lgaNets: Physics-Informed Machine Learning
Embedded Into Isogeometric Analysis

Matthias Méller, Deepesh Toshniwal, Frank van Ruiten

Department of Applied Mathematics
Delft University of Technology, The Netherlands

9th GACM Colloquium on Computational Mechanics 2022
21-23 September 2022, Essen, Germany

MS 12: Scientific Machine Learning in Computational Mechanics

3
TUDelft 1/21



Motivation

FDM, FVM, FEM, BEM, IGA, ... PINNs, DeepONets, FourierNets, ...

VS.

3 ]
TUDelft 2/ 2




Motivation

FDM, FVM, FEM, BEM, IGA, ... PINNs, DeepONets, FourierNets, ...

VS.

Common misconceptions
® “Method a is/is not as accurate as method b"

® “Method a is x-times faster/slower than method b"

3 ,
TUDelft 2/21



Motivation

FDM, FVM, FEM, BEM, IGA, ... PINNs, DeepONets, FourierNets, ...

) sound mathematical foundation ) fast evaluation (costly training!)
) established engineering workflows VS. @) inclusion of (measurement) data
€3 no cost amortization over multiple 3 lack of convergence theory

runs, no real-time capability L) lack of general acceptance

Common misconceptions
® “Method a is/is not as accurate as method b"

® “Method a is x-times faster/slower than method b"

Better questions to ask

* What are the specific strengths/weaknesses of the different approaches?
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Motivation

FDM, FVM, FEM, BEM, IGA, ... PINNs, DeepONets, FourierNets, ...

) sound mathematical foundation ) fast evaluation (costly training!)

) established engineering workflows and | ) inclusion of (measurement) data

Common misconceptions
® “Method a is/is not as accurate as method b"

® “Method a is x-times faster/slower than method b"

Better questions to ask
* What are the specific strengths/weaknesses of the different approaches?
® How can we combine the strengths of both classes of methods?

® What is the envisaged purpose of the new approach?
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Design-through-Analysis — IGA’s ultimate goal from day one on

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the
same computational framework with seamless switching between both approaches

Photo: Siemens — Simulation for Design Engineers
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

) easy to implement for ‘any’ PDE
") combined un-/supervised learning

F=0U+V-f(U o o o
(A L) poor extrapolation/generalization

) collocation-based approach requires
re-evaluation of NN at every point

~

€} rudimentary convergence theory
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F=0U+V-f(U o o o
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€} rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Go(u)(y) = ,;: be(ul(zr), u(@a), .., wl@m)) s (y)

branch trunk
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

) easy to implement for ‘any’ PDE
") combined un-/supervised learning

F=0U+V-f(U o o o
(A L) poor extrapolation/generalization

) collocation-based approach requires
re-evaluation of NN at every point

~

€} rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

q
G = b ) 9%y m t 1 .
o(u)(y) kgl k(u(z1), u(@2) u(@ )) k(y) Don't we know a good basis?

branch trunk
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B-spline basis functions

Cox de Boor recursion formula

' L B(E) {1 if £ < € < €

b> s 5770 0 otherwise
§—& ,p1
(&) =———-b (&)
+ i : > Eovp — &
0 1 2 3 4 _
+ Mygﬁ(@
knot vector Z = [0, 1,2, 3, 4] Sorpr1 — Eev1
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B-spline basis functions

Cox de Boor recursion formula

' L B(E) {1 if £ < € < €

b2 s 5770 0 otherwise
§—& ,p1
(&) =———-b (&)
+ . : > Eovp — &
0 1 2 3 4 fg = f _
n + +p+_ b§+11(§)
knot vector Z = [0, 1,2, 3, 4] Sorpr1 — Eev1

Many good properties: compact support [y, £r4p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...
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Isogeometric Analysis

Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(&,n) =)&) -bl(n), di=(k—=1)-n+¢ 1<0<n;, 1<k<ny,
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Isogeometric Analysis

Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(&,n) = b)(&) -bi(n), i=(k—=1)-ng+0 1<l<ny, 1<k<ny,

n
Many more good properties: partition of unity > B;(£,7) = 1, CP~! continuity, ...
i=1
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Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain Q; C R?

n

xp(&m) =Y Bi(&n)-xi  V(n) €01 = O

i=1

® the shape of €}, is fully specified by the
set of control points x; € R¢
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n

xn(&m) =D Bi(&,n) - x;  ¥(En) €[0,1]* =

i=1

® the shape of €}, is fully specified by the
set of control points x; € R¢

® interior control points must be chosen
such that ‘grid lines' do not fold as this
violates the bijectivity of x5 : 0 —
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Geometry: bijective mapping from the unit square to the physical domain Q; C R?

n

xn(&m) =D Bi(&,n) - x;  ¥(En) €[0,1]* =

i=1

® the shape of €}, is fully specified by the
set of control points x; € R¢

® interior control points must be chosen
such that ‘grid lines' do not fold as this
violates the bijectivity of x5 : 0 —

e refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Qp and can be used to generate finer
computational ‘grids’ for the analysis
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Isogeometric Analysis

Data, boundary conditions, and solution: forward mappings from the unit square

n

(r.h.s vector) fhoxp(&,n) = ZBz'(&??) - fi V(& n) € 10,1]7

=1

n

(boundary conditions) ghoxn(&m) =Y Bi&mn) g V(&n) €00,1]?
i=1

n

(solution) up o xp(&,m) = ZBz‘(fﬂ?) UG v(&,n) €10, 1]2
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Isogeometric Analysis

Data, boundary conditions, and solution: forward mappings from the unit square

n

(r.h.s vector) fhoxp(&,n) = ZBz'(&??) - fi V(& n) € 10,1]7

=1

n

(boundary conditions) gnoxp(&,n) = ZBi(E,n) " gi v(&,m) € 9[0,1)?
i=1

(solution) up o xp(&,m) = ZBi(fan) UG v(&,n) €10, 1]2

Model problem: Poisson’s equation

—Auhth in Qh, Up = g ONn th
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Isogeometric Analysis

Different solution approaches
® Galerkin-type IGA (Hughes et al. 2005 and many more)
¢ Isogeometric collocation methods (Reali, Hughes, 2015)
 Variational collocation method (Gomez, De Lorenzis, 2016)
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Isogeometric Analysis

Different solution approaches
® Galerkin-type IGA (Hughes et al. 2005 and many more)
¢ Isogeometric collocation methods (Reali, Hughes, 2015)
 Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation
Given x; (geometry), f; (r.h.s. vector), and g; (boundary conditions), compute

() x1] [5 x1] [fi] [«9
= A_l N I b o I I
Unp Xn gn Xn fn gn

Any point of the solution can afterwards be obtained by a simple function evaluation

ul
(fﬂ?) € [071]2 = up OXh(fan) = [B1(§7n)7 s 7Bn(§7n)] ’

Unp,
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Isogeometric Analysis
Abstract representation
Given x; (geometry), f; (r.h.s. vector), and g; (boundary conditions), compute
U x| [91 xi] [A] [9
= A_l N -b R
Un, Xn dn Xn In n
Any point of the solution can afterwards be obtained by a simple function evaluation

a1
(6777) € [07 1]2 = up OXh(fa'U) = [Bl(gvn)’ e 7Bn(§777)] ’

Un,

Let us interpret the sets of B-spline coefficients {x;}, {fi}, and {g;} as an efficient
encoding of our PDE problem that is fed into our IGA machinery as input.

The output of our IGA machinery are the B-spline coefficients {u;} of the solution.
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Isogeometric Analysis + PINNs

IgaNet: replace computation by physics-informed machine learning

My ] xi1| [an xi] [H] [9
=A b e e ]
| Uy, | Xp, In Xn fn n
K x1] [fi] [&n
L =PINN ] ] ] ) e
| Un Xn, In n

Compute the solution by evaluating the trained neural network

uy x| [A] [9
Uh(&??)% [31(5,77)7---,Bn(§’77)]‘ = PINN N I N IR 5(§a77)

Unp, Xn f n gn
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lgaNet architecture

loss = lossppg + lossgpr

@ end training

Oloss
O(w, b)

and continue training

— update w, b
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lgaNet architecture

o))
SRR
i ¢ Xe e‘ ——— loss = lossppE + lossgpr
R

“A\e,‘\ ,‘\e' @ end training

coords (€™, n™*))iL,

E Oloss
) 9w, b)
and continue training

— update w, b
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Loss function

lossppg = Nig 3 A [uh oxp, <€(k),77(k))] — fhoxp (5(’9),77(16)) ‘2
k=1
B I k k k k 2
lossppr = Ny 2 [n O X (5( ), )) — gi o Xp (§< ) )))

Express derivatives with respect to physical space variables using the Jacobian J, the
Hessian H and the matrix of squared first derivatives @) (Schillinger et al. 2013):

9°B 92B
2 €2 9B
2B | _ T 8B T ,—T | ¢
oxdy | — Q agon | — H'J [ B
9°B 92B an
oy? on2
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Two-level training strategy
For [Xla oo 7Xn] € Sgeo: [fla v 7fn] € Srth [917 e 7gn] € Sbcond do
For a batch of randomly sampled (£;, ;) € [0,1] do

X1 f1 9 U1
Train PINN S N A ;(£k7nk)iv;ainp\es —
Xn fn dn Un

EndFor
EndFor

IGA details: 7 x 7 bi-cubic tensor-product B-splines for x;, and uj, C?-continuous

PINN details: TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and RelLU
activation function (except for output layer), Adam optimizer, 30.000 epochs, training is
stopped after 3.000 epochs w/o improvement of the loss value

Ongoing master thesis work of Frank van Ruiten, TU Delft
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Test case: Poisson's equation on a variable annulus

2rad

3rad

Ongoing master thesis work of Frank van Ruiten, TU Delft
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Preliminary results
oo ——— 1\
] | IL i\

3rad

Ongoing master thesis work of Frank van Ruiten, TU Delft
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Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point & € [£,&s41) compute for r > 0

d" d” d”
d_EX(é.) = d_gbg_p(g)a 000y d_fbg(é.) . [X@—pv °ooo aXﬁ]

network’s output
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Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point & € [£y, &p11) compute for r > 0

d" d” d”
d_EX(é.) = d_gbg_p(g)a 000y d_é-b]g(é.) . [X@—pv °ooo 7X€]

network’s output

* The above needs to be performed for all sampling points £) in the batch

sum(d"B” © X, 2)
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Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point & € [£y, &p11) compute for r > 0
dr d” d”
e = d_é-bg—p(g)v ad_é-b]g(é.) . [X@—pv"wXﬁ]

network’s output

* The above needs to be performed for all sampling points £) in the batch
sum(d"B” © X, 2)
® The above needs to be differentiated by the AD engine during backpropagation

0 (drb§X£) dT+1bp 5 drbp
ow o3
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Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point & € [£y, &p11) compute for r > 0

d" d” d”
d_EX(é.) = [d_gbg_p(é)v ) d_é-b]g(é.) . [X@—pv fee 7X€]

network’s output

Textbook derivatives

d” 1 —drt 1 dr—1
_bp — _ bp—l bp—l
df 8(6) (p 1) <£€+p _ §€+1 dé- £+1 (é) + €E+p—1 _ 6@ d§ 14 (5))
with
o E—& p Eorpt1 — & 0y ) 1 if&<E< &
be(&) = Sorp — &bﬁ &+ Eorpr1 — Eor1 © n (5)’ be (&) { 0 otherwise
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Towards an ML-friendly B-spline formulation
Matrix representation of B-splines (Lyche and Morken 2011)

d" dr !
digbgfp(é)’ N dgbﬁ(é)} p—|R1(f) e Rp—r(f)dRp—r—f—l e dRp

with k& x k 4+ 1 matrices R (§), e.g.

Ri(§) = [€z+1—§ T—& ]

er1—&  Sor1—Ee

. §e+1£—§ . 30—525—1 0

| Cer1—Ce—1 Cer1—&e—1

RQ(f) - [ 0 £1€+2_§ z—&
Sor2—Ee Sor2—Ee

Rae) = ...

There exists an efficient algorithm based on elementwise operations on vectors.
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Conclusion and outlook

IgaNets combine classical numerics with scientific machine learning and may finally enable
integrated and interactive computer-aided design-through-analysis workflows
Todo

e performance and hyper-parameter tuning

® extension to multi-patch topologies rf' %1

use of IGA and IgaNets in concert ’%.
transfer learning upon basis refinement

MATHEMATICS:

KEY ENABLING TECHNOLOGY
FOR SCIENTIFIC MACHINE
LEARNING

Short paper: Moller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. ¥~
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Thank you for your attention!
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