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Motivation

FDM, FVM, FEM, BEM, IGA, ... PINNs, DeepONets, FourierNets, ...

) sound mathematical foundation ) fast evaluation (costly training!)
) established engineering workflows VS. @) inclusion of (measurement) data
€3 no cost amortization over multiple 3 lack of convergence theory

runs, no real-time capability L) lack of general acceptance

Common misconceptions
® “Method a is/is not as accurate as method b"

® “Method a is x-times faster/slower than method b"

Better question to ask

* What are the specific strengths/weaknesses of the different approaches?
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Motivation

FDM, FVM, FEM, BEM, IGA, ... PINNs, DeepONets, FourierNets, ...

) sound mathematical foundation ) fast evaluation (costly training!)

) established engineering workflows and | ) inclusion of (measurement) data

Common misconceptions
® “Method a is/is not as accurate as method b"

® “Method a is x-times faster/slower than method b"

Better questions to ask
* What are the specific strengths/weaknesses of the different approaches?
® How can we combine the strengths of both classes of methods?

® What is the envisaged purpose of the new approach?

3
TUDelft 2/23



Design-through-Analysis — IGA’s ultimate goal from day one on

Vision: fast interactive qualitative analysis and accurate quantitative analysis within the
same computational framework with seamless switching between both approaches

Photo: Siemens — Simulation for Design Engineers
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

") easy to implement for ‘any' PDE

because AD magic does it for you
F= 8,0 +7-£U) ) combined un-/supervised learning

L) poor extrapolation/generalization

~

L) point-based approach requires
re-evaluation of NN at every point

) rudimentary convergence theory
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PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

") easy to implement for ‘any' PDE

because AD magic does it for you
F= 8,0 +7-£U) ) combined un-/supervised learning
L) poor extrapolation/generalization

L) point-based approach requires
re-evaluation of NN at every point

) rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

Go(u)(y) = ,;: be(ul(zr), u(@a), .., wl@m)) s (y)

branch trunk
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Physics-informed machine learning

PINN (Raissi et al. 2018): learns the (initial-)boundary-value problem

") easy to implement for ‘any' PDE

because AD magic does it for you
F= 8,0 +7-£U) ) combined un-/supervised learning
L) poor extrapolation/generalization

L) point-based approach requires
re-evaluation of NN at every point

) rudimentary convergence theory

DeepONet (Lu et al. 2019): learns the differential operator

q
G = b ) 9%y m t 1 .
o(u)(y) kgl k(u(z1), u(@2) u(@ )) k(y) Don't we know a good basis?

branch trunk

3
TUDelft 4/23



Isogeometric Analysis
Model problem: Poisson’s equation

—Auh:fh in Qh, Up = gn ON 8Qh

with
(geometry) xp(&n) = > _Bi(&,n) xi  V(&n) €[0,1]?
i=1
(solution) up o xp(€,m) = Y Bi(&m)-ui V(&) €[0,1]
i=1

(r.h.s vector) froxn(&,m) = ZBz‘({fﬂ?) fi V(& m) €0,1)?

(boundary conditions) grnoxp(&,m) = ZBz’(ﬁ;??) i v(&,m) € 0[0, 1]2
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Isogeometric Analysis

Abstract representation
Given x; (geometry), f; (r.h.s. vector), and g; (boundary conditions), compute

U x| [91 xi] [A] [9
= A_l N N -b o I I
Un, Xn dn Xn In n
Any point of the solution can afterwards be obtained by a simple function evaluation

a1
(6777) € [07 1]2 = up OXh(fa'U) = [Bl(gvn)’ e 7Bn(§777)] ’

Un,
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Isogeometric Analysis
Abstract representation
Given x; (geometry), f; (r.h.s. vector), and g; (boundary conditions), compute
U x| [91 xi] [A] [9
= A_l N -b R
Un, Xn dn Xn In n
Any point of the solution can afterwards be obtained by a simple function evaluation

a1
(6777) € [07 1]2 = up OXh(fa'U) = [Bl(gvn)’ e 7Bn(§777)] ’

Un,

Let us interpret the sets of B-spline coefficients {x;}, {fi}, and {g;} as an efficient
encoding of our PDE problem that is fed into our IGA machinery as input.

The output of our IGA machinery are the B-spline coefficients {u;} of the solution.
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Isogeometric Analysis + Physics-Informed Machine Learning

HERIRRRARR]

IgaNet: replace computation

Uy
=471
Un,
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Isogeometric Analysis + Physics-Informed Machine Learning

IgaNet: replace computation by physics-informed machine learning

Uy X1 fil o
—lgaNet | | [, ||, ] |, p0) e

Unp, Xn f n n

3
TUDelft



Isogeometric Analysis + Physics-Informed Machine Learning

IgaNet: replace computation by physics-informed machine learning

Uy x1] [fi] [&n
—lgaNet | | o |, [ |, ] |;(e®, pk)) o

Unp, Xn f n n

Compute the solution from the trained neural network as follows

Ul Ul X1 1 g1
uh(é)ﬁ) = [31(5777), SRR Bn(fﬂ?)] s = lgaNet N

Un, Un Xn In gn
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lgaNet architecture

o))
SRR
i ¢ Xe e‘ ——— loss = lossppE + lossgpr
R

“A\e,‘\ ,‘\e' @ end training

coords (€™, n™*))iL,

E Oloss
) 9w, b)
and continue training

— update w, b
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Loss function

lossppg = Nig 3 A [uh oxp, <€(k),77(k))] — fhoxp (5(’9),77(16)) ‘2
k=1
B I k k k k 2
lossppr = Ny 2 [n O X (5( ), )) — gi o Xp (§< ) )))

Express derivatives with respect to physical space variables using the Jacobian J, the
Hessian H and the matrix of squared first derivatives @) (Schillinger et al. 2013):

9°B 92B
2 €2 9B
2B | _ T 8B T ,—T | ¢
oxdy | — Q agon | — H'J [ B
9°B 92B an
oy? on2
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Two-level training strategy

For [Xla o 7xn] € SgeOr [fla o 7fn] € Srh5y [917 s 7gn] € Sbcond do
For a batch of randomly sampled (£x, k) € [0,1]2 (or the Greville abscissae) do

X1 fi qn U1
. Nsam es
Train lgaNet E I N IO B B €0/ P : =
Xn fn In Un

EndFor
EndFor

Details:
® 7 x T bi-cubic tensor-product B-splines for x;, and wj,, C%-continuous

® TensorFlow 2.6, 7-layer neural network with 50 neurons per layer and RelLU activation
function (except for output layer), Adam optimizer, 30.000 epochs, training is stopped
after 3.000 epochs w/o improvement of the loss value

Ongoing master thesis work of Frank van Ruiten, TU Delft

7
TUDelft 10 / 23



Test case: Poisson's equation on a variable annulus

2rad

3rad

Ongoing master thesis work of Frank van Ruiten, TU Delft
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Preliminary results
oo ——— 1\
] | IL i\

3rad

Ongoing master thesis work of Frank van Ruiten, TU Delft
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Let's have a look under the hood

Computational costs of PINN vs. IgaNets, implementation aspects, ...
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Computational costs

Working principle of PINNs
x = u(x) := NN(x; f, 9, G) = oL(Wro(... (01(Wix +b1))) + by)

® use AD engine (automated chain rule) to compute derivatives, e.g., u, = NN,

® use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training
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Computational costs

Working principle of PINNs
x — u(x) :=NN(x; f,9,G) = o,(Wro(...(c1(Wix+by))) + byp)

® use AD engine (automated chain rule) to compute derivatives, e.g., u, = NN,

® use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgaNets
(%i, fi, Gili=1,...n = [Wi)i=1,..n == NN(x4, fi, 05,0 =1,...,n)

* use mathematics to compute derivatives, e.g., Vyu = (3, Ve Bi(&)u;) Jét

® use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

A(dgu(§) A(dgbju;) & ryp Ou;
——z i —M@%

[

7
TUDelft 15 / 23




Towards an ML-friendly B-spline evaluation

Major computational task (illustrated in 1D)

Given sampling point £ € [£;,&+1) compute for r > 0

dgu(€) = [dg?_,(8), -, G (E)] - [uipy - -, i

network’s output

Textbook derivatives

r—1 r—1pp—1
dzb’%@:(p—l)( —d 1 © | A “’)

Sitp — i1 Sitp—1—&i

with

Sivp — & Civpr1 — Eip1 T g 0 otherwise

] bo(g):{ LG <6< b
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Towards an ML-friendly B-spline evaluation

Matrix representation of B-splines (Lyche and Morken 2011)

|
[dg i—p(g)v s ’dgbf(g)} = p—Rl (6) T Rp—r(g)déRp—r-i-l T ngp

with k& x k 4+ 1 matrices R (§), e.g.

B TS o S e Y
R1(§) - [&-5-1—52‘ fi+1—§i]

5§i+1g€ 55—&5—1 0
_ i+1—GQi—1 i+1—GQi—1
Ry(€) = 0 &ita—¢& E=¢i

Sita—&i Eit2—&;
Ry(€) = ...
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An ML-friendly B-spline evaluation
Algorithm 2.22 from (Lyche and Morken 2011)

®b=1
®@Fork=1,....p—r
o t]. (gl k+17"'7§l)

(G5 &itn)
(€ —t1) + (b2 —t1)
=[(1-—w)®b,0]+[0,w ® b]
(3] Fork—p—r—i—l,...,
Ot =(Cikr1,-,6)
D t2 = (§iv1,-- -, 8itk)
(3) W—l—(tg—tl)
®b=[-wOb,0+[0,wob]
where +— and ® denote the element-wise division and multiplication of vectors, respectively.
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An ML-friendly B-spline evaluation

Algorithm 2.22 from (Lyche and Morken 2011) with slight modifications
®b=1
®Fork=1,....p—r
O t1=(Ei—kt15---, &)
O tor = (&1, &ivr) — 1
© mask = (tg; < tol)
O w = (¢ — ty—mask) + (tg; —mask)
Ob=[(1-w)©b,0]+[0,wOb]
®@Fork=p—r+1,...,p
@t = (Sikr15---580)
@ tor = (&ir1s-- 5 &irk) — b1
© mask = (tg; < tol)
O w = (1-mask) + (t9; —mask)
O b=[-wOb,0+[0,wOb]
where = and © denote the element-wise division and multiplication of vectors, respectively.
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Performance evaluation - bivariate B-splines
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Performance evaluation - trivariate B-splines




Conclusion and outlook

IgaNets combine classical numerics with physics-informed machine learning and may finally
enable integrated and interactive design-through-analysis workflows

WIP /What’s next

® interactive modelling & visualization

® extension to multi-patch topologies

¢ use of IGA and IgaNets in concert I\f. %1
® transfer learning upon basis refinement /S,c

[}

theoretical foundation & error analysis

MATHEMATICS:

KEY ENABLING TECHNOLOGY
FOR SCIENTIFIC MACHINE
LEARNING

Short paper: Moller, Toshniwal, van Ruiten: Physics-informed
machine learning embedded into isogeometric analysis, 2021. '~

Journal paper and code release in preparation
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Thank you very much!
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