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ChatGPT
Can you explain to me the working principle of a twin screw compressor?

Certainly! A twin-screw compressor is a type of positive displacement compressor used to compress gases,
most commonly air and refrigerant gases. It’s called "twin-screw" because it consists of two interlocking
helical rotors, usually referred to as the male rotor and the female rotor, that rotate in opposite directions
within a tightly fitted casing. The working principle of a twin-screw compressor can be broken down into
several key steps:

1. Intake: The process begins with the rotation of the male and female rotors. As they turn, their
helical lobes create expanding cavities between them and the compressor casing. This causes gas to
be drawn into the compressor through the inlet port.

2. Compression: As the rotors continue to rotate, the interlocking lobes of the rotors reduce the
volume of the cavities. This reduction in volume compresses the gas trapped in the cavities. The
compression process occurs continuously as the gas is carried from the intake side towards the
discharge side of the compressor.

3. Intermeshing: ...
4. Compression Ratio: ...
5. Discharge: ...
6. Oil Injection: ...
7. Cooling and Control: ...

The design of a twin-screw compressor allows for continuous and relatively pulsation-free compression,
making it well-suited for applications where a steady flow of compressed gas is required. Its efficiency,
reliability, and ability to handle a wide range of operating conditions make it a popular choice in various
industries.
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Stable Diffusion (text-to-image generator)

“A sunny summer day in London”

“A twin screw compressor”
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Terminology

• Artificial Intelligence (AI)
• Machine Learning (ML)
• Deep Learning (DL)
• Scientific Machine Learning (SciML)

So what is what? And what is physics-informed machine learning?
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Terminology

AI ML DL physics-based modellingSciML

• statistical modelling often
w/o using process-knowledge

• empirical discovery of new
knowledge from (big) data

• Examples:
• linear regression
• PCA/SVD, POD
• reduced-order models
• self-driving cars
• large language models

(ChatGPT, Bard, Co-pilot)
• text-to-image generators

(Stable Diffusion)
• ...
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Terminology

AI ML DL physics-based modellingSciML

• “effort to automate intellectual
tasks normally performed by
humans” – François Chollet,
creator of Keras

• Example: rule/label-based
automatic packing machine
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Terminology

AI ML DL physics-based modellingSciML

• “field of study that gives
computers the ability to
learn without being explicitly
programmed” – Arthur Samuel,
ML pioneer

• Example: classification-based
waste sorting machine
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Terminology

AI ML DL physics-based modellingSciML

• next-level ML based on deep
artificial neural networks

• Example: self-driving cars
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Terminology

AI ML DL physics-based modellingSciML

• mathematical formulas
based on physics laws

• derived from observational
studies and experiments

• solved by numerical methods
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Terminology

AI ML DL physics-based modellingSciML
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In a nutshell

Scientific Machine Learning [Baker et al., 2019] is not the replacement of physics-based
modelling by statistical modelling but the clever combination of process-knowledge (i.e.
mechanistic models) with the capability of ML/DL to ‘learn’ from (big) data.

Synonyms
• Theory-guided data science [Karpatne et al., 2017]
• Physically informed neural networks [Raissi et al., 2019]
• Universal differential equations [Rackauckas et al., 2020]
• Physics-informed machine learning [Karniadakis et al., 2021a]
• Physics-based deep learning [Thuerey et al., 2021]

Note: Other AI/ML/DL approaches are not ‘bad’. We just don’t consider them here.
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Timeline

2017 2018 2019 2020 2021 2022

PINNs

(Raissi et. al.)

Neural Solver 

1994

(Dissanayake et. al.)

DGM

(Sirignano et.al.)

DRM

(Yu et. al.) 
LAAF-PINNs

 (Jagtap et. al.)

WAN

 (Zang et. al.)

GPPINNs 

 (Wang et. al.)

hp-VPINNs

 (Kharazmi et. al.)

PhyGeoNet

 (Kharazmi et. al.)

cPINNs, XPINNs

 (Jagtap et. al.)

PINNsNTK, MultiscalePINNs

 (Wang et. al.)
FBPINNs

  (Moseley et. al.)

gPINNs

 (Yu et. al.)

PPNNs

 (Liu et. al.)

CausalPINNs

  (Wang et. al.)

Neural Operator 

DeepONet

(Lu et. al.)

Neural Operator

(Li et. al.)

FNO

(Li et. al.)

DeepM&MNet

(Cai et. al.)

Galerkin Transformer

(Cao et. al.)

MWT

(Gupta et. al.)

LOCA

(Kissas et. al.)

Inverse Problem
AmorFEA

(Li et. al.)

DeepGreen

(Gin et. al.)

hPINNs

(Lu et. al.)

(PI-)DeepONet

(Wang et. al., Hwang et. al.)

Bi-level PINNs

(Hao et. al.)

Figure from: Physics-informed machine learning: A survey on problems, methods and
applications [Hao et al., 2022]
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Notation

x scalar variable

f(x) function

G(f)(x) operator

x =
[
x1 . . . xn

]
vector

A =

 a11 . . . a1n
... . . . ...

am1 . . . amn

 matrix
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Artificial neural network (ANN)

In
pu

t
lay

er
x

O
ut

pu
t

lay
er

y

A1 A2 A3

x(1) x(2)
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Single-layer network

In
pu

t
lay

er
x

Output layer y ∈ {+1(‘dog’), −1(‘cat’)}

A ∈ R1×n
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Linear regression

AX = Y →
[
a1 a2 . . . an

]  | | |
x1 x2 . . . xs

| | |

 =
[
y1 y1 . . . ys

]

Common solution approaches

Pseudo-inverse
A = YX†

LASSO regression
A = argminA′ ∥A′X − Y∥2 + λ∥A′∥1

18 / 61



Linear regression

AX = Y →
[
a1 a2 . . . an

]  | | |
x1 x2 . . . xs

| | |

 =
[
y1 y1 . . . ys

]

Common solution approaches

Pseudo-inverse
A = YX†

LASSO regression
A = argminA′ ∥A′X − Y∥2 + λ∥A′∥1

18 / 61



Multi-layer network
In

pu
t

lay
er

x

Output layer y ∈ {+1(‘dog’), −1(‘cat’)}

A1 ∈ Rm×n A2 ∈ R1×m

x(1)
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Beyond linear regression

A1X = X(1)

A2X(1) = Y

}
⇔ A2A1X = Y ⇔ ÃX = Y

Enrichment of functional responses by nonlinear activation functions

f1(A1, X) = X(1)

f2(A2, X(1)) = Y

}
⇔ f2(A2, f1(A1, X)) = Y
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Activation functions

f(x) = x, linear

f(x) =
{

0 for x ≤ 0,
1 for x > 0,

binary step

f(x) = 1
1+exp(−x) , logistic (soft step)

f(x) = tanh(x), tanh

f(x) =
{

0 for x ≤ 0,
x for x > 0,

rectified linear unit (ReLU)

Elementwise application

Y = f(A, X) :⇔ Y = (yij), yij = f(ỹij) ∀i, j, Ỹ = AX
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Nonlinear optimization problem

[
A1 A2

]
= argmin

A′
1, A′

2

E(A′
1, A′

2)

In words: find network weights A1 and A2 that minimize the mean-square error (MSE)

E(A1, A2) = 1
s

s∑
ℓ=1

(
f2(A2, f1(A1, xℓ)) − yℓ

)2

over the set of input-output pairs (xℓ; yℓ) from the training data set

Solving nonlinear optimization problems is not new. A common approach in SciML
is based on backpropagation and the stochastic gradient descent algorithm.
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Backpropagation

input hidden layer output

x z = f(x, a) y = g(z, b) = g(f(x, a), b)

a b

MSE E = (y − ŷ)2 between target output y and network output ŷ is minimal if

∂E

∂a
= 0

∧ ∂E

∂b
= 0
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[
�
��

dy

da
− dŷ
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Iterative update of the network weights

ak+1 = ak − δk
∂E

∂ak
∧ bk+1 = bk − δk

∂E

∂bk
with learning rate δk > 0

Example: z = tanh(ax) and y = bz

∂E

∂ak
= −2(y − ŷ)dŷ

dz

dz

dak
= −2(y − ŷ)bk

[
1 − tanh2(akx)

]
x

∂E

∂bk
= −2(y − ŷ) dŷ

dbk
= −2(y − ŷ) tanh(akx)

We are not there yet. This is for scalar input x and output y and for a single input-output
pair (x; y). In practice we have multiple possibly vector-valued input-output pairs (X; Y).

24 / 61



Iterative update of the network weights

ak+1 = ak − δk
∂E

∂ak
∧ bk+1 = bk − δk

∂E

∂bk
with learning rate δk > 0

Example: z = tanh(ax) and y = bz

∂E

∂ak
= −2(y − ŷ)dŷ
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ANN revisited
In

pu
t

lay
er

x
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pu
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y

A1 A2 A3

x(1) x(2)

Optimization problem

argmin
A′

j

E(A′
1, A′

2, A′
3),

Minimum requirement

∂E

∂(aij)l
= 0, ∀(x; y) pairs

Stochastic gradient descent algorithm with a single randomly chosen (xℓ; yℓ) pair

[
A1 A2 A3

]
k+1

=
[
A1 A2 A3

]
k

− δk∇
(
f3(A3, f2(A2, f1(A1, xℓ))) − yℓ

)2
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Intermediate summary
• Activation functions enable nonlinear network responses
• Backpropagation yields the gradient of the error w.r.t. the network weights
• Stochastic gradient descent algorithm enables the efficient update of network weights

Notes
• Backpropagation uses algorithmic differentiation (automated application of chain rule)
• More powerful optimization algorithms like Adam or BFGS are often used in practice

• Extra additive weights, biases, are often used in practice to offset responses, i.e.

y = f(A, b, x) = f(Ax + b)

• Short hand notations

W = (A1, . . . , AL, b1, . . . , bL), N (x) = fL(AL, bL, . . . f1(A1, b1, x))
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Universal function approximator

Learning from data physics

given

predict

compare

update

(x; y)

ŷ = N (x)

E = ∥y − ŷ∥2

Wk+1 = Wk − δk∇E

(x; L(u(x)) = f)

û = N (x)

E = ∥L(û) − f∥2

Wk+1 = Wk − δk∇E

Universal approximation theorem [Cybenko, 1989, Hornik et al., 1989]: For every
continuous function f : Rn → Rm there exists an ANN that approximates it with given
accuracy. [This does not say that it is easy to find this ANN in practice.]
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Universal function approximator

Example: Poisson’s equation in 1d

uxx(x) = f(x) in (0, 1)

u(x) = g(x) at 0, 1
→

E = ∥Nxx(x) − f(x)∥2

+ ∥N (x) − g(x)∥2

Compute derivatives w.r.t. to x by the same backpropagation algorithm as for the weights

History
• Neural networks for DEs [Dissanayake and Phan-Thien, 1994, Lagaris et al., 1998]

• Rediscovery as physics-informed neural networks [Raissi et al., 2017a,b, 2019]
• Since then applied to many problems (forward, inverse, ...), extended in various ways

(distributed PINNs, adaptive PINNs, ...), and made available as easy-to-use software
packages (DeepXDE, SciANN, NVIDIA Modulus, NeuroDiffEq, NeuralPDE, ...)
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History
• Neural networks for DEs [Dissanayake and Phan-Thien, 1994, Lagaris et al., 1998]
• Rediscovery as physics-informed neural networks [Raissi et al., 2017a,b, 2019]
• Since then applied to many problems (forward, inverse, ...), extended in various ways

(distributed PINNs, adaptive PINNs, ...), and made available as easy-to-use software
packages (DeepXDE, SciANN, NVIDIA Modulus, NeuroDiffEq, NeuralPDE, ...)
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Examples of PINNs

Figure from: Physics-informed neural networks for high-speed flows [Mao et al., 2020]
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Examples of PINNs

Figure from: Physics-informed data based neural networks for two-dimensional turbulence
[Kag et al., 2022]
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Examples of PINNs

Figure from: Physics-informed machine learning [Karniadakis et al., 2021b]
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Strengths of PINNs

⊕ Easy to implement for ‘any’ physical model

⊕ Simulation/experimental data can be included
⊕ Easy prediction of derived quantities of interest

or model parameters θ → inverse problems
⊕ Flexibility to ‘tune’ network architecture to

problem structure (e.g., separate Nu, Nv, Np)
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Weaknesses of PINNs

⊖ Learn a single problem instance, i.e. PDE, bc’s, geometry, ... are hard-coded in the
loss function (unless problem parameters such as ν are defined as network inputs)

⊖ Poor generalization capabilities, e.g., transient problems at t > ttrain
max

⊖ Point-wise output → many forward evaluations needed to reconstruct solution fields
⊖ High computational costs during training especially in higher dimensions
⊖ Hyperparameter tuning is an art

Hint: Don’t use PINNs as replacement for a single forward analysis. The high training costs
must amortize over many queries, e.g., in inverse analysis or design optimization.

Challenge: How to feed ‘designs’ into the PINN framework?
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Parameterized PINNs

α

β

γ

x

y

u(x, y, α, β, γ)

v(x, y, α, β, γ)

p(x, y, α, β, γ)

Note: Impractical if the number of design parameters is large (curse of dimensionality)

35 / 61



Auto encoders

In
pu

tl
ay

er
x

O
ut

pu
tl

ay
er

y

Encoder Decoder

Latent space
variables z

Train network so that x ≡ y. Then separate the encoder from the decoder and use the
latter to generate designs y from the latent space variables z serving as network inputs.

36 / 61



Latent space parameterized PINNs

Physics-informed deep learning for computational fluid flow analysis [Kakkar, 2022]

Collaboration between TU Delft and Monolith AI Limited, UK
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Latent space parameterized PINNs: NACA 4812 at 5 deg AoA

PINN FEniCS
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From function to operator learning

Function learning: learn the input-output relation of a function

f : x ∈ X → Y

e.g., learn Nsin(0) = 0, Nsin(π/2) = 1, Nsin(π) = 0, . . .

Operator learning1: learn the action of an operator on a function, e.g.,

G = ∂·
∂x

, f = sin → learn y = G(f)(x) = cos(x)

e.g., learn N (sin, 0) = 1, N (sin, π) = −1, N (cos, π/2) = −1, . . .

1Universal approximation theorem for operators [Chen and Chen, 1993]
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Deep operator networks
DeepONets: Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators [Lu et al., 2021], many follow-up papers, e.g.
Physics-informed deep operator networks [Goswami et al., 2022]

Figure from: Improved architectures and training algorithms for deep operator networks
[Wang et al., 2022]

40 / 61



Simplified interpretation of DeepONets

Trunk network: learns a set of basis functions (bi(x))i

Branch network: learns the basis coefficients (ci)i (relative to this basis)

Cross product: combines basis coefficients and functions to produce solution values

u(x) =
∑

i

cibi(x)

IgANets [Möller et al., 2021]: learn basis coefficients relative to a fixed B-spline basis
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1 Introduction
Terminology
Deep learning 101

2 Physics-informed machine learning
Physics-informed neural networks
Deep Operator neural networks

3 IgANets
Concept and preliminary applications
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B-spline basis functions

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

Figure from: Geometrically nonlinear isogeometric analysis of laminated composite plates
based on higher-order shear deformation theory [Tran et al., 2015]
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B-spline geometry models

Figure from: Reduced order isogeometric analysis approach for PDEs in parametrized
domains [Garotta et al., 2020]
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(model problem) −∆uh = fh in Ωh uh = gh on ∂Ωh

(geometry) xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2

(load vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2
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IgANet architecture
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loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b
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Loss function

loss = lossPDE + lossBDR

lossPDE = 1
NΩ

NΩ∑
k=1

∣∣∣∆ [
uh ◦ xh

(
ξ(k), η(k)

)]
− fh ◦ xh

(
ξ(k), η(k)

)∣∣∣2

lossBDR = 1
NΓ

NΓ∑
k=1

∣∣∣uh ◦ xh

(
ξ(k), η(k)

)
− gh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
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Two-level training strategy

For [x1, . . . , xn] ∈ Sgeo, [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond do

For batch of Greville abscissae (ξk, ηk) ∈ [0, 1]2 do

Train IgANet


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1

 7→

u1
...

un


EndFor

EndFor
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Test case: Poisson’s equation on a variable annulus

g ≡ 0
g

≡
0,

1,
. .

. ,
11

0rad

1rad2rad

3rad

4rad

f ≡ 0, 1, . . . , 11

Figures from: PINNs for parametrized problems [van Ruiten, 2022]
49 / 61



Preliminary results

x0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

g ≡ 0

g
≡

0

0rad

1rad2rad

3rad

4rad

f ≡ 5

Figures from: PINNs for parametrized problems [van Ruiten, 2022]
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Preliminary results
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Future application: interactive design-through-analysis

Collaboration with Scientific Visualization team at SURF NL
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Physics-informed machine learning –
Hype or new trend in computational engineering?

• FEM [Courant, 1943], FVM [Mcdonald, 1971], Neural operators for differential
equations [Dissanayake and Phan-Thien, 1994] ... just give it some more time

• PIML will not replace FEM/FVM as simulation tool but enable new analyses (inverse
modelling, quick/qualitative pre-design exploration, process monitoring/steering, ...)

Call to action
• SciML is not the enemy nor a panacea. Explore its capabilities (and limitations) and

combine it with today’s tools where it brings added value to your workflow.
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