
Physics-informed machine learning –
Hype or new trend in computational engineering?

Matthias Möller

Department of Applied Mathematics, TU Delft, The Netherlands

6th Short Course & Forum on Computational Fluid Dynamics in Rotary Positive Displacement Machines

City, University of London, 10-09-2023

1 / 61

ChatGPT
Can you explain to me the working principle of a twin screw compressor?

Certainly! A twin-screw compressor is a type of positive displacement compressor used to compress gases,
most commonly air and refrigerant gases. It’s called "twin-screw" because it consists of two interlocking
helical rotors, usually referred to as the male rotor and the female rotor, that rotate in opposite directions
within a tightly fitted casing. The working principle of a twin-screw compressor can be broken down into
several key steps:

1. Intake: The process begins with the rotation of the male and female rotors. As they turn, their
helical lobes create expanding cavities between them and the compressor casing. This causes gas to
be drawn into the compressor through the inlet port.

2. Compression: As the rotors continue to rotate, the interlocking lobes of the rotors reduce the
volume of the cavities. This reduction in volume compresses the gas trapped in the cavities. The
compression process occurs continuously as the gas is carried from the intake side towards the
discharge side of the compressor.

3. Intermeshing: ...
4. Compression Ratio: ...
5. Discharge: ...
6. Oil Injection: ...
7. Cooling and Control: ...

The design of a twin-screw compressor allows for continuous and relatively pulsation-free compression,
making it well-suited for applications where a steady flow of compressed gas is required. Its efficiency,
reliability, and ability to handle a wide range of operating conditions make it a popular choice in various
industries.

2 / 61

ChatGPT
Can you explain to me the working principle of a twin screw compressor?

Certainly! A twin-screw compressor is a type of positive displacement compressor used to compress gases,
most commonly air and refrigerant gases. It’s called "twin-screw" because it consists of two interlocking
helical rotors, usually referred to as the male rotor and the female rotor, that rotate in opposite directions
within a tightly fitted casing. The working principle of a twin-screw compressor can be broken down into
several key steps:

1. Intake: The process begins with the rotation of the male and female rotors. As they turn, their
helical lobes create expanding cavities between them and the compressor casing. This causes gas to
be drawn into the compressor through the inlet port.

2. Compression: As the rotors continue to rotate, the interlocking lobes of the rotors reduce the
volume of the cavities. This reduction in volume compresses the gas trapped in the cavities. The
compression process occurs continuously as the gas is carried from the intake side towards the
discharge side of the compressor.

3. Intermeshing: ...
4. Compression Ratio: ...
5. Discharge: ...
6. Oil Injection: ...
7. Cooling and Control: ...

The design of a twin-screw compressor allows for continuous and relatively pulsation-free compression,
making it well-suited for applications where a steady flow of compressed gas is required. Its efficiency,
reliability, and ability to handle a wide range of operating conditions make it a popular choice in various
industries.

2 / 61

Stable Diffusion (text-to-image generator)

“A sunny summer day in London”

“A twin screw compressor”

3 / 61

https://stablediffusionweb.com

Stable Diffusion (text-to-image generator)

“A sunny summer day in London” “A twin screw compressor”

3 / 61

https://stablediffusionweb.com

Stable Diffusion (text-to-image generator)

“A sunny summer day in London” “A twin screw compressor”

3 / 61

https://stablediffusionweb.com

1 Introduction
Terminology
Deep learning 101

2 Physics-informed machine learning
Physics-informed neural networks
Deep Operator neural networks

3 IgANets
Concept and preliminary applications

4 / 61

1 Introduction
Terminology
Deep learning 101

2 Physics-informed machine learning
Physics-informed neural networks
Deep Operator neural networks

3 IgANets
Concept and preliminary applications

5 / 61

Terminology

• Artificial Intelligence (AI)
• Machine Learning (ML)
• Deep Learning (DL)
• Scientific Machine Learning (SciML)

So what is what? And what is physics-informed machine learning?

6 / 61

Terminology

AI ML DL physics-based modellingSciML

• statistical modelling often
w/o using process-knowledge

• empirical discovery of new
knowledge from (big) data

• Examples:
• linear regression
• PCA/SVD, POD
• reduced-order models
• self-driving cars
• large language models

(ChatGPT, Bard, Co-pilot)
• text-to-image generators

(Stable Diffusion)
• ...

7 / 61

Terminology

AI ML DL physics-based modellingSciML

• “effort to automate intellectual
tasks normally performed by
humans” – François Chollet,
creator of Keras

• Example: rule/label-based
automatic packing machine

8 / 61

Terminology

AI ML DL physics-based modellingSciML

• “field of study that gives
computers the ability to
learn without being explicitly
programmed” – Arthur Samuel,
ML pioneer

• Example: classification-based
waste sorting machine

9 / 61

Terminology

AI ML DL physics-based modellingSciML

• next-level ML based on deep
artificial neural networks

• Example: self-driving cars

10 / 61

Terminology

AI ML DL physics-based modellingSciML

• mathematical formulas
based on physics laws

• derived from observational
studies and experiments

• solved by numerical methods

11 / 61

Terminology

AI ML DL physics-based modellingSciML

12 / 61

In a nutshell

Scientific Machine Learning [Baker et al., 2019] is not the replacement of physics-based
modelling by statistical modelling but the clever combination of process-knowledge (i.e.
mechanistic models) with the capability of ML/DL to ‘learn’ from (big) data.

Synonyms
• Theory-guided data science [Karpatne et al., 2017]
• Physically informed neural networks [Raissi et al., 2019]
• Universal differential equations [Rackauckas et al., 2020]
• Physics-informed machine learning [Karniadakis et al., 2021a]
• Physics-based deep learning [Thuerey et al., 2021]

Note: Other AI/ML/DL approaches are not ‘bad’. We just don’t consider them here.

13 / 61

In a nutshell

Scientific Machine Learning [Baker et al., 2019] is not the replacement of physics-based
modelling by statistical modelling but the clever combination of process-knowledge (i.e.
mechanistic models) with the capability of ML/DL to ‘learn’ from (big) data.

Synonyms
• Theory-guided data science [Karpatne et al., 2017]
• Physically informed neural networks [Raissi et al., 2019]
• Universal differential equations [Rackauckas et al., 2020]
• Physics-informed machine learning [Karniadakis et al., 2021a]
• Physics-based deep learning [Thuerey et al., 2021]

Note: Other AI/ML/DL approaches are not ‘bad’. We just don’t consider them here.

13 / 61

In a nutshell

Scientific Machine Learning [Baker et al., 2019] is not the replacement of physics-based
modelling by statistical modelling but the clever combination of process-knowledge (i.e.
mechanistic models) with the capability of ML/DL to ‘learn’ from (big) data.

Synonyms
• Theory-guided data science [Karpatne et al., 2017]
• Physically informed neural networks [Raissi et al., 2019]
• Universal differential equations [Rackauckas et al., 2020]
• Physics-informed machine learning [Karniadakis et al., 2021a]
• Physics-based deep learning [Thuerey et al., 2021]

Note: Other AI/ML/DL approaches are not ‘bad’. We just don’t consider them here.

13 / 61

Timeline

2017 2018 2019 2020 2021 2022

PINNs

(Raissi et. al.)

Neural Solver

1994

(Dissanayake et. al.)

DGM

(Sirignano et.al.)

DRM

(Yu et. al.)
LAAF-PINNs

 (Jagtap et. al.)

WAN

 (Zang et. al.)

GPPINNs

 (Wang et. al.)

hp-VPINNs

 (Kharazmi et. al.)

PhyGeoNet

 (Kharazmi et. al.)

cPINNs, XPINNs

 (Jagtap et. al.)

PINNsNTK, MultiscalePINNs

 (Wang et. al.)
FBPINNs

 (Moseley et. al.)

gPINNs

 (Yu et. al.)

PPNNs

 (Liu et. al.)

CausalPINNs

 (Wang et. al.)

Neural Operator

DeepONet

(Lu et. al.)

Neural Operator

(Li et. al.)

FNO

(Li et. al.)

DeepM&MNet

(Cai et. al.)

Galerkin Transformer

(Cao et. al.)

MWT

(Gupta et. al.)

LOCA

(Kissas et. al.)

Inverse Problem
AmorFEA

(Li et. al.)

DeepGreen

(Gin et. al.)

hPINNs

(Lu et. al.)

(PI-)DeepONet

(Wang et. al., Hwang et. al.)

Bi-level PINNs

(Hao et. al.)

Figure from: Physics-informed machine learning: A survey on problems, methods and
applications [Hao et al., 2022]

14 / 61

Notation

x scalar variable

f(x) function

G(f)(x) operator

x =
[
x1 . . . xn

]
vector

A =

 a11 . . . a1n
...

am1 . . . amn

 matrix

15 / 61

Artificial neural network (ANN)

In
pu

t
lay

er
x

O
ut

pu
t

lay
er

y

A1 A2 A3

x(1) x(2)

16 / 61

Single-layer network

In
pu

t
lay

er
x

Output layer y ∈ {+1(‘dog’), −1(‘cat’)}

A ∈ R1×n

17 / 61

Linear regression

AX = Y →
[
a1 a2 . . . an

] | | |
x1 x2 . . . xs

| | |

 =
[
y1 y1 . . . ys

]

Common solution approaches

Pseudo-inverse
A = YX†

LASSO regression
A = argminA′ ∥A′X − Y∥2 + λ∥A′∥1

18 / 61

Linear regression

AX = Y →
[
a1 a2 . . . an

] | | |
x1 x2 . . . xs

| | |

 =
[
y1 y1 . . . ys

]

Common solution approaches

Pseudo-inverse
A = YX†

LASSO regression
A = argminA′ ∥A′X − Y∥2 + λ∥A′∥1

18 / 61

Multi-layer network
In

pu
t

lay
er

x

Output layer y ∈ {+1(‘dog’), −1(‘cat’)}

A1 ∈ Rm×n A2 ∈ R1×m

x(1)

19 / 61

Beyond linear regression

A1X = X(1)

A2X(1) = Y

}
⇔ A2A1X = Y ⇔ ÃX = Y

Enrichment of functional responses by nonlinear activation functions

f1(A1, X) = X(1)

f2(A2, X(1)) = Y

}
⇔ f2(A2, f1(A1, X)) = Y

20 / 61

Beyond linear regression

A1X = X(1)

A2X(1) = Y

}
⇔ A2A1X = Y ⇔ ÃX = Y

Enrichment of functional responses by nonlinear activation functions

f1(A1, X) = X(1)

f2(A2, X(1)) = Y

}
⇔ f2(A2, f1(A1, X)) = Y

20 / 61

Activation functions

f(x) = x, linear

f(x) =
{

0 for x ≤ 0,
1 for x > 0,

binary step

f(x) = 1
1+exp(−x) , logistic (soft step)

f(x) = tanh(x), tanh

f(x) =
{

0 for x ≤ 0,
x for x > 0,

rectified linear unit (ReLU)

Elementwise application

Y = f(A, X) :⇔ Y = (yij), yij = f(ỹij) ∀i, j, Ỹ = AX

21 / 61

Nonlinear optimization problem

[
A1 A2

]
= argmin

A′
1, A′

2

E(A′
1, A′

2)

In words: find network weights A1 and A2 that minimize the mean-square error (MSE)

E(A1, A2) = 1
s

s∑
ℓ=1

(
f2(A2, f1(A1, xℓ)) − yℓ

)2

over the set of input-output pairs (xℓ; yℓ) from the training data set

Solving nonlinear optimization problems is not new. A common approach in SciML
is based on backpropagation and the stochastic gradient descent algorithm.

22 / 61

Nonlinear optimization problem

[
A1 A2

]
= argmin

A′
1, A′

2

E(A′
1, A′

2)

In words: find network weights A1 and A2 that minimize the mean-square error (MSE)

E(A1, A2) = 1
s

s∑
ℓ=1

(
f2(A2, f1(A1, xℓ)) − yℓ

)2

over the set of input-output pairs (xℓ; yℓ) from the training data set

Solving nonlinear optimization problems is not new. A common approach in SciML
is based on backpropagation and the stochastic gradient descent algorithm.

22 / 61

Backpropagation

input hidden layer output

x z = f(x, a) y = g(z, b) = g(f(x, a), b)

a b

MSE E = (y − ŷ)2 between target output y and network output ŷ is minimal if

∂E

∂a
= 0

∧ ∂E

∂b
= 0

23 / 61

Backpropagation

input hidden layer output

x z = f(x, a) y = g(z, b) = g(f(x, a), b)

a b

MSE E = (y − ŷ)2 between target output y and network output ŷ is minimal if

∂E

∂a
= 0

∧ ∂E

∂b
= 0

23 / 61

Backpropagation

input hidden layer output

x z = f(x, a) y = g(z, b) = g(f(x, a), b)

a b

MSE E = (y − ŷ)2 between target output y and network output ŷ is minimal if

∂E

∂a
= 2(y − ŷ)

[
�
��

dy

da
− dŷ

da

]
= 0

∧ ∂E

∂b
= 2(y − ŷ)

[
�
��

dy

db
− dŷ

db

]
= 0

23 / 61

Backpropagation

input hidden layer output

x z = f(x, a) y = g(z, b) = g(f(x, a), b)

a b

MSE E = (y − ŷ)2 between target output y and network output ŷ is minimal if

∂E

∂a
= 2(y − ŷ)

[
�
��

dy

da
− dŷ

da

]
= −2(y − ŷ)

[dŷ

dz

dz

da
+ dŷ

db �
��

db

da

]
= 0

∧ ∂E

∂b
= 2(y − ŷ)

[
�
��

dy

db
− dŷ

db

]
= −2(y − ŷ)

[dŷ

dz �
��

dz

db
+ dŷ

db

db

db

]
= 0

23 / 61

Backpropagation

input hidden layer output

x z = f(x, a) y = g(z, b) = g(f(x, a), b)

a b

MSE E = (y − ŷ)2 between target output y and network output ŷ is minimal if

∂E

∂a
= 2(y − ŷ)

[
�
��

dy

da
− dŷ

da

]
= −2(y − ŷ)

[dŷ

dz

dz

da
+ dŷ

db �
��

db

da

]
= −2(y − ŷ)dŷ

dz

dz

da
= 0

∧ ∂E

∂b
= 2(y − ŷ)

[
�
��

dy

db
− dŷ

db

]
= −2(y − ŷ)

[dŷ

dz �
��

dz

db
+ dŷ

db

db

db

]
= −2(y − ŷ)dŷ

db
= 0

23 / 61

Iterative update of the network weights

ak+1 = ak − δk
∂E

∂ak
∧ bk+1 = bk − δk

∂E

∂bk
with learning rate δk > 0

Example: z = tanh(ax) and y = bz

∂E

∂ak
= −2(y − ŷ)dŷ

dz

dz

dak
= −2(y − ŷ)bk

[
1 − tanh2(akx)

]
x

∂E

∂bk
= −2(y − ŷ) dŷ

dbk
= −2(y − ŷ) tanh(akx)

We are not there yet. This is for scalar input x and output y and for a single input-output
pair (x; y). In practice we have multiple possibly vector-valued input-output pairs (X; Y).

24 / 61

Iterative update of the network weights

ak+1 = ak − δk
∂E

∂ak
∧ bk+1 = bk − δk

∂E

∂bk
with learning rate δk > 0

Example: z = tanh(ax) and y = bz

∂E

∂ak
= −2(y − ŷ)dŷ

dz

dz

dak
= −2(y − ŷ)bk

[
1 − tanh2(akx)

]
x

∂E

∂bk
= −2(y − ŷ) dŷ

dbk
= −2(y − ŷ) tanh(akx)

We are not there yet. This is for scalar input x and output y and for a single input-output
pair (x; y). In practice we have multiple possibly vector-valued input-output pairs (X; Y).

24 / 61

ANN revisited
In

pu
t

lay
er

x

O
ut

pu
t

lay
er

y

A1 A2 A3

x(1) x(2)

Optimization problem

argmin
A′

j

E(A′
1, A′

2, A′
3),

Minimum requirement

∂E

∂(aij)l
= 0, ∀(x; y) pairs

Stochastic gradient descent algorithm with a single randomly chosen (xℓ; yℓ) pair

[
A1 A2 A3

]
k+1

=
[
A1 A2 A3

]
k

− δk∇
(
f3(A3, f2(A2, f1(A1, xℓ))) − yℓ

)2

25 / 61

ANN revisited
In

pu
t

lay
er

x

O
ut

pu
t

lay
er

y

A1 A2 A3

x(1) x(2) Optimization problem

argmin
A′

j

E(A′
1, A′

2, A′
3),

Minimum requirement

∂E

∂(aij)l
= 0, ∀(x; y) pairs

Stochastic gradient descent algorithm with a single randomly chosen (xℓ; yℓ) pair

[
A1 A2 A3

]
k+1

=
[
A1 A2 A3

]
k

− δk∇
(
f3(A3, f2(A2, f1(A1, xℓ))) − yℓ

)2

25 / 61

ANN revisited
In

pu
t

lay
er

x

O
ut

pu
t

lay
er

y

A1 A2 A3

x(1) x(2) Optimization problem

argmin
A′

j

E(A′
1, A′

2, A′
3),

Minimum requirement

∂E

∂(aij)l
= 0, ∀(x; y) pairs

Stochastic gradient descent algorithm with a single randomly chosen (xℓ; yℓ) pair

[
A1 A2 A3

]
k+1

=
[
A1 A2 A3

]
k

− δk∇
(
f3(A3, f2(A2, f1(A1, xℓ))) − yℓ

)2

25 / 61

ANN revisited
In

pu
t

lay
er

x

O
ut

pu
t

lay
er

y

A1 A2 A3

x(1) x(2) Optimization problem

argmin
A′

j

E(A′
1, A′

2, A′
3),

Minimum requirement

∂E

∂(aij)l
= 0, ∀(x; y) pairs

Stochastic gradient descent algorithm with a single randomly chosen (xℓ; yℓ) pair

[
A1 A2 A3

]
k+1

=
[
A1 A2 A3

]
k

− δk∇
(
f3(A3, f2(A2, f1(A1, xℓ))) − yℓ

)2

25 / 61

Intermediate summary
• Activation functions enable nonlinear network responses
• Backpropagation yields the gradient of the error w.r.t. the network weights
• Stochastic gradient descent algorithm enables the efficient update of network weights

Notes
• Backpropagation uses algorithmic differentiation (automated application of chain rule)
• More powerful optimization algorithms like Adam or BFGS are often used in practice

• Extra additive weights, biases, are often used in practice to offset responses, i.e.

y = f(A, b, x) = f(Ax + b)

• Short hand notations

W = (A1, . . . , AL, b1, . . . , bL), N (x) = fL(AL, bL, . . . f1(A1, b1, x))

26 / 61

Intermediate summary
• Activation functions enable nonlinear network responses
• Backpropagation yields the gradient of the error w.r.t. the network weights
• Stochastic gradient descent algorithm enables the efficient update of network weights

Notes
• Backpropagation uses algorithmic differentiation (automated application of chain rule)
• More powerful optimization algorithms like Adam or BFGS are often used in practice

• Extra additive weights, biases, are often used in practice to offset responses, i.e.

y = f(A, b, x) = f(Ax + b)

• Short hand notations

W = (A1, . . . , AL, b1, . . . , bL), N (x) = fL(AL, bL, . . . f1(A1, b1, x))

26 / 61

Intermediate summary
• Activation functions enable nonlinear network responses
• Backpropagation yields the gradient of the error w.r.t. the network weights
• Stochastic gradient descent algorithm enables the efficient update of network weights

Notes
• Backpropagation uses algorithmic differentiation (automated application of chain rule)
• More powerful optimization algorithms like Adam or BFGS are often used in practice
• Extra additive weights, biases, are often used in practice to offset responses, i.e.

y = f(A, b, x) = f(Ax + b)

• Short hand notations

W = (A1, . . . , AL, b1, . . . , bL), N (x) = fL(AL, bL, . . . f1(A1, b1, x))

26 / 61

Intermediate summary
• Activation functions enable nonlinear network responses
• Backpropagation yields the gradient of the error w.r.t. the network weights
• Stochastic gradient descent algorithm enables the efficient update of network weights

Notes
• Backpropagation uses algorithmic differentiation (automated application of chain rule)
• More powerful optimization algorithms like Adam or BFGS are often used in practice
• Extra additive weights, biases, are often used in practice to offset responses, i.e.

y = f(A, b, x) = f(Ax + b)

• Short hand notations

W = (A1, . . . , AL, b1, . . . , bL), N (x) = fL(AL, bL, . . . f1(A1, b1, x))

26 / 61

1 Introduction
Terminology
Deep learning 101

2 Physics-informed machine learning
Physics-informed neural networks
Deep Operator neural networks

3 IgANets
Concept and preliminary applications

27 / 61

Universal function approximator

Learning from data physics

given

predict

compare

update

(x; y)

ŷ = N (x)

E = ∥y − ŷ∥2

Wk+1 = Wk − δk∇E

(x; L(u(x)) = f)

û = N (x)

E = ∥L(û) − f∥2

Wk+1 = Wk − δk∇E

Universal approximation theorem [Cybenko, 1989, Hornik et al., 1989]: For every
continuous function f : Rn → Rm there exists an ANN that approximates it with given
accuracy. [This does not say that it is easy to find this ANN in practice.]

28 / 61

Universal function approximator

Learning from data physics

given

predict

compare

update

(x; y)

ŷ = N (x)

E = ∥y − ŷ∥2

Wk+1 = Wk − δk∇E

(x; L(u(x)) = f)

û = N (x)

E = ∥L(û) − f∥2

Wk+1 = Wk − δk∇E

Universal approximation theorem [Cybenko, 1989, Hornik et al., 1989]: For every
continuous function f : Rn → Rm there exists an ANN that approximates it with given
accuracy. [This does not say that it is easy to find this ANN in practice.]

28 / 61

Universal function approximator

Example: Poisson’s equation in 1d

uxx(x) = f(x) in (0, 1)

u(x) = g(x) at 0, 1
→

E = ∥Nxx(x) − f(x)∥2

+ ∥N (x) − g(x)∥2

Compute derivatives w.r.t. to x by the same backpropagation algorithm as for the weights

History
• Neural networks for DEs [Dissanayake and Phan-Thien, 1994, Lagaris et al., 1998]

• Rediscovery as physics-informed neural networks [Raissi et al., 2017a,b, 2019]
• Since then applied to many problems (forward, inverse, ...), extended in various ways

(distributed PINNs, adaptive PINNs, ...), and made available as easy-to-use software
packages (DeepXDE, SciANN, NVIDIA Modulus, NeuroDiffEq, NeuralPDE, ...)

29 / 61

Universal function approximator

Example: Poisson’s equation in 1d

uxx(x) = f(x) in (0, 1)

u(x) = g(x) at 0, 1
→

E = ∥Nxx(x) − f(x)∥2

+ ∥N (x) − g(x)∥2

Compute derivatives w.r.t. to x by the same backpropagation algorithm as for the weights

History
• Neural networks for DEs [Dissanayake and Phan-Thien, 1994, Lagaris et al., 1998]

• Rediscovery as physics-informed neural networks [Raissi et al., 2017a,b, 2019]
• Since then applied to many problems (forward, inverse, ...), extended in various ways

(distributed PINNs, adaptive PINNs, ...), and made available as easy-to-use software
packages (DeepXDE, SciANN, NVIDIA Modulus, NeuroDiffEq, NeuralPDE, ...)

29 / 61

Universal function approximator

Example: Poisson’s equation in 1d

uxx(x) = f(x) in (0, 1)

u(x) = g(x) at 0, 1
→

E = ∥Nxx(x) − f(x)∥2

+ ∥N (x) − g(x)∥2

Compute derivatives w.r.t. to x by the same backpropagation algorithm as for the weights

History
• Neural networks for DEs [Dissanayake and Phan-Thien, 1994, Lagaris et al., 1998]
• Rediscovery as physics-informed neural networks [Raissi et al., 2017a,b, 2019]

• Since then applied to many problems (forward, inverse, ...), extended in various ways
(distributed PINNs, adaptive PINNs, ...), and made available as easy-to-use software
packages (DeepXDE, SciANN, NVIDIA Modulus, NeuroDiffEq, NeuralPDE, ...)

29 / 61

Universal function approximator

Example: Poisson’s equation in 1d

uxx(x) = f(x) in (0, 1)

u(x) = g(x) at 0, 1
→

E = ∥Nxx(x) − f(x)∥2

+ ∥N (x) − g(x)∥2

Compute derivatives w.r.t. to x by the same backpropagation algorithm as for the weights

History
• Neural networks for DEs [Dissanayake and Phan-Thien, 1994, Lagaris et al., 1998]
• Rediscovery as physics-informed neural networks [Raissi et al., 2017a,b, 2019]
• Since then applied to many problems (forward, inverse, ...), extended in various ways

(distributed PINNs, adaptive PINNs, ...), and made available as easy-to-use software
packages (DeepXDE, SciANN, NVIDIA Modulus, NeuroDiffEq, NeuralPDE, ...)

29 / 61

Examples of PINNs

Figure from: Physics-informed neural networks for high-speed flows [Mao et al., 2020]

30 / 61

Examples of PINNs

Figure from: Physics-informed data based neural networks for two-dimensional turbulence
[Kag et al., 2022]

31 / 61

Examples of PINNs

Figure from: Physics-informed machine learning [Karniadakis et al., 2021b]

32 / 61

Strengths of PINNs

⊕ Easy to implement for ‘any’ physical model

⊕ Simulation/experimental data can be included
⊕ Easy prediction of derived quantities of interest

or model parameters θ → inverse problems
⊕ Flexibility to ‘tune’ network architecture to

problem structure (e.g., separate Nu, Nv, Np)

x

y

t

u(x, y, t)

v(x, y, t)

p(x, y, t)

E = MSENSE-u(u

θ

, v

θ

, p

θ

) + MSENSE-v(u

θ

, v

θ

, p

θ

) + MSENSE-p(u

θ

, v

θ

, p

θ

)

+ MSEBDR(u

θ

, v

θ

, p

θ

)

+ ∥u

θ

− uref

θ

∥2 + ∥v

θ

− vref

θ

∥2 + ∥p

θ

− pref

θ

∥2

33 / 61

Strengths of PINNs

⊕ Easy to implement for ‘any’ physical model
⊕ Simulation/experimental data can be included

⊕ Easy prediction of derived quantities of interest
or model parameters θ → inverse problems

⊕ Flexibility to ‘tune’ network architecture to
problem structure (e.g., separate Nu, Nv, Np)

x

y

t

u(x, y, t)

v(x, y, t)

p(x, y, t)

E = MSENSE-u(u

θ

, v

θ

, p

θ

) + MSENSE-v(u

θ

, v

θ

, p

θ

) + MSENSE-p(u

θ

, v

θ

, p

θ

)

+ MSEBDR(u

θ

, v

θ

, p

θ

) + ∥u

θ

− uref

θ

∥2 + ∥v

θ

− vref

θ

∥2 + ∥p

θ

− pref

θ

∥2

33 / 61

Strengths of PINNs

⊕ Easy to implement for ‘any’ physical model
⊕ Simulation/experimental data can be included
⊕ Easy prediction of derived quantities of interest

or model parameters θ → inverse problems

⊕ Flexibility to ‘tune’ network architecture to
problem structure (e.g., separate Nu, Nv, Np)

x

y

t

θ(x, y, t)

u(x, y, t)

v(x, y, t)

p(x, y, t)

E = MSENSE-u(uθ, vθ, pθ) + MSENSE-v(uθ, vθ, pθ) + MSENSE-p(uθ, vθ, pθ)

+ MSEBDR(uθ, vθ, pθ) + ∥uθ − uref
θ∥2 + ∥vθ − vref

θ∥2 + ∥pθ − pref
θ∥2

33 / 61

Strengths of PINNs

⊕ Easy to implement for ‘any’ physical model
⊕ Simulation/experimental data can be included
⊕ Easy prediction of derived quantities of interest

or model parameters θ → inverse problems
⊕ Flexibility to ‘tune’ network architecture to

problem structure (e.g., separate Nu, Nv, Np)

x

y

t

θ(x, y, t)

u(x, y, t)

v(x, y, t)

p(x, y, t)

E = MSENSE-u(uθ, vθ, pθ) + MSENSE-v(uθ, vθ, pθ) + MSENSE-p(uθ, vθ, pθ)

+ MSEBDR(uθ, vθ, pθ) + ∥uθ − uref
θ∥2 + ∥vθ − vref

θ∥2 + ∥pθ − pref
θ∥2

33 / 61

Weaknesses of PINNs

⊖ Learn a single problem instance, i.e. PDE, bc’s, geometry, ... are hard-coded in the
loss function (unless problem parameters such as ν are defined as network inputs)

⊖ Poor generalization capabilities, e.g., transient problems at t > ttrain
max

⊖ Point-wise output → many forward evaluations needed to reconstruct solution fields
⊖ High computational costs during training especially in higher dimensions
⊖ Hyperparameter tuning is an art

Hint: Don’t use PINNs as replacement for a single forward analysis. The high training costs
must amortize over many queries, e.g., in inverse analysis or design optimization.

Challenge: How to feed ‘designs’ into the PINN framework?

34 / 61

Weaknesses of PINNs

⊖ Learn a single problem instance, i.e. PDE, bc’s, geometry, ... are hard-coded in the
loss function (unless problem parameters such as ν are defined as network inputs)

⊖ Poor generalization capabilities, e.g., transient problems at t > ttrain
max

⊖ Point-wise output → many forward evaluations needed to reconstruct solution fields
⊖ High computational costs during training especially in higher dimensions
⊖ Hyperparameter tuning is an art

Hint: Don’t use PINNs as replacement for a single forward analysis. The high training costs
must amortize over many queries, e.g., in inverse analysis or design optimization.

Challenge: How to feed ‘designs’ into the PINN framework?

34 / 61

Weaknesses of PINNs

⊖ Learn a single problem instance, i.e. PDE, bc’s, geometry, ... are hard-coded in the
loss function (unless problem parameters such as ν are defined as network inputs)

⊖ Poor generalization capabilities, e.g., transient problems at t > ttrain
max

⊖ Point-wise output → many forward evaluations needed to reconstruct solution fields

⊖ High computational costs during training especially in higher dimensions
⊖ Hyperparameter tuning is an art

Hint: Don’t use PINNs as replacement for a single forward analysis. The high training costs
must amortize over many queries, e.g., in inverse analysis or design optimization.

Challenge: How to feed ‘designs’ into the PINN framework?

34 / 61

Weaknesses of PINNs

⊖ Learn a single problem instance, i.e. PDE, bc’s, geometry, ... are hard-coded in the
loss function (unless problem parameters such as ν are defined as network inputs)

⊖ Poor generalization capabilities, e.g., transient problems at t > ttrain
max

⊖ Point-wise output → many forward evaluations needed to reconstruct solution fields
⊖ High computational costs during training especially in higher dimensions

⊖ Hyperparameter tuning is an art

Hint: Don’t use PINNs as replacement for a single forward analysis. The high training costs
must amortize over many queries, e.g., in inverse analysis or design optimization.

Challenge: How to feed ‘designs’ into the PINN framework?

34 / 61

Weaknesses of PINNs

⊖ Learn a single problem instance, i.e. PDE, bc’s, geometry, ... are hard-coded in the
loss function (unless problem parameters such as ν are defined as network inputs)

⊖ Poor generalization capabilities, e.g., transient problems at t > ttrain
max

⊖ Point-wise output → many forward evaluations needed to reconstruct solution fields
⊖ High computational costs during training especially in higher dimensions
⊖ Hyperparameter tuning is an art

Hint: Don’t use PINNs as replacement for a single forward analysis. The high training costs
must amortize over many queries, e.g., in inverse analysis or design optimization.

Challenge: How to feed ‘designs’ into the PINN framework?

34 / 61

Weaknesses of PINNs

⊖ Learn a single problem instance, i.e. PDE, bc’s, geometry, ... are hard-coded in the
loss function (unless problem parameters such as ν are defined as network inputs)

⊖ Poor generalization capabilities, e.g., transient problems at t > ttrain
max

⊖ Point-wise output → many forward evaluations needed to reconstruct solution fields
⊖ High computational costs during training especially in higher dimensions
⊖ Hyperparameter tuning is an art

Hint: Don’t use PINNs as replacement for a single forward analysis. The high training costs
must amortize over many queries, e.g., in inverse analysis or design optimization.

Challenge: How to feed ‘designs’ into the PINN framework?

34 / 61

Weaknesses of PINNs

⊖ Learn a single problem instance, i.e. PDE, bc’s, geometry, ... are hard-coded in the
loss function (unless problem parameters such as ν are defined as network inputs)

⊖ Poor generalization capabilities, e.g., transient problems at t > ttrain
max

⊖ Point-wise output → many forward evaluations needed to reconstruct solution fields
⊖ High computational costs during training especially in higher dimensions
⊖ Hyperparameter tuning is an art

Hint: Don’t use PINNs as replacement for a single forward analysis. The high training costs
must amortize over many queries, e.g., in inverse analysis or design optimization.

Challenge: How to feed ‘designs’ into the PINN framework?

34 / 61

Parameterized PINNs

α

β

γ

x

y

u(x, y, α, β, γ)

v(x, y, α, β, γ)

p(x, y, α, β, γ)

Note: Impractical if the number of design parameters is large (curse of dimensionality)

35 / 61

Auto encoders

In
pu

tl
ay

er
x

O
ut

pu
tl

ay
er

y

Encoder Decoder

Latent space
variables z

Train network so that x ≡ y. Then separate the encoder from the decoder and use the
latter to generate designs y from the latent space variables z serving as network inputs.

36 / 61

Latent space parameterized PINNs

Physics-informed deep learning for computational fluid flow analysis [Kakkar, 2022]

Collaboration between TU Delft and Monolith AI Limited, UK

37 / 61

Latent space parameterized PINNs: NACA 4812 at 5 deg AoA

PINN FEniCS

38 / 61

Latent space parameterized PINNs: NACA 4812 at 5 deg AoA

PINN FEniCS

38 / 61

From function to operator learning

Function learning: learn the input-output relation of a function

f : x ∈ X → Y

e.g., learn Nsin(0) = 0, Nsin(π/2) = 1, Nsin(π) = 0, . . .

Operator learning1: learn the action of an operator on a function, e.g.,

G = ∂·
∂x

, f = sin → learn y = G(f)(x) = cos(x)

e.g., learn N (sin, 0) = 1, N (sin, π) = −1, N (cos, π/2) = −1, . . .

1Universal approximation theorem for operators [Chen and Chen, 1993]

39 / 61

From function to operator learning

Function learning: learn the input-output relation of a function

f = sin, X = R, Y = [−1, 1] → learn y = sin(x)

e.g., learn Nsin(0) = 0, Nsin(π/2) = 1, Nsin(π) = 0, . . .

Operator learning1: learn the action of an operator on a function, e.g.,

G = ∂·
∂x

, f = sin → learn y = G(f)(x) = cos(x)

e.g., learn N (sin, 0) = 1, N (sin, π) = −1, N (cos, π/2) = −1, . . .

1Universal approximation theorem for operators [Chen and Chen, 1993]

39 / 61

From function to operator learning

Function learning: learn the input-output relation of a function

f = sin, X = R, Y = [−1, 1] → learn y = sin(x)

e.g., learn Nsin(0) = 0, Nsin(π/2) = 1, Nsin(π) = 0, . . .

Operator learning1: learn the action of an operator on a function, e.g.,

G = ∂·
∂x

, f = sin → learn y = G(f)(x) = cos(x)

e.g., learn N (sin, 0) = 1, N (sin, π) = −1, N (cos, π/2) = −1, . . .

1Universal approximation theorem for operators [Chen and Chen, 1993]

39 / 61

From function to operator learning

Function learning: learn the input-output relation of a function

f = sin, X = R, Y = [−1, 1] → learn y = sin(x)

e.g., learn Nsin(0) = 0, Nsin(π/2) = 1, Nsin(π) = 0, . . .

Operator learning1: learn the action of an operator on a function, e.g.,

G : f 7→ G(f), G(f) : x ∈ X → Y

e.g., learn N (sin, 0) = 1, N (sin, π) = −1, N (cos, π/2) = −1, . . .

1Universal approximation theorem for operators [Chen and Chen, 1993]
39 / 61

From function to operator learning

Function learning: learn the input-output relation of a function

f = sin, X = R, Y = [−1, 1] → learn y = sin(x)

e.g., learn Nsin(0) = 0, Nsin(π/2) = 1, Nsin(π) = 0, . . .

Operator learning1: learn the action of an operator on a function, e.g.,

G = ∂·
∂x

, f = sin → learn y = G(f)(x) = cos(x)

e.g., learn N (sin, 0) = 1, N (sin, π) = −1, N (cos, π/2) = −1, . . .

1Universal approximation theorem for operators [Chen and Chen, 1993]
39 / 61

From function to operator learning

Function learning: learn the input-output relation of a function

f = sin, X = R, Y = [−1, 1] → learn y = sin(x)

e.g., learn Nsin(0) = 0, Nsin(π/2) = 1, Nsin(π) = 0, . . .

Operator learning1: learn the action of an operator on a function, e.g.,

G = ∂·
∂x

, f = sin → learn y = G(f)(x) = cos(x)

e.g., learn N (sin, 0) = 1, N (sin, π) = −1, N (cos, π/2) = −1, . . .

1Universal approximation theorem for operators [Chen and Chen, 1993]
39 / 61

Deep operator networks
DeepONets: Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators [Lu et al., 2021], many follow-up papers, e.g.
Physics-informed deep operator networks [Goswami et al., 2022]

Figure from: Improved architectures and training algorithms for deep operator networks
[Wang et al., 2022]

40 / 61

Simplified interpretation of DeepONets

Trunk network: learns a set of basis functions (bi(x))i

Branch network: learns the basis coefficients (ci)i (relative to this basis)

Cross product: combines basis coefficients and functions to produce solution values

u(x) =
∑

i

cibi(x)

IgANets [Möller et al., 2021]: learn basis coefficients relative to a fixed B-spline basis

41 / 61

Simplified interpretation of DeepONets

Trunk network: learns a set of basis functions (bi(x))i

Branch network: learns the basis coefficients (ci)i (relative to this basis)

Cross product: combines basis coefficients and functions to produce solution values

u(x) =
∑

i

cibi(x)

IgANets [Möller et al., 2021]: learn basis coefficients relative to a fixed B-spline basis

41 / 61

1 Introduction
Terminology
Deep learning 101

2 Physics-informed machine learning
Physics-informed neural networks
Deep Operator neural networks

3 IgANets
Concept and preliminary applications

42 / 61

B-spline basis functions

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

Figure from: Geometrically nonlinear isogeometric analysis of laminated composite plates
based on higher-order shear deformation theory [Tran et al., 2015]

43 / 61

B-spline geometry models

Figure from: Reduced order isogeometric analysis approach for PDEs in parametrized
domains [Garotta et al., 2020]

44 / 61

(model problem) −∆uh = fh in Ωh uh = gh on ∂Ωh

(geometry) xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2

(load vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

45 / 61

IgANet architecture

x1

xn

f1

fn

g1

gn

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

coords (ξ(k), η(k))N
k=1

46 / 61

Loss function

loss = lossPDE + lossBDR

lossPDE = 1
NΩ

NΩ∑
k=1

∣∣∣∆ [
uh ◦ xh

(
ξ(k), η(k)

)]
− fh ◦ xh

(
ξ(k), η(k)

)∣∣∣2

lossBDR = 1
NΓ

NΓ∑
k=1

∣∣∣uh ◦ xh

(
ξ(k), η(k)

)
− gh ◦ xh

(
ξ(k), η(k)

)∣∣∣2

47 / 61

Two-level training strategy

For [x1, . . . , xn] ∈ Sgeo, [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond do

For batch of Greville abscissae (ξk, ηk) ∈ [0, 1]2 do

Train IgANet

x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1

 7→

u1
...

un

EndFor

EndFor

48 / 61

Test case: Poisson’s equation on a variable annulus

g ≡ 0
g

≡
0,

1,
. .

. ,
11

0rad

1rad2rad

3rad

4rad

f ≡ 0, 1, . . . , 11

Figures from: PINNs for parametrized problems [van Ruiten, 2022]
49 / 61

Preliminary results

x0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

g ≡ 0

g
≡

0

0rad

1rad2rad

3rad

4rad

f ≡ 5

Figures from: PINNs for parametrized problems [van Ruiten, 2022]

50 / 61

Preliminary results

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g ≡ 0

g
≡

1.4

0rad

1rad2rad

3rad

4rad

f ≡ 5

Figures from: PINNs for parametrized problems [van Ruiten, 2022]

50 / 61

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.25
0.50

0.75
1.00

z

0.0
0.5
1.0
1.5
2.0
2.5

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 3.3

Figures from: PINNs for parametrized problems [van Ruiten, 2022]

51 / 61

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.250.50
0.75

1.00

z

0.0
0.5
1.0
1.5
2.0
2.5

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 8.7

Figures from: PINNs for parametrized problems [van Ruiten, 2022]

51 / 61

Preliminary results

x

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
y

−1.00−0.75−0.50−0.250.000.25
0.50

0.75
1.00

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.5

1.0

1.5

2.0

2.5

g ≡ 0

g ≡ 2.5

0rad

1rad2rad

3rad

4rad

f ≡ 15.5

Figures from: PINNs for parametrized problems [van Ruiten, 2022]

51 / 61

Future application: interactive design-through-analysis

Collaboration with Scientific Visualization team at SURF NL

52 / 61

Physics-informed machine learning –
Hype or new trend in computational engineering?

• FEM [Courant, 1943], FVM [Mcdonald, 1971], Neural operators for differential
equations [Dissanayake and Phan-Thien, 1994] ... just give it some more time

• PIML will not replace FEM/FVM as simulation tool but enable new analyses (inverse
modelling, quick/qualitative pre-design exploration, process monitoring/steering, ...)

Call to action
• SciML is not the enemy nor a panacea. Explore its capabilities (and limitations) and

combine it with today’s tools where it brings added value to your workflow.

53 / 61

Physics-informed machine learning –
Hype or new trend in computational engineering?

• FEM [Courant, 1943], FVM [Mcdonald, 1971], Neural operators for differential
equations [Dissanayake and Phan-Thien, 1994] ... just give it some more time

• PIML will not replace FEM/FVM as simulation tool but enable new analyses (inverse
modelling, quick/qualitative pre-design exploration, process monitoring/steering, ...)

Call to action
• SciML is not the enemy nor a panacea. Explore its capabilities (and limitations) and

combine it with today’s tools where it brings added value to your workflow.

53 / 61

Physics-informed machine learning –
Hype or new trend in computational engineering?

• FEM [Courant, 1943], FVM [Mcdonald, 1971], Neural operators for differential
equations [Dissanayake and Phan-Thien, 1994] ... just give it some more time

• PIML will not replace FEM/FVM as simulation tool but enable new analyses (inverse
modelling, quick/qualitative pre-design exploration, process monitoring/steering, ...)

Call to action
• SciML is not the enemy nor a panacea. Explore its capabilities (and limitations) and

combine it with today’s tools where it brings added value to your workflow.

53 / 61

Physics-informed machine learning –
Hype or new trend in computational engineering?

• FEM [Courant, 1943], FVM [Mcdonald, 1971], Neural operators for differential
equations [Dissanayake and Phan-Thien, 1994] ... just give it some more time

• PIML will not replace FEM/FVM as simulation tool but enable new analyses (inverse
modelling, quick/qualitative pre-design exploration, process monitoring/steering, ...)

Call to action
• SciML is not the enemy nor a panacea. Explore its capabilities (and limitations) and

combine it with today’s tools where it brings added value to your workflow.

53 / 61

Physics-informed machine learning –
Hype or new trend in computational engineering?

Matthias Möller

Department of Applied Mathematics, TU Delft, The Netherlands

6th Short Course & Forum on Computational Fluid Dynamics in Rotary Positive Displacement Machines

City, University of London, 10-09-2023

54 / 61

References I
N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar,

A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee. Workshop report on basic research
needs for scientific machine learning: Core technologies for artificial intelligence.
Technical report, Feb. 2019. URL https://doi.org/10.2172/1478744.

T. Chen and H. Chen. Approximations of continuous functionals by neural networks with
application to dynamic systems. IEEE Transactions on Neural Networks, 4(6):910–918,
1993. doi: 10.1109/72.286886. URL https://doi.org/10.1109/72.286886.

F. Courant. Variational method for the solution of problems of equilibrium and vibration,
1943.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems, 2(4):303–314, Dec. 1989. doi: 10.1007/bf02551274. URL
https://doi.org/10.1007/bf02551274.

55 / 61

https://doi.org/10.2172/1478744
https://doi.org/10.1109/72.286886
https://doi.org/10.1007/bf02551274

References II
M. W. M. G. Dissanayake and N. Phan-Thien. Neural-network-based approximations for

solving partial differential equations. Communications in Numerical Methods in
Engineering, 10(3):195–201, Mar. 1994. doi: 10.1002/cnm.1640100303. URL
https://doi.org/10.1002/cnm.1640100303.

F. Garotta, N. Demo, M. Tezzele, M. Carraturo, A. Reali, and G. Rozza. Reduced order
isogeometric analysis approach for PDEs in parametrized domains. In Lecture Notes in
Computational Science and Engineering, pages 153–170. Springer International
Publishing, 2020. doi: 10.1007/978-3-030-48721-8_7. URL
https://doi.org/10.1007/978-3-030-48721-8_7.

S. Goswami, A. Bora, Y. Yu, and G. E. Karniadakis. Physics-informed deep neural operator
networks, 2022. URL https://arxiv.org/abs/2207.05748.

Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu. Physics-informed machine
learning: A survey on problems, methods and applications, 2022. URL
https://arxiv.org/abs/2211.08064.

56 / 61

https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1007/978-3-030-48721-8_7
https://arxiv.org/abs/2207.05748
https://arxiv.org/abs/2211.08064

References III
K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal

approximators. Neural Networks, 2(5):359–366, Jan. 1989. doi:
10.1016/0893-6080(89)90020-8. URL
https://doi.org/10.1016/0893-6080(89)90020-8.

V. Kag, K. Seshasayanan, and V. Gopinath. Physics-informed data based neural networks
for two-dimensional turbulence. Physics of Fluids, 34(5), May 2022. doi:
10.1063/5.0090050. URL https://doi.org/10.1063/5.0090050.

S. Kakkar. Physics-informed deep learning for computational fluid flow analysis: Coupling of
physics-informed neural networks and autoencoders for aerodynamic flow predictions on
variable geometries, 2022.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, may 2021a.
doi: 10.1038/s42254-021-00314-5. URL
https://doi.org/10.1038%2Fs42254-021-00314-5.

57 / 61

https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1063/5.0090050
https://doi.org/10.1038%2Fs42254-021-00314-5

References IV
G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang.

Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, May 2021b.
doi: 10.1038/s42254-021-00314-5. URL
https://doi.org/10.1038/s42254-021-00314-5.

A. Karpatne, G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly,
S. Shekhar, N. Samatova, and V. Kumar. Theory-guided data science: A new paradigm
for scientific discovery from data. IEEE Transactions on Knowledge and Data
Engineering, 29(10):2318–2331, oct 2017. doi: 10.1109/tkde.2017.2720168. URL
https://doi.org/10.1109%2Ftkde.2017.2720168.

I. Lagaris, A. Likas, and D. Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000,
1998. doi: 10.1109/72.712178. URL https://doi.org/10.1109/72.712178.

58 / 61

https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1109%2Ftkde.2017.2720168
https://doi.org/10.1109/72.712178

References V
L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via

DeepONet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, Mar. 2021. doi: 10.1038/s42256-021-00302-5. URL
https://doi.org/10.1038/s42256-021-00302-5.

Z. Mao, A. D. Jagtap, and G. E. Karniadakis. Physics-informed neural networks for
high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360:112789,
Mar. 2020. doi: 10.1016/j.cma.2019.112789. URL
https://doi.org/10.1016/j.cma.2019.112789.

P. W. Mcdonald. The computation of transonic flow through two-dimensional gas turbine
cascades. 1971. URL https://api.semanticscholar.org/CorpusID:121134844.

M. Möller, D. Toshniwal, and F. van Ruiten. Physics-informed machine learning embedded
into isogeometric analysis. In Mathematics: Key enabling technology for scientific
machine learning. Platform Wiskunde Nederland, 2021.

59 / 61

https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1016/j.cma.2019.112789
https://api.semanticscholar.org/CorpusID:121134844

References VI
C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, and

A. J. Ramadhan. Universal differential equations for scientific machine learning. CoRR,
abs/2001.04385, 2020. URL https://arxiv.org/abs/2001.04385.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017a.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part ii):
Data-driven discovery of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10566, 2017b.

M. Raissi, P. Perdikaris, and G. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, feb 2019. doi:
10.1016/j.jcp.2018.10.045. URL https://doi.org/10.1016%2Fj.jcp.2018.10.045.

N. Thuerey, P. Holl, M. Mueller, P. Schnell, F. Trost, and K. Um. Physics-based deep
learning, 2021. URL https://physicsbaseddeeplearning.org.

60 / 61

https://arxiv.org/abs/2001.04385
https://doi.org/10.1016%2Fj.jcp.2018.10.045
https://physicsbaseddeeplearning.org

References VII
L. V. Tran, J. Lee, H. Nguyen-Van, H. Nguyen-Xuan, and M. A. Wahab. Geometrically

nonlinear isogeometric analysis of laminated composite plates based on higher-order shear
deformation theory. International Journal of Non-Linear Mechanics, 72:42–52, June 2015.
doi: 10.1016/j.ijnonlinmec.2015.02.007. URL
https://doi.org/10.1016/j.ijnonlinmec.2015.02.007.

F. van Ruiten. Pinns for parametrized problems, 2022.
S. Wang, H. Wang, and P. Perdikaris. Improved architectures and training algorithms for

deep operator networks. Journal of Scientific Computing, 92(2), June 2022. doi:
10.1007/s10915-022-01881-0. URL
https://doi.org/10.1007/s10915-022-01881-0.

61 / 61

https://doi.org/10.1016/j.ijnonlinmec.2015.02.007
https://doi.org/10.1007/s10915-022-01881-0

	Introduction
	Terminology
	Deep learning 101

	Physics-informed machine learning
	Physics-informed neural networks
	Deep Operator neural networks

	IgANets
	Concept and preliminary applications

	References

