBConRealBD calculate discrete b.c.’s
matfil_discreteBC set b.c.’s in system matrix
vecfil_discreteBCrhs set b.c.’s in right hand side
vecfil_discreteBCsol set b.c.’s in solution vector

Linear BiCGStab solver
linsol_initBiCGStab initialize linear solver
linsol_setMatrices attach system matrix
linsol_initStructure, linsol_initData

linsol_solveAdaptively solve linear system
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Possion equation, cont’d.

Solution output
ucd_startGMV start export on GMV format
ucd_addVariableVertexBased add vertex-based solution data
ucd_addVariableElementBased add cell-based solution data
ucd_write write solution data to file

Clean-up and finalization
XXX_release, XXX_releaseYYY free allocated memory
XXX_done stop sub-system

General naming convention of subroutines
abbreviatedModulefile_NameOfSubroutine
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Postprocessing: Visualization of the solution
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General Mesh Viewer

3D scientific visualization tool
developed at Los Alamos National Lab by Frank Ortega
available at http://www-xdiv.lanl.gov/XCM/gmv/

supported OS: UNIX/Linux, Mac OS X, Windows (Cygwin)

unstructured meshes in 2D/3D

cutlines, cutplanes, cutspheres

vertex-based, cell-based data sets

contour, vector plots

Alternative: importer for ParaView
based on development CVS-version



25

Advanced topics: Multigrid, Mesh Adaptation, . . .
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Possion equation, revisited

Sample problem: −∆u = f in Ω = (0, 1)2, u = 0 on ∂Ω
right hand side f(x, y) = 32(x(1− x) + y(1− y))

analytical solution u(x, y) = 16x(1− x)y(1− y)

Open the demonstration module file
$ emacs poisson2d_method1_mg.f90

linear geometric multigrid solver
Jacobi or ILU(0) smoother
direct coarse grid solver (UMFPACK)
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Anisotropic diffusion

Example: applications/anisotropicdiffusion.f90

D =
(

cos θ − sin θ
sin θ cos θ

)(
k1 0
0 k2

)(
cos θ sin θ
− sin θ cos θ

)
 −∇ · (D∇u) = 0 in Ω

u = 0 on Γ0
u = 2 on Γ1

k1 = 100, k2 = 1, θ = −π6
linear finite elements, h = 1/36

Galerkin fails: umin = −0.0553

h-adaptation: umin = −0.0068
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Anisotropic diffusion

Example: applications/anisotropicdiffusion.f90

D =
(

cos θ − sin θ
sin θ cos θ
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0 k2
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cos θ sin θ
− sin θ cos θ
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Mesh adaptation

conformal mesh refinement based on red-green strategy

vertex-locking algorithm for mesh re-coarsening procedure
nodal generation function stores birth certificates

provides complete characterization of elements
youngest node corresponds to refinement level
is required for the vertex-locking algorithm

state function for element characterization

local two-level ordering strategy

This has been addressed in the talk on Monday
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Mesh genealogy, revisited

Triangulation Tm(Em,Vm), m = 0, 1, 2, . . . consists of
Em = {Ωk : k = 1, . . . , NE} and Vm = {vi : i = 1, . . . , NV}

nodal generation function g : Vm → N0 is defined recursively

g(vi) :=


0 if vi ∈ V0

max
vj∈Γkl

g(vj) + 1 if vi ∈ Γkl := Ω̄k ∩ Ω̄l

max
vj∈∂Ωk

g(vj) + 1 if vi ∈ Ωk \ ∂Ωk
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Characterization of elements

Idea I: State function s : Em → Z (in MSB representation)
Set Bit[0] to 1 for quadrilateral, otherwise set it to zero
Set Bit[k=1..4] to 1 if both endpoints of edge k have same age
If no two endpoints have same age, then find local position k
of the youngest vertex, set Bit[k] to 1 and negate the state

Idea II: Define local ordering strategy within each element a priori

element characterization element state
triangle/quadrilateral from T0 0/1
green quadrilateral 3, 5, 9, 11,17, 21
red quadrilateral 7, 13, 19, 25
inner red triangle 14
’other’ triangle 2, 4, 8
green triangle -8, -4, -2
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Storage management

Concept of dynamically allocatable arrays in Fortran 9x
integer, dimension(:), allocatable :: Iarray

allocate(Iarray(n)) allocate array of size n dynamically

deallocate(Iarray) deallocate dynamically allocated array

Concept of dynamically allocatable arrays in FeatFlow
storage_init, storage_done initialize/finalize storage

storage_new allocate new memory storage

storage_realloc re-allocate memory storage

storage_free deallocate memory storage

storage_getbase_XXX access memory storage
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Storage management, cont’d.

Supported data: 8/16/32/64 integer, SP/DP real, logical, strings

Memory storage is accessible via integer handle ihandle

Pointer to the memory is assigned via storage_getbase_XXX

Implementation details
memory storage handling is internally mapped to de/allocate

different storage management can be implemented without changes

handles can be easily passed to subroutines and functions

derived types typically consist of a set of handles + scalar data
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Storage management, cont’d.

Supported data: 8/16/32/64 integer, SP/DP real, logical, strings

Memory storage is accessible via integer handle ihandle

Pointer to the memory is assigned via storage_getbase_XXX

Implementation details
memory storage handling is internally mapped to de/allocate

different storage management can be implemented without changes

handles can be easily passed to subroutines and functions

derived types typically consist of a set of handles + scalar data

Derived type for triangulation structure

type t_triangulation
integer :: ndim = 0
integer :: NVT = 0
integer :: NMT = 0
integer :: NAT = 0
integer :: NEL = 0
. . .
integer :: h_DvertexCoords = ST_NOHANDLE
integer :: h_IverticesAtElement = ST_NOHANDLE
integer :: h_IneighboursAtElement = ST_NOHANDLE

end type
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Example: Using handles

Create new storage
storage_new (scall, sname, Isize, ctype, ihandle, &

cinitNewBlock, <rheap>)

ctype ∈ {ST_DOUBLE,ST_SINGLE,ST_INTx,ST_CHAR,ST_LOGICAL}

cinitNewBlock ∈ {ST_NEWBLOCK_ZERO,ST_NEWBLOCK_NOINIT}

Accessing storage, e.g. 2-dimensional double array
real(DP), dimension(:,:), pointer :: p_Darray

storage_getbase_double2D (ihandle, p_Darray, <rheap>)

Releasing storage
storage_free (ihandle)
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UnConventional High Performance Computing
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Feast

Finite Element Analysis & Solution Tools
High performance finite element package for the efficient

simulation of large scale problems on heterogeneous hardware

written in Fortran 90 and C (MPI communication)
CFD (Stokes, Navier-Stokes), CSM (Elasticity)
macro-wise domain decomposition approach
fast and robust parallel multigrid methods
unconventional hardware as FEM co-processors

Visit the Feast homepage
http://www.feast.uni-dortmund.de
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Hardware-oriented Numerics

Scalable Recursive Clustering (ScaRC) solver
Combine domain decomposition and cascaded multigrid methods

Globally unstructured

hide anisotropies to improve robustness

Locally structured
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UnConventional HPC

Graphic processing unit (GPU)
128 parallel scalar processors
@ 1.35 GHz, ≈ 350 GFLOP/s
GDDR3 memory @ 900 MHz

Cell multi-core processor (PS3)
7 synergistic processing units
@ 3.2 GHz, 218 GFLOPS/s
Memory @ 3.2 GHz
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Future vision

Unified Feat+Feast finite element package

Decompose the domain into globally unstructured macro-cells

Use generalized tensor product grid or unstructured mesh locally

Reuse FEM co-processors in the FeatFlow package

Enable special features, (e.g. h-adaptation) per macro-cell

On-line resources and additional material

FeatFlow project: http://www.featflow.de

Feast project: http://www.feast.uni-dortmund.de
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