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SciML for PDE analysis
• Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]

• Fourier neural operators (FNO) [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya,
Stuart, Anandkumar, 2020]

• Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]
• Many other approaches that aim to train a neural network using pre-calculated

simulation data (supervised learning) have been proposed in the literature
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SciML for PDE analysis
• Physics-informed neural networks (PINNs) [Raissi, Perdikaris, Karniadakis, 2019]

+ No pre-calculated data needed (unsupervised learning)
+ Applicable to arbitrary PDEs (extra effort might be needed to impose ‘physics’)
+ Can be augmented with data (faster conversion of loss function)

– Convergence theory is in its infancy (different from FEM/IGA theory)
– Poor extrapolation capabilities (different geometries, problem parameters)
– Space-time treatment of time-dependent problems
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Stuart, Anandkumar, 2020]

+ Aims to learn the operator (not the PDE problem)

– Pre-calculated training data is needed (supervised learning)
– Assumes an efficient Fourier approximation of the solution
– Designed for time-dependent PDEs
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Stuart, Anandkumar, 2020]
• Learning nonlinear operators (DeepONets) [Lu, Jin, Pang, Zhang, Karniadakis, 2021]

+ Aims to learn the operator (not the PDE problem)
+ Claims to have excellent extrapolation capabilities

– Pre-calculated training data is needed (supervised learning)
– Designed for time-dependent PDEs

• Many other approaches that aim to train a neural network using pre-calculated
simulation data (supervised learning) have been proposed in the literature
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The above approaches focus on PDE analysis only and do not pay much attention to linking
it to computer-aided geometry modeling [seen before with CAD and FEA, right?].
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Life before PINNs
Simulation-based analysis of PDEs with numerical methods has a long tradition

• particle methods: PIC (1955), SPH (1977), DPD (1992), RKPM (1995), ...
• hybrid particle-mesh methods: MPM (1990s), ...
• mesh-based methods: FEM (1940s), FDM (1950s), FVM (1971), IGA (2005), ...

Left: wave-structure interaction, LS-DYNA; right: supersonic flow around a cow, Siemens FloEFD
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Simulation-based analysis of PDEs with numerical methods has a long tradition

• particle methods: PIC (1955), SPH (1977), DPD (1992), RKPM (1995), ...
• hybrid particle-mesh methods: MPM (1990s), ...
• mesh-based methods: FEM (1940s), FDM (1950s), FVM (1971), IGA (2005), ...

• theoretical foundation: existence & uniqueness, convergence, ...
• a priori/ a posteriori error estimates, practical error indicators
• strategies for adaptive hp-mesh refinement
• unified framework for computer-aided design and finite element analysis
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Isogeometric Analysis

B-spline basis functions

knot vector Ξ = [0, 1, 2, 3, 4]

b0
ℓ (ξ) =

{
1 if ξℓ ≤ ξ < ξℓ+1
0 otherwise

bp
ℓ (ξ) = ξ − ξℓ

ξℓ+p − ξℓ
bp−1

ℓ (ξ)

+ ξℓ+p+1 − ξ

ξℓ+p+1 − ξℓ+1
bp−1

ℓ+1 (ξ)

Many good properties: compact support [ξℓ, ξℓ+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...

T.J.R. Hughes, J.A.Cottrell, Y.Bazilevs: Isogeometric analysis: CAD, finite elements, NURBS, exact
geometry and mesh refinement. CMAME 194(39–41), 2005.
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Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
ℓ (ξ) · bq

k(η), i := (k − 1) · nℓ + ℓ, 1 ≤ ℓ ≤ nℓ, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
ℓ (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...
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Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis
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Isogeometric Analysis
Data, boundary conditions, and solution: forward mappings from the unit square

(r.h.s vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

Model problem: Poisson’s equation

−∆uh = fh in Ωh, uh = gh on ∂Ωh
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Isogeometric Analysis
Different solution approaches

• Galerkin-type IGA (Hughes et al. 2005 and many more)
• Isogeometric collocation methods (Reali, Hughes, 2015)
• Variational collocation method (Gomez, De Lorenzis, 2016)

Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)]

u1
...

un


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(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)]
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...

un


Let us interpret the sets of B-spline coefficients xi, fi, and gi as an efficient encoding of our
PDE problem that is fed into our IGA machinery as input.
The expected output of our IGA machinery are the B-spline coefficients ui of the solution.
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Isogeometric Analysis + PINNs
IgaNet: replace computation by physics-informed machine learningu1

...
un

 = A−1


x1

...
xn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




u1
...

un

 = PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1


Compute the solution by evaluating the trained neural network

uh(ξ, η) ≈ [B1(ξ, η), . . . , Bn(ξ, η)]

u1
...

un

 = PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξ, η)


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IGA-PINN

x1

xn

f1

fn

g1

gn

ξ, η

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

co
or

ds
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Loss function

lossPDE = α

NΩ

NΩ∑
k=1

|∆[uh ◦ xh(ξk, ηk)] − fh ◦ xh(ξk, ηk)|2

lossBDR = β

NΓ

NΓ∑
k=1

|uh ◦ xh(ξk, ηk) − gh ◦ xh(ξk, ηk)|2

Express derivatives with respect to physical space variables using the Jacobian J , the
Hessian H and the matrix of squared first derivatives Q [Schillinger et al. 2013]:

∂2B
∂x2

∂2B
∂x∂y

∂2B
∂y2

 = Q−⊤




∂2B
∂ξ2

∂2B
∂ξ∂η

∂2B
∂η2

 − H⊤J−⊤

∂B
∂ξ

∂B
∂η



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Two-level training strategy
For [x1, . . . , xn] ∈ Sgeo, [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond do

For a batch of randomly sampled (ξk, ηk) ∈ [0, 1]2 do

Train PINN


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1

 7→

u1
...

un


EndFor

EndFor

IGA details: 7 × 7 bi-cubic tensor-product B-splines for xh and uh, C2-continuous

PINN details: TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU
activation function (except for output layer), Adam optimizer, 30.000 epochs, training is
stopped after 3.000 epochs w/o improvement of the loss value
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Test case: Poisson’s equation on a variable annulus
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Preliminary results
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Preliminary results
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Conclusion and outlook
IgaNets combine the best of both worlds and may finally enable
integrated and interactive computer-aided design-and-analysis workflows

Todo
• performance and hyper-parameter tuning
• extension to multi-patch topologies
• use of IGA and IgaNets in concert
• transfer learning upon refinement of basis functions

Short paper: Möller, Toshniwal, van Ruiten. Physics-informed machine learning embedded
into isogeometric analysis. In Mathematics: Key enabling technology for scientific machine
learning. Platform Wiskunde, 2021

WIP: G+Smo-compatible implementation of IgaNets in C++ using libtorch.

Thank you for your attention!
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