IgANets: Physics-machine learning embedded into Isogeometric Analysis

Matthias Möller

Department of Applied Mathematics, TU Delft

HOFEIM 2023

Joint work with Deepesh Toshniwal & Frank van Ruiten (TU Delft), Casper van Leeuwen & Paul Melis (SURF), and Jaewook Lee (TU Vienna)

The future of engineering (?!)

Siemens blog: Virtual Reality in Engineering - Are You Ready? - 7 July 2021 https://blogs.sw.siemens.com/teamcenter/virtual-reality-in-engineering-are-you-ready/

Interactive Design-through-Analysis

Vision: unified computational framework for

- rapid prototyping (design exploration & optimization phase) and
- thorough analysis (design analysis & fine-tuning phase) of engineering designs

Ingredients

- physics-informed machine learning for rapid prototyping
- isogeometric analysis for accurate analysis

A demo says more than 1,000 words...

The big picture

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

- easy to implement for 'any' PDE because AD magic does it for you
- combined un-/supervised learning
- \P poor extrapolation/generalization
- point-based approach requires re-evaluation of NN at every point
- rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

$$G_{\theta}(u)(y) = \sum_{k=1}^{q} \underbrace{b_{k}(u(x_{1}), u(x_{2}), \dots, u(x_{m}))}_{\text{branch}} \underbrace{t_{k}(y)}_{\text{trunk}}$$

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

- easy to implement for 'any' PDE because AD magic does it for you
- combined un-/supervised learning
- poor extrapolation/generalization
- point-based approach requires re-evaluation of NN at every point
- rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

$$G_{ heta}(u)(y) = \sum_{k=1}^q \underbrace{b_k(u(x_1), u(x_2), \dots, u(x_m))}_{ ext{branch}} \underbrace{t_k(y)}_{ ext{trunk}}$$

Don't we know good bases?

Tensor-product B-spline basis functions

Tensor-product B-spline basis functions

Properties: compact support, positive function values, partition of unity $\sum\limits_{i=1}^{n}B_{i}(\xi,\eta)\equiv 1$, C^{p-1} continuity, derivatives of B-splines are combinations of lower-order B-splines, ...

Geometry: bijective mapping from the unit square to the physical domain $\Omega_h \subset \mathbb{R}^d$

$$\mathbf{x}_h(\xi, \eta) = \sum_{i=1}^n B_i(\xi, \eta) \cdot \mathbf{x}_i \qquad \forall (\xi, \eta) \in [0, 1]^2 =: \hat{\Omega}$$

$$\forall (\xi,\eta) \in [0,1]^2 =: \hat{\Omega}$$

• the shape of Ω_h is fully specified by the set of control points $\mathbf{x}_i \in \mathbb{R}^d$

Geometry: bijective mapping from the unit square to the physical domain $\Omega_h \subset \mathbb{R}^d$

$$\mathbf{x}_h(\xi,\eta) = \sum_{i=1}^n B_i(\xi,\eta) \cdot \mathbf{x}_i \qquad \forall (\xi,\eta) \in [0,1]^2 =: \hat{\Omega}$$

$$\forall (\xi, \eta) \in [0, 1]^2 =: \hat{\Omega}$$

- the shape of Ω_h is fully specified by the set of control points $\mathbf{x}_i \in \mathbb{R}^d$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathbf{x}_h: \hat{\Omega} \to \Omega_h$

Geometry: bijective mapping from the unit square to the physical domain $\Omega_h \subset \mathbb{R}^d$

$$\mathbf{x}_h(\xi,\eta) = \sum_{i=1}^n B_i(\xi,\eta) \cdot \mathbf{x}_i \qquad \forall (\xi,\eta) \in [0,1]^2 =: \hat{\Omega}$$

- the shape of Ω_h is fully specified by the set of control points $\mathbf{x}_i \in \mathbb{R}^d$
- interior control points must be chosen such that 'grid lines' do not fold as this violates the bijectivity of $\mathbf{x}_h: \hat{\Omega} \to \Omega_h$
- refinement in h (knot insertion) and p (order elevation) preserves the shape of Ω_h and can be used to generate finer computational 'grids' for the analysis

Model problem: Poisson's equation

(boundary conditions)

$$-\Delta u_h = f_h$$
 in Ω_h , $u_h = g_h$ on $\partial \Omega_h$

with

Abstract representation

Given x_i (geometry), f_i (r.h.s. vector), and g_i (boundary conditions), compute

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = A^{-1} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right) \cdot b \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right)$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$(\xi, \eta) \in [0, 1]^2 \quad \mapsto \quad u_h \circ \mathbf{x}_h(\xi, \eta) = [B_1(\xi, \eta), \dots, B_n(\xi, \eta)] \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

Abstract representation

Given x_i (geometry), f_i (r.h.s. vector), and g_i (boundary conditions), compute

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = A^{-1} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right) \cdot b \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right)$$

Any point of the solution can afterwards be obtained by a simple function evaluation

$$(\xi, \eta) \in [0, 1]^2 \quad \mapsto \quad u_h \circ \mathbf{x}_h(\xi, \eta) = [B_1(\xi, \eta), \dots, B_n(\xi, \eta)] \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

Let us interpret the sets of B-spline coefficients $\{x_i\}$, $\{f_i\}$, and $\{g_i\}$ as an efficient encoding of our PDE problem that is fed into our IgA machinery as **input**.

The **output** of our IgA machinery are the B-spline coefficients $\{u_i\}$ of the solution.

Isogeometric Analysis + Physics-Informed Machine Learning

IgANet: replace computation

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = A^{-1} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right) \cdot b \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right)$$

Isogeometric Analysis + Physics-Informed Machine Learning

IgANet: replace computation by physics-informed machine learning

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \mathsf{IgANet} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix}; (\boldsymbol{\xi}^{(k)}, \boldsymbol{\eta}^{(k)})_{k=1}^{N_{\mathsf{samples}}} \right)$$

Isogeometric Analysis + Physics-Informed Machine Learning

IgANet: replace computation by physics-informed machine learning

$$\begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \mathsf{IgANet} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix}; (\boldsymbol{\xi}^{(k)}, \boldsymbol{\eta}^{(k)})_{k=1}^{N_{\mathsf{samples}}} \right)$$

Compute the solution from the trained neural network as follows

$$u_h(\boldsymbol{\xi}, \boldsymbol{\eta}) = [B_1(\boldsymbol{\xi}, \boldsymbol{\eta}), \dots, B_n(\boldsymbol{\xi}, \boldsymbol{\eta})] \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}, \quad \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \operatorname{IgANet} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} \right)$$

IgANet architecture

Loss function

Model problem: Poisson's equation with Dirichlet boundary conditions

$$\begin{aligned} & \mathsf{loss}_{\mathrm{PDE}} = \ \frac{\alpha}{N_{\Omega}} \sum_{k=1}^{N_{\Omega}} \left| \Delta \left[u_h \circ \mathbf{x}_h \left(\xi^{(k)}, \eta^{(k)} \right) \right] - f_h \circ \mathbf{x}_h \left(\xi^{(k)}, \eta^{(k)} \right) \right|^2 \\ & \mathsf{loss}_{\mathrm{BDR}} = \ \frac{\beta}{N_{\Gamma}} \sum_{k=1}^{N_{\Gamma}} \left| u_h \circ \mathbf{x}_h \left(\xi^{(k)}, \eta^{(k)} \right) - g_h \circ \mathbf{x}_h \left(\xi^{(k)}, \eta^{(k)} \right) \right|^2 \end{aligned}$$

Express derivatives with respect to physical space variables using the Jacobian J, the Hessian H and the matrix of squared first derivatives Q (Schillinger *et al.* 2013):

$$\begin{bmatrix} \frac{\partial^2 B}{\partial x^2} \\ \frac{\partial^2 B}{\partial x \partial y} \\ \frac{\partial^2 B}{\partial y^2} \end{bmatrix} = Q^{-\top} \begin{pmatrix} \begin{bmatrix} \frac{\partial^2 B}{\partial \xi^2} \\ \frac{\partial^2 B}{\partial \xi \partial \eta} \\ \frac{\partial^2 B}{\partial \eta^2} \end{bmatrix} - H^{\top} J^{-\top} \begin{bmatrix} \frac{\partial B}{\partial \xi} \\ \frac{\partial B}{\partial \eta} \end{bmatrix} \end{pmatrix}$$

Two-level training strategy

For
$$[\mathbf{x}_1,\ldots,\mathbf{x}_n]\in\mathcal{S}_{\mathsf{geo}},\ [f_1,\ldots,f_n]\in\mathcal{S}_{\mathsf{rhs}},\ [g_1,\ldots,g_n]\in\mathcal{S}_{\mathsf{bcond}}$$
 do

For a batch of randomly sampled $(\xi_k, \eta_k) \in [0, 1]^2$ (or the Greville abscissae) do

$$\text{Train IgANet} \left(\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix}; \underbrace{(\boldsymbol{\xi_k, \eta_k})_{k=1}^{N_{\mathsf{samples}}}} \right) \mapsto \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

EndFor

EndFor

Details:

- 7×7 bi-cubic tensor-product B-splines for \mathbf{x}_h and u_h , C^2 -continuous
- TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and ReLU activation function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped after 3.000 epochs w/o improvement of the loss value

Test case: Poisson's equation on a variable annulus

Let's have a look under the hood

Computational costs of PINN vs. IgANets, implementation aspects, \dots

Computational costs

Working principle of PINNs

$$\mathbf{x} \mapsto u(\mathbf{x}) := \mathsf{NN}(\mathbf{x}; f, g, G) = \sigma_L(\mathbf{W}_L \sigma(\dots(\sigma_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1))) + \mathbf{b}_L)$$

- ullet use AD engine (automated chain rule) to compute derivatives, e.g., $u_x = \mathsf{NN}_x$
- use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Computational costs

Working principle of PINNs

$$\mathbf{x} \mapsto u(\mathbf{x}) := \mathsf{NN}(\mathbf{x}; f, g, G) = \sigma_L(\mathbf{W}_L \sigma(\dots(\sigma_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1))) + \mathbf{b}_L)$$

- ullet use AD engine (automated chain rule) to compute derivatives, e.g., $u_x = \mathsf{NN}_x$
- use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgANets

$$[\mathbf{x}_i, f_i, g_i]_{i=1,\dots,n} \mapsto [u_i]_{i=1,\dots,n} := \mathsf{NN}(\mathbf{x}_i, f_i, g_i, i=1,\dots,n)$$

- use mathematics to compute derivatives, e.g., $\nabla_{\mathbf{x}} u = (\sum_{i=1}^n \nabla_{\boldsymbol{\xi}} B_i(\boldsymbol{\xi}) u_i) J_G^{-t}$
- use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

$$\frac{\partial (D^r u(\xi))}{\partial w_k} = \sum_{i=1}^n \frac{\partial (D^r b_i^p u_i)}{\partial w_k} = \sum_{i=1}^n D^{r+1} b_i^p \frac{\partial \xi}{\partial w_k} u_i + \sum_{i=1}^n D^r b_i^p \frac{\partial u_i}{\partial w_k}$$

Major computational task (illustrated in 1D)

Given sampling point $\xi \in [\xi_i, \xi_{i+1})$ compute for $r \geq 0$

$$D^r u(\xi) = \left[D^r b_{i-p}^p(\xi), \dots, D^r b_i^p(\xi) \right] \cdot \underbrace{\left[u_{i-p}, \dots, u_i \right]}_{\text{network's output}}$$

Textbook derivatives

$$D^{r}b_{i}^{p}(\xi) = p\left(\frac{D^{r-1}b_{i}^{p-1}(\xi)}{\xi_{i+p} - \xi_{i}} - \frac{D^{r-1}b_{i+1}^{p-1}(\xi)}{\xi_{i+p-1} - \xi_{i+1}}\right)$$

with (cf. Cox-de-Boor recursion formula)

$$b_i^p(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} b_i^{p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} b_{i+1}^{p-1}(\xi), \quad b_i^0(\xi) = \begin{cases} 1 & \text{if } \xi_i \le \xi < \xi_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Matrix representation of B-splines (Lyche and Mørken 2018)

$$\left[\underline{D^r b_{i-p}^p(\xi), \dots, D^r b_i^p(\xi)} \right] = \frac{p!}{(p-r)!} \mathbf{R}_1(\xi) \cdots \mathbf{R}_{p-r}(\xi) D \mathbf{R}_{p-r+1} \cdots D \mathbf{R}_p$$

with $k \times k + 1$ matrices $\mathbf{R}_k(\xi)$

$$\mathbf{R}_{1}(\xi) = \begin{bmatrix} \frac{\xi_{i+1} - \xi}{\xi_{i+1} - \xi_{i}} & \frac{\xi - \xi_{i}}{\xi_{i+1} - \xi_{i}} \end{bmatrix}, \quad \mathbf{R}_{2}(\xi) = \begin{bmatrix} \frac{\xi_{i+1} - \xi}{\xi_{i+1} - \xi_{i-1}} & \frac{\xi - \xi_{i-1}}{\xi_{i+1} - \xi_{i-1}} & 0\\ 0 & \frac{\xi_{i+2} - \xi}{\xi_{i+2} - \xi_{i}} & \frac{\xi - \xi_{i}}{\xi_{i+2} - \xi_{i}} \end{bmatrix}, \quad \dots$$

and

$$D\mathbf{R}_{1}(\xi) = \begin{bmatrix} \frac{-1}{\xi_{i+1} - \xi_{i}} & \frac{1}{\xi_{i+1} - \xi_{i}} \end{bmatrix}, \quad D\mathbf{R}_{2}(\xi) = \begin{bmatrix} \frac{-1}{\xi_{i+1} - \xi_{i-1}} & \frac{1}{\xi_{i+1} - \xi_{i-1}} & 0\\ 0 & \frac{-1}{\xi_{i+2} - \xi_{i}} & \frac{1}{\xi_{i+2} - \xi_{i}} \end{bmatrix}, \quad \dots$$

Matrix representation of B-splines (Lyche and Mørken 2018)

$$\left[D^r b_{i-p}^p(\xi), \dots, D^r b_i^p(\xi)\right] = \frac{p!}{(p-r)!} \mathbf{R}_1(\xi) \cdots \mathbf{R}_{p-r}(\xi) \mathbf{D} \mathbf{R}_{p-r+1} \cdots \mathbf{D} \mathbf{R}_p$$

Costs of matrix assembly (arithmetic operations)

$$3p^2 - 3p - r^2 + r$$
 (leading $D\mathbf{R}'s$) vs. $2p^2 - 2p + r^2 - r$ (trailing $D\mathbf{R}'s$)

Costs of matrix-matrix products $(p \ge 3)$

$$(4p^3 - 3p^2 - 7p - 6)/6$$
 (L2R) vs. $(4p^4 - 15p^3 + 17p^2 - 6p)/6$ (R2L)

Matrix representation of B-splines (Lyche and Mørken 2018)

$$\left[D^r b_{i-p}^p(\xi), \dots, D^r b_i^p(\xi)\right] = \frac{p!}{(p-r)!} \mathbf{R}_1(\xi) \cdots \mathbf{R}_{p-r}(\xi) D\mathbf{R}_{p-r+1} \cdots D\mathbf{R}_p$$

Costs of matrix assembly (arithmetic operations)

$$3p^2 - 3p - r^2 + r$$
 (leading $D\mathbf{R}'s$) vs. $2p^2 - 2p + r^2 - r$ (trailing $D\mathbf{R}'s$)

Costs of matrix-matrix products $(p \ge 3)$

$$(4p^3 - 3p^2 - 7p - 6)/6$$
 (L2R) vs. $(4p^4 - 15p^3 + 17p^2 - 6p)/6$ (R2L)

Can we do better?

An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Mørken 2018) with modifications

- **1** b = 1
- **2** For k = 1, ..., p r
 - **1** $\mathbf{t}_1 = (\xi_{i-k+1}, \dots, \xi_i)$
 - $\mathbf{2} \ \mathbf{t}_{21} = (\xi_{i+1}, \dots, \xi_{i+k}) \mathbf{t}_1$
 - **3** mask = $(t_{21} < tol)$
 - $\mathbf{4} \ \mathbf{w} = (\xi \mathbf{t}_1 \mathsf{mask}) \div (\mathbf{t}_{21} \mathsf{mask})$
 - **5** $\mathbf{b} = [(1 \mathbf{w}) \odot \mathbf{b}, 0] + [0, \mathbf{w} \odot \mathbf{b}]$
- **3** For $k = p r + 1, \dots, p$
 - **1** $\mathbf{t}_1 = (\xi_{i-k+1}, \dots, \xi_i)$
 - 2 $\mathbf{t}_{21} = (\xi_{i+1}, \dots, \xi_{i+k}) \mathbf{t}_1$
 - **3** $mask = (t_{21} < tol)$

 - $\mathbf{5} \ \mathbf{b} = [-\mathbf{w} \odot \mathbf{b}, 0] + [0, \mathbf{w} \odot \mathbf{b}]$

where \div and \odot denote the element-wise division and multiplication of vectors, respectively.

An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Mørken 2018) with modifications

1
$$b = 1$$

2 For
$$k = 1, ..., p - r$$

1
$$\mathbf{t}_1 = (\xi_{i-k+1}, \dots, \xi_i)$$

2
$$\mathbf{t}_{21} = (\xi_{i+1}, \dots, \xi_{i+k}) - \mathbf{t}_1$$

3 mask =
$$(\mathbf{t}_{21} < \mathsf{tol})$$

$$\mathbf{4} \ \mathbf{w} = (\xi - \mathbf{t}_1 - \mathsf{mask}) \div (\mathbf{t}_{21} - \mathsf{mask})$$

5
$$\mathbf{b} = [(1 - \mathbf{w}) \odot \mathbf{b}, 0] + [0, \mathbf{w} \odot \mathbf{b}]$$

3 For
$$k = p - r + 1, \dots, p$$

1
$$\mathbf{t}_1 = (\xi_{i-k+1}, \dots, \xi_i)$$

2
$$\mathbf{t}_{21} = (\xi_{i+1}, \dots, \xi_{i+k}) - \mathbf{t}_1$$

$$\mathbf{5} \ \mathbf{b} = [-\mathbf{w} \odot \mathbf{b}, 0] + [0, \mathbf{w} \odot \mathbf{b}]$$

where \div and \odot denote the element-wise division and multiplication of vectors, respectively.

Costs: $5(p^2 + p)$ arithmetic operations +2p-1 for $\mathbf{b} \cdot \mathbf{u}$

An ML-friendly *multi-variate* B-spline evaluation

Task: Given pre-evaluated vectors of univariate B-spline basis functions \mathbf{b}^d compute

$$u(\xi, \eta, \zeta) = [\mathbf{b}_1(\xi) \otimes \mathbf{b}_2(\eta) \otimes \mathbf{b}_3(\zeta)] \cdot \mathbf{u}$$

but sub-matrix of coefficients $\mathbf{u} := u[\mathbf{i} - \mathbf{p} : \mathbf{i}]$ is not contiguous in memory

An ML-friendly *multi-variate* B-spline evaluation

Task: Given pre-evaluated vectors of univariate B-spline basis functions \mathbf{b}^d compute

$$u(\xi, \eta, \zeta) = [\mathbf{b}_1(\xi) \otimes \mathbf{b}_2(\eta) \otimes \mathbf{b}_3(\zeta)] \cdot \mathbf{u}$$

but sub-matrix of coefficients $\mathbf{u} := u[\mathbf{i} - \mathbf{p} : \mathbf{i}]$ is not contiguous in memory

Since
$$(\mathbf{b}_1 \otimes \mathbf{b}_2 \otimes \mathbf{b}_3) \cdot \mathbf{u} = (\mathbf{I} \otimes \mathbf{I} \otimes \mathbf{b}_3) \cdot (\mathbf{I} \otimes \mathbf{b}_2 \otimes \mathbf{I}) \cdot (\mathbf{b}_1 \otimes \mathbf{I} \otimes \mathbf{I}) \cdot \mathbf{u}$$
 we can use

Algorithm 993 from (Fackler 2019) with modifications

For d=1,2

- $\mathbf{0} \ \mathbf{u} = \mathsf{reshape}(\mathbf{u}, [\cdot], n_d)$
- $\mathbf{2} \ \mathbf{u} = \mathbf{b}_d \cdot \mathbf{u}^\top$

Output: $\mathbf{u} = u(\xi, \eta, \zeta)$

Performance evaluation - univariate B-splines

Performance evaluation - bivariate B-splines

Performance evaluation - trivariate B-splines

Conclusion and outlook

IgANets combine isogeometric analysis with physics-informed machine learning to enable **interactive design-through-analysis** workflows

WIP

- interactive DTA workflow (/w SURF)
- use of IgA and IgANets in concert
- transfer learning upon basis refinement

Short paper: Möller, Toshniwal, van Ruiten: *Physics-informed machine learning embedded into isogeometric analysis*, 2021.

What's next

- 1 Journal paper and code release (including Python API) in preparation
- 2 CISM-ECCOMAS Summer School Scientific Machine Learning in Design Optimization

IgANets: Physics-machine learning embedded into Isogeometric Analysis

Matthias Möller

Department of Applied Mathematics, TU Delft

HOFEIM 2023

Joint work with Deepesh Toshniwal & Frank van Ruiten (TU Delft), Casper van Leeuwen & Paul Melis (SURF), and Jaewook Lee (TU Vienna)

Thank you very much!