
IgaNets: Physics-Informed Machine Learning
Embedded Into Isogeometric Analysis

Matthias Möller, Deepesh Toshniwal, Frank van Ruiten

Department of Applied Mathematics
Delft University of Technology, The Netherlands

9th GACM Colloquium on Computational Mechanics 2022
21–23 September 2022, Essen, Germany

MS 12: Scientific Machine Learning in Computational Mechanics

1 / 21

Motivation
FDM, FVM, FEM, BEM, IGA, ...

� sound mathematical foundation
� established engineering workflows
� no cost amortization over multiple

runs, no real-time capability

vs.

PINNs, DeepONets, FourierNets, ...

� fast evaluation (costly training!)
� inclusion of (measurement) data
� lack of convergence theory
� lack of general acceptance

Common misconceptions
• “Method a is/is not as accurate as method b”
• “Method a is x-times faster/slower than method b”

Better questions to ask
• What are the specific strengths/weaknesses of the different approaches?

• How can we combine the strengths of both classes of methods?
• What is the envisaged purpose of the new approach?

2 / 21

Motivation
FDM, FVM, FEM, BEM, IGA, ...

� sound mathematical foundation
� established engineering workflows
� no cost amortization over multiple

runs, no real-time capability

vs.

PINNs, DeepONets, FourierNets, ...

� fast evaluation (costly training!)
� inclusion of (measurement) data
� lack of convergence theory
� lack of general acceptance

Common misconceptions
• “Method a is/is not as accurate as method b”
• “Method a is x-times faster/slower than method b”

Better questions to ask
• What are the specific strengths/weaknesses of the different approaches?

• How can we combine the strengths of both classes of methods?
• What is the envisaged purpose of the new approach?

2 / 21

Motivation
FDM, FVM, FEM, BEM, IGA, ...

� sound mathematical foundation
� established engineering workflows
� no cost amortization over multiple

runs, no real-time capability

vs.

PINNs, DeepONets, FourierNets, ...

� fast evaluation (costly training!)
� inclusion of (measurement) data
� lack of convergence theory
� lack of general acceptance

Common misconceptions
• “Method a is/is not as accurate as method b”
• “Method a is x-times faster/slower than method b”

Better questions to ask
• What are the specific strengths/weaknesses of the different approaches?

• How can we combine the strengths of both classes of methods?
• What is the envisaged purpose of the new approach?

2 / 21

Motivation
FDM, FVM, FEM, BEM, IGA, ...

� sound mathematical foundation
� established engineering workflows

� no cost amortization over multiple
runs, no real-time capability

and

PINNs, DeepONets, FourierNets, ...

� fast evaluation (costly training!)
� inclusion of (measurement) data

� lack of convergence theory
� lack of general acceptance

Common misconceptions
• “Method a is/is not as accurate as method b”
• “Method a is x-times faster/slower than method b”

Better questions to ask
• What are the specific strengths/weaknesses of the different approaches?
• How can we combine the strengths of both classes of methods?

• What is the envisaged purpose of the new approach?

2 / 21

Motivation
FDM, FVM, FEM, BEM, IGA, ...

� sound mathematical foundation
� established engineering workflows

� no cost amortization over multiple
runs, no real-time capability

and

PINNs, DeepONets, FourierNets, ...

� fast evaluation (costly training!)
� inclusion of (measurement) data

� lack of convergence theory
� lack of general acceptance

Common misconceptions
• “Method a is/is not as accurate as method b”
• “Method a is x-times faster/slower than method b”

Better questions to ask
• What are the specific strengths/weaknesses of the different approaches?
• How can we combine the strengths of both classes of methods?
• What is the envisaged purpose of the new approach?

2 / 21

Design-through-Analysis — IGA’s ultimate goal from day one on

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the
same computational framework with seamless switching between both approaches

Photo: Siemens – Simulation for Design Engineers

3 / 21

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

� easy to implement for ‘any‘ PDE
� combined un-/supervised learning
� poor extrapolation/generalization
� collocation-based approach requires

re-evaluation of NN at every point
� rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know a good basis?

4 / 21

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

� easy to implement for ‘any‘ PDE
� combined un-/supervised learning
� poor extrapolation/generalization
� collocation-based approach requires

re-evaluation of NN at every point
� rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know a good basis?

4 / 21

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

� easy to implement for ‘any‘ PDE
� combined un-/supervised learning
� poor extrapolation/generalization
� collocation-based approach requires

re-evaluation of NN at every point
� rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know a good basis?

4 / 21

Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

� easy to implement for ‘any‘ PDE
� combined un-/supervised learning
� poor extrapolation/generalization
� collocation-based approach requires

re-evaluation of NN at every point
� rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Gθ(u)(y) =
q∑

k=1
bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸

branch

tk(y)︸ ︷︷ ︸
trunk

Don’t we know a good basis?

4 / 21

B-spline basis functions

Cox de Boor recursion formula

knot vector Ξ = [0, 1, 2, 3, 4]

b0
ℓ (ξ) =

{
1 if ξℓ ≤ ξ < ξℓ+1
0 otherwise

bp
ℓ (ξ) = ξ − ξℓ

ξℓ+p − ξℓ
bp−1

ℓ (ξ)

+ ξℓ+p+1 − ξ

ξℓ+p+1 − ξℓ+1
bp−1

ℓ+1 (ξ)

Many good properties: compact support [ξℓ, ξℓ+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

5 / 21

B-spline basis functions

Cox de Boor recursion formula

knot vector Ξ = [0, 1, 2, 3, 4]

b0
ℓ (ξ) =

{
1 if ξℓ ≤ ξ < ξℓ+1
0 otherwise

bp
ℓ (ξ) = ξ − ξℓ

ξℓ+p − ξℓ
bp−1

ℓ (ξ)

+ ξℓ+p+1 − ξ

ξℓ+p+1 − ξℓ+1
bp−1

ℓ+1 (ξ)

Many good properties: compact support [ξℓ, ξℓ+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

5 / 21

Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
ℓ (ξ) · bq

k(η), i := (k − 1) · nℓ + ℓ, 1 ≤ ℓ ≤ nℓ, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
ℓ (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...

6 / 21

Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
ℓ (ξ) · bq

k(η), i := (k − 1) · nℓ + ℓ, 1 ≤ ℓ ≤ nℓ, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
ℓ (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...

6 / 21

Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis

7 / 21

Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis

7 / 21

Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis

7 / 21

Isogeometric Analysis
Data, boundary conditions, and solution: forward mappings from the unit square

(r.h.s vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

Model problem: Poisson’s equation

−∆uh = fh in Ωh, uh = gh on ∂Ωh

8 / 21

Isogeometric Analysis
Data, boundary conditions, and solution: forward mappings from the unit square

(r.h.s vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

Model problem: Poisson’s equation

−∆uh = fh in Ωh, uh = gh on ∂Ωh

8 / 21

Isogeometric Analysis
Different solution approaches

• Galerkin-type IGA (Hughes et al. 2005 and many more)
• Isogeometric collocation methods (Reali, Hughes, 2015)
• Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un



9 / 21

Isogeometric Analysis
Different solution approaches

• Galerkin-type IGA (Hughes et al. 2005 and many more)
• Isogeometric collocation methods (Reali, Hughes, 2015)
• Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un


9 / 21

Isogeometric Analysis
Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un


Let us interpret the sets of B-spline coefficients {xi}, {fi}, and {gi} as an efficient
encoding of our PDE problem that is fed into our IGA machinery as input.
The output of our IGA machinery are the B-spline coefficients {ui} of the solution.

10 / 21

Isogeometric Analysis + PINNs
IgaNet: replace computation by physics-informed machine learningu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




u1
...

un

 = PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξ(k), η(k))Nsamples
k=1


Compute the solution by evaluating the trained neural network

uh(ξ, η) ≈ [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

 = PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξ, η)



11 / 21

IgaNet architecture

x1

xn

f1

fn

g1

gn

ξ, η

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

co
or

ds

12 / 21

IgaNet architecture

x1

xn

f1

fn

g1

gn

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

coords (ξ(k), η(k))N
k=1

13 / 21

Loss function

lossPDE = α

NΩ

NΩ∑
k=1

∣∣∣∆ [
uh ◦ xh

(
ξ(k), η(k)

)]
− fh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
lossBDR = β

NΓ

NΓ∑
k=1

∣∣∣uh ◦ xh

(
ξ(k), η(k)

)
− gh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
Express derivatives with respect to physical space variables using the Jacobian J , the
Hessian H and the matrix of squared first derivatives Q (Schillinger et al. 2013):

∂2B
∂x2

∂2B
∂x∂y

∂2B
∂y2

 = Q−⊤




∂2B
∂ξ2

∂2B
∂ξ∂η

∂2B
∂η2

− H⊤J−⊤

∂B
∂ξ

∂B
∂η




14 / 21

Two-level training strategy
For [x1, . . . , xn] ∈ Sgeo, [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond do

For a batch of randomly sampled (ξk, ηk) ∈ [0, 1]2 do

Train PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1

 7→

u1
...

un


EndFor

EndFor

IGA details: 7 × 7 bi-cubic tensor-product B-splines for xh and uh, C2-continuous

PINN details: TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU
activation function (except for output layer), Adam optimizer, 30.000 epochs, training is
stopped after 3.000 epochs w/o improvement of the loss value

Ongoing master thesis work of Frank van Ruiten, TU Delft

15 / 21

Test case: Poisson’s equation on a variable annulus

g ≡ 0
g

≡
0,

1,
. .

. ,
11

0rad

1rad2rad

3rad

4rad

f ≡ 0, 1, . . . , 11

Ongoing master thesis work of Frank van Ruiten, TU Delft

16 / 21

Preliminary results

x0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

g ≡ 0

g
≡

0

0rad

1rad2rad

3rad

4rad

f ≡ 5

Ongoing master thesis work of Frank van Ruiten, TU Delft

17 / 21

Preliminary results

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g ≡ 0

g
≡

1.4

0rad

1rad2rad

3rad

4rad

f ≡ 5

Ongoing master thesis work of Frank van Ruiten, TU Delft

17 / 21

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.25
0.50

0.75
1.00

z

0.0
0.5
1.0
1.5
2.0
2.5

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 3.3

Ongoing master thesis work of Frank van Ruiten, TU Delft

18 / 21

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.250.50
0.75

1.00

z

0.0
0.5
1.0
1.5
2.0
2.5

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 8.7

Ongoing master thesis work of Frank van Ruiten, TU Delft

18 / 21

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.25
0.50

0.75
1.00

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 15.5

Ongoing master thesis work of Frank van Ruiten, TU Delft

18 / 21

Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point ξ ∈ [ξℓ, ξℓ+1) compute for r ≥ 0

dr

dξ
χ(ξ) =

[dr

dξ
bp

ℓ−p(ξ), . . . ,
dr

dξ
bp

ℓ (ξ)
]

· [χℓ−p, . . . , χℓ]︸ ︷︷ ︸
network’s output

• The above needs to be performed for all sampling points ξ(k) in the batch

sum(drBp ⊙ X , 2)

• The above needs to be differentiated by the AD engine during backpropagation

∂
(
drbp

ℓχℓ

)
∂w

= dr+1bp
ℓ

∂ξ

∂w
χ + drbp

ℓ

∂χ

∂ξ

19 / 21

Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point ξ ∈ [ξℓ, ξℓ+1) compute for r ≥ 0

dr

dξ
χ(ξ) =

[dr

dξ
bp

ℓ−p(ξ), . . . ,
dr

dξ
bp

ℓ (ξ)
]

· [χℓ−p, . . . , χℓ]︸ ︷︷ ︸
network’s output

• The above needs to be performed for all sampling points ξ(k) in the batch

sum(drBp ⊙ X , 2)

• The above needs to be differentiated by the AD engine during backpropagation

∂
(
drbp

ℓχℓ

)
∂w

= dr+1bp
ℓ

∂ξ

∂w
χ + drbp

ℓ

∂χ

∂ξ

19 / 21

Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point ξ ∈ [ξℓ, ξℓ+1) compute for r ≥ 0

dr

dξ
χ(ξ) =

[dr

dξ
bp

ℓ−p(ξ), . . . ,
dr

dξ
bp

ℓ (ξ)
]

· [χℓ−p, . . . , χℓ]︸ ︷︷ ︸
network’s output

• The above needs to be performed for all sampling points ξ(k) in the batch

sum(drBp ⊙ X , 2)

• The above needs to be differentiated by the AD engine during backpropagation

∂
(
drbp

ℓχℓ

)
∂w

= dr+1bp
ℓ

∂ξ

∂w
χ + drbp

ℓ

∂χ

∂ξ

19 / 21

Towards an ML-friendly B-spline formulation

Common computational task

Given sampling point ξ ∈ [ξℓ, ξℓ+1) compute for r ≥ 0

dr

dξ
χ(ξ) =

[dr

dξ
bp

ℓ−p(ξ), . . . ,
dr

dξ
bp

ℓ (ξ)
]

· [χℓ−p, . . . , χℓ]︸ ︷︷ ︸
network’s output

Textbook derivatives

dr

dξ
bp

ℓ (ξ) = (p − 1)
(

1
ξℓ+p − ξℓ+1

−dr−1

dξ
bp−1

ℓ+1 (ξ) + 1
ξℓ+p−1 − ξℓ

dr−1

dξ
bp−1

ℓ (ξ)
)

with

bp
ℓ (ξ) = ξ − ξℓ

ξℓ+p − ξℓ
bp−1

ℓ (ξ) + ξℓ+p+1 − ξ

ξℓ+p+1 − ξℓ+1
bp−1

ℓ+1 (ξ), b0
ℓ (ξ) =

{
1 if ξℓ ≤ ξ < ξℓ+1
0 otherwise

19 / 21

Towards an ML-friendly B-spline formulation
Matrix representation of B-splines (Lyche and Morken 2011)[dr

dξ
bp

ℓ−p(ξ), . . . ,
dr

dξ
bp

ℓ (ξ)
]

= p!
(p − r)!R1(ξ) · · · Rp−r(ξ)dRp−r+1 · · · dRp

with k × k + 1 matrices Rk(ξ), e.g.

R1(ξ) =
[

ξℓ+1−ξ
ξℓ+1−ξℓ

x−ξℓ
ξℓ+1−ξℓ

]

R2(ξ) =

 ξℓ+1−ξ
ξℓ+1−ξℓ−1

x−ξℓ−1
ξℓ+1−ξℓ−1

0

0 ξℓ+2−ξ
ξℓ+2−ξℓ

x−ξℓ
ξℓ+2−ξℓ


R3(ξ) = . . .

There exists an efficient algorithm based on elementwise operations on vectors.

20 / 21

Conclusion and outlook
IgaNets combine classical numerics with scientific machine learning and may finally enable
integrated and interactive computer-aided design-through-analysis workflows

Todo
• performance and hyper-parameter tuning
• extension to multi-patch topologies
• use of IGA and IgaNets in concert
• transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. �

MATHEMATICS:
 K E Y E N A B L I N G T E C H N O L O G Y
F O R S C I E N T I F I C M A C H I N E
L E A R N I N G

—

Thank you for your attention!

21 / 21

Conclusion and outlook
IgaNets combine classical numerics with scientific machine learning and may finally enable
integrated and interactive computer-aided design-through-analysis workflows

Todo
• performance and hyper-parameter tuning
• extension to multi-patch topologies
• use of IGA and IgaNets in concert
• transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. �

MATHEMATICS:
 K E Y E N A B L I N G T E C H N O L O G Y
F O R S C I E N T I F I C M A C H I N E
L E A R N I N G

—

Thank you for your attention!

21 / 21

