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The future of engineering (7!)

Siemens blog: Virtual Reality in Engineering - Are You Ready? — 7 July 2021
https://blogs.sw.siemens.com/teamcenter /virtual-reality-in-engineering-are-you-ready/
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Interactive Design-through-Analysis

Vision: unified computational framework for
* rapid prototyping (design exploration & optimization phase) and
¢ thorough analysis (design analysis & fine-tuning phase)

of engineering designs

Ingredients
® physics-informed machine learning for rapid prototyping

® isogeometric analysis for accurate analysis

A demo says more than 1,000 words...
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The big picture

Front-ends

IgANet-frontend :.,. gustaf
by SURF by TU Vienna

WebSockets protocol for interactive Design-through-Analysis

-

Back-ends
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

") easy to implement for ‘any' PDE

because AD magic does it for you
F= 8,0 +7-£U) ) combined un-/supervised learning

L) poor extrapolation/generalization

~

L) point-based approach requires
re-evaluation of NN at every point

) rudimentary convergence theory
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DeepONet (Lu et al. 2019): learns the differential operator

Go(u)(y) = ,;: be(ul(zr), u(@a), .., wl@m)) s (y)

branch trunk
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

") easy to implement for ‘any' PDE

because AD magic does it for you
F= 8,0 +7-£U) ) combined un-/supervised learning
L) poor extrapolation/generalization

L) point-based approach requires
re-evaluation of NN at every point

) rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

q
G ~3 RN . ,
o(u)(y) kgl k(u(@1), u(@2) u(@m) () Don't we know good bases?

branch trunk
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Tensor-product B-spline basis functions
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Tensor-product B-spline basis functions

n

Properties: compact support, positive function values, partition of unity > B;(§,n) =1,
i=1

CP~! continuity, derivatives of B-splines are combinations of lower-order B-splines, ...
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Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain Q; C R?

n

xp(&m) =Y Bi(&n)-xi  V(n) €01 = O

i=1

® the shape of €}, is fully specified by the
set of control points x; € R¢
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Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain Q; C R?

n

xn(&m) =D Bi(&,n) - x;  ¥(En) €[0,1]* =

i=1

® the shape of €}, is fully specified by the
set of control points x; € R¢

® interior control points must be chosen
such that ‘grid lines' do not fold as this
violates the bijectivity of x5 : 0 —
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Isogeometric Analysis

Geometry: bijective mapping from the unit square to the physical domain Q; C R?

n

xn(&m) =D Bi(&,n) - x;  ¥(En) €[0,1]* =

i=1

® the shape of €}, is fully specified by the
set of control points x; € R¢

® interior control points must be chosen
such that ‘grid lines' do not fold as this
violates the bijectivity of x5 : 0 —

e refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Qp and can be used to generate finer
computational ‘grids’ for the analysis
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Isogeometric Analysis
Model problem: Poisson’s equation

—Auh:fh in Qh, Up = gn ON 8Qh

with
(geometry) xp(&n) = > _Bi(&,n) xi  V(&n) €[0,1]?
i=1
(solution) up o xp(€,m) = Y Bi(&m)-ui V(&) €[0,1]
i=1

(r.h.s vector) froxn(&,m) = ZBz‘({fﬂ?) fi V(& m) €0,1)?

(boundary conditions) grnoxp(&,m) = ZBz’(ﬁ;??) i v(&,m) € 0[0, 1]2
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Isogeometric Analysis

Abstract representation
Given x; (geometry), f; (r.h.s. vector), and g; (boundary conditions), compute

U x| [91 xi] [A] [9
= A_l N N -b o I I
Un, Xn dn Xn In n
Any point of the solution can afterwards be obtained by a simple function evaluation

a1
(6777) € [07 1]2 = up OXh(fa'U) = [Bl(gvn)’ e 7Bn(§777)] ’

Un,
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Isogeometric Analysis
Abstract representation
Given x; (geometry), f; (r.h.s. vector), and g; (boundary conditions), compute
U x| [91 xi] [A] [9
= A_l N -b R
Un, Xn dn Xn In n
Any point of the solution can afterwards be obtained by a simple function evaluation

a1
(6777) € [07 1]2 = up OXh(fa'U) = [Bl(gvn)’ e 7Bn(§777)] ’

Un,

Let us interpret the sets of B-spline coefficients {x;}, {fi}, and {g;} as an efficient
encoding of our PDE problem that is fed into our IgA machinery as input.

The output of our IgA machinery are the B-spline coefficients {u;} of the solution.
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Isogeometric Analysis + Physics-Informed Machine Learning

HERIRARARR]

IgANet: replace computation

3}
=471
Un,
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Isogeometric Analysis + Physics-Informed Machine Learning

IgANet: replace computation by physics-informed machine learning

uy x1] [fi] [o
—1gANet [ | = |, ||| | (e, pth) e

Unp, Xn fn dn
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Isogeometric Analysis + Physics-Informed Machine Learning
IgANet: replace computation by physics-informed machine learning

Uy x1] [fi] [9n

= lgANet P R N I I

: ; (é(k)’ n(k))Nsamples
Un Xn fn 9n

k=1

Compute the solution from the trained neural network as follows

Ul Ul X1 J1 g1
uh(§777) = [Bl(faﬁ)a---,Bn(f,U)] N = IgANet R

Un, Un, Xn fn gn
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lgANet architecture

o))
SRR
i ¢ Xe e‘ ——— loss = lossppE + lossgpr
R

“A\e,‘\ ,‘\e' @ end training

coords (€™, n™*))iL,

E Oloss
) 9w, b)
and continue training

— update w, b
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Loss function

Model problem: Poisson’s equation with Dirichlet boundary conditions

lossppg = N&Q 3 A [uh oxp, (ﬁ(k)yﬂ(k))] — fnoxp (5(’6),,7(16)) ‘2
k=1

I b\ (k) (k) *k) ()|

OSSBDR = Nr 2= up © Xp, (f i ) —YghOXp (5 i ))

Express derivatives with respect to physical space variables using the Jacobian J, the
Hessian H and the matrix of squared first derivatives @) (Schillinger et al. 2013):

9B 9°B
Ox2 €2 8B
2B | _ H-T 82B T =T | 9
oxdy | — Q oton | H"J la_B
92B 92B o
oy on?
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Two-level training strategy

For [Xh . 7Xn] S Sgeo: [fla ce :fn] € S, [917 cee 7gn] € Sheond do
For a batch of randomly sampled (£x, k) € [0,1]2 (or the Greville abscissae) do

X1 fl g1 U1
Train IgANet IR B I (i) o |

Xn fn 9n Un,

EndFor
EndFor

Details:
® 7 x T bi-cubic tensor-product B-splines for x, and wj,, C%-continuous

® TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and RelLU activation
function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped
after 3.000 epochs w/o improvement of the loss value

Master thesis work by Frank van Ruiten, TU Delft
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Test case: Poisson's equation on a variable annulus

2rad

3rad

Master thesis work by Frank van Ruiten, TU Delft
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Preliminary results

0.30-‘4777«T777——7 — ——T———r—\\
0.25——‘777 n 777}{\\ \
0.201 — NN\

3rad

Master thesis work by Frank van Ruiten, TU Delft
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Preliminary results

3rad

Master thesis work by Frank van Ruiten, TU Delft
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Preliminary results
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Let's have a look under the hood

Computational costs of PINN vs. IgANets, implementation aspects, ...

%z
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Computational costs

Working principle of PINNs
x = u(x) := NN(x; f, 9, G) = oL(Wro(... (01(Wix +b1))) + by)

® use AD engine (automated chain rule) to compute derivatives, e.g., u, = NN,

® use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

z
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Computational costs

Working principle of PINNs
x — u(x) :=NN(x; f,9,G) = o,(Wro(...(c1(Wix+by))) + byp)

® use AD engine (automated chain rule) to compute derivatives, e.g., u, = NN,

® use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgANets
(%i, fi, Gili=1,...n = [Wi)i=1,..n == NN(x4, fi, 05,0 =1,...,n)

* use mathematics to compute derivatives, e.g., Vyu = (3, Ve Bi(&)u;) Jét

® use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

8(D’" D"bpuZ L Buz
_ _ o D'
ow ; MJr 2 Dhig




Towards an ML-friendly B-spline evaluation

Major computational task (illustrated in 1D)

Given sampling point £ € [£;,&+1) compute for r > 0

D u(€) = [D"W_(€), -, D"0(E)] - [uip, - - ]

network's output

Textbook derivatives

Drbp(f) =p <DT_1b§_1(€) D™ lbf—f—l (g) )

Sitp — i Eitp—1 — &it1

with (cf. Cox-de-Boor recursion formula)

V(&) = §¢ ——=pP (5) Mb” 1 (6), bQ(g)z{ 1 if& <& <&t

Sitp — & Eitpr1 — Eiv1 ' 0 otherwise
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Towards an ML-friendly B-spline evaluation

Matrix representation of B-splines (Lyche and Mgrken 2018)

[Drbf,p(ﬁ)’ . ,Drbf(g)} — (ppi—!r)!Rl (&) Ry_r(§)DRy_pi1--- DR,

with k& x k 4+ 1 matrices Rg()

£§i+1g§ gf_éigl 0

_ [ &+1=€ §=& | &it1—Gi—1 i+1—&i—1

Ry (§) = [§i+1—£i £i+1—£i:| » Ra(§) = 0 §i+2_€§ §§—€i£ ’
i+2—GQ¢ i+27G%

and

-1

1
0
. -1 1 | &i+1—Gi—1 Gir1—&i—1
DRy (§) = [Eiﬂ—&' §i+1—§i:|’ DR2(§) = [ 0 : —1§ ; 1 f] ’
it2—&i it2—&i
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Towards an ML-friendly B-spline evaluation

Matrix representation of B-splines (Lyche and Mgrken 2018)

(DY), D] =~ Ri(©) -+ Ry (DR, 1 -+ DR,

(p—r)!

Costs of matrix assembly (arithmetic operations)

3p> —3p — r? 4+ r (leading DR's) vs. 2p® —2p +r? — r (trailing DR/s)

Costs of matrix-matrix products (p > 3)

(4p® —3p? — Tp —6)/6 (L2R) vs. (4p* — 15p® + 17p* — 6p)/6 (R2L)
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Towards an ML-friendly B-spline evaluation

Matrix representation of B-splines (Lyche and Mgrken 2018)

(DY), D] = —LRi(©)+ Ry (DRypo1 -+ DR,

(p—r)!

Costs of matrix assembly (arithmetic operations)

3p> — 3p — r? 4+ r (leading DR's) vs. 2p*> —2p+ 12 — r (trailing DR/s)

Costs of matrix-matrix products (p > 3)
(4p® — 3p? — Tp—6)/6 (L2R) vs. (4p* — 15p® + 17p* — 6p)/6 (R2L)

Can we do better?
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An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Mgrken 2018) with modifications
®Ob=1
®@Fork=1,....p—r
O t1=(Ei—kt15---, &)
D tor = (§1s-- -, Gin) — 1
© mask = (tg; < tol)
O w = (¢ — ty—mask) + (tg; —mask)
Ob=[(1-w)©b,0]+[0,wOb]
®@Fork=p—r+1,...,p
@t = (Sikr15---580)
@ tor = (Sir1y- - &ik) — b1
© mask = (tg; < tol)
O w = (1-mask) + (t9; —mask)
O b=[-wOb,0+[0,wOb]
where =+ and ® denote the element-wise division and multiplication of vectors, respectively.
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An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Mgrken 2018) with modifications
®b=1
®@Fork=1,....p—r
O t1=(Ei—kt15---, &)
D tor = (§1s-- -, Gin) — 1
© mask = (to; < tol)
O w = (¢ — ty—mask) + (ta; —mask)
®b=[(1-w)®b,0]+[0,w®b]
®@Fork=p—r+1,...,p
@t = (Sikr15---580)
@ tor = (Sir1y- - &ik) — b1
© mask = (tg; < tol)
O w = (1—mask) + (tg; —mask)
O b=[-wOb,0+[0,wOb]
where =+ and ® denote the element-wise division and multiplication of vectors, respectively.

Costs: 5(p? + p) arithmetic operations 4+ 2p — 1 for b - u
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An ML-friendly multi-variate B-spline evaluation

Task: Given pre-evaluated vectors of univariate B-spline basis functions b? compute

u(§;n,¢) = [b1(§) @ ba(n) @ bz(¢)] - u

but sub-matrix of coefficients u := u[i — p : i] is not contiguous in memory
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An ML-friendly multi-variate B-spline evaluation

Task: Given pre-evaluated vectors of univariate B-spline basis functions b? compute
u(&,m,¢) = [b1(£) ® ba(n) @ b3(¢)] - u

but sub-matrix of coefficients u := u[i — p : i] is not contiguous in memory

Since (b1 @b2®@bs) - u=(IRIxbs) - IRbs®I)-(b; ®I®I) - u we can use

Algorithm 993 from (Fackler 2019) with modifications

Ford=1,2
O u= reShape(ua []7 nd)
@u=Dby u'

Output: u = u(&,n,()
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Performance evaluation - univariate B-splines
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Performance evaluation - bivariate B-splines
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Performance evaluation - trivariate B-splines
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Conclusion and outlook

IgANets combine isogeometric analysis with physics-informed machine learning to enable

g

interactive design-through-analysis workflows

WIP
* interactive DTA workflow (/w SURF)
® use of IgA and IgANets in concert

® transfer learning upon basis refinement
MATHEMATICS:

FOR SCIENTIFIC MACHINE
LEARNING

Short paper: Moller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. '~

What's next
@ Journal paper and code release (including Python API) in preparation
® CISM-ECCOMAS Summer School Scientific Machine Learning in Design Optimization
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