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Part 1: Solution accuracy
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Model problem #1

Poisson equation in bounded domain €2 with Lipschitz continuous
boundary I with f € L5(Q2) and he Ly(Ty):

-Au=f in Q
u=g onlp
Opu=h on Ny

If Q is convex, g =0, and 'y = & then [Netas 1967]
ue H*(Q) and [ulz0<c(Q)|flog

Otherwise u € H;D(Q) = {v ceHY(Q):v=w+g,we H&D(Q)}
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A-priori error analysis

Weak form: Find v e H1 p(£2) such that
(Vu,vw) = (f,w) + (h,w)r, Ywe H&D(Q)
Optimal approximation property of the FEM

|nf ”U—Vh”oQ O(hp+1)

VhEV

inf |
(p)

Vhe Vh
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A-priori error analysis

Weak form: Find v e H;,D(Q) such that
(Vu,vw) = (f,w) + (h,w)r, VWEH&D(Q)
Optimal approximation property of the FEM

0.0 = O(hp+1)

inf |u—wvp
VhEVhp

inf [ Vhp(u—vp)

Vhe Vh

0,0 =O0(hP)

A word of caution: asymptotic convergence for h — 0 is combated by
round-off errors in practical computations w/ finite-precision arithmetic
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Interplay of approximation and round-off errors

aTl|.

m
[}

Absolute error
m
3
>

Nc Nopt
Number of DoFs
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Interplay of approximation and round-off errors

Best computable solution uy, is obtained for*

1

Nopt = (OZTﬂT)W
arBr

with smallest possible error

c ( 1 )ﬁr . ( 1 )/BR
min = & (&%
T Nopt R Nopt

*J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004
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Interplay of approximation and round-off errors

Best computable solution uy, is obtained for*

1

Nopt = (OZTﬂT)W
arBr

with smallest possible error

c ( 1 )5T . ( 1 )/BR
min = & (&%
T Nopt R Nopt

® How sensitive are a1, 81, ag, Sr to problem parameters?

® Can we develop an a-posteriori hp—adaptation strategy?

*J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004
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P>-FEM in 1d: u(x) = (27c;)2sin(2mcix),  f(x) =sin(2rcix), Q=(0,1)

solution first derivative second derivative
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Analysis of further influence factors

® Type of boundary conditions: no influence
® Imposition of Dirichlet boundary conditions: no influence

e Computer precision: agr changes, Br remains constant

All results (also using mixed FEM) were produced with deal.ll code*

*J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004
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Analysis of further influence factors

Type of boundary conditions: no influence
® Imposition of Dirichlet boundary conditions: no influence

* Computer precision: ag changes, Br remains constant

® Solution strategy: moderate influence
solution first derivative second derivative
10° 10° - 10° ~
—— UMFPACK
& —— CG, 10710 N\\ 4
5107 N G, 107 5 107 g
@ *\@ @ ‘ @
£ 1078 AN £ 108 £ 108
] ) ] ]
<1022 g 1 <1022 1 <1022
1o-16 m=2e17 10-15 ~Gr=5e-17 1016 P = 1e-16
10° 10? 104 108 108 10° 10? 104 108 108 10° 10? 104 108 108
Number of DoFs Number of DoFs Number of DoFs

All results (also using mixed FEM) were produced with deal.ll code*

*J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004
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A-posteriori hp-adaptation strategy

Input: initial geometry with mesh width h and approximation order p,
tolerances for Eni, and maximum mesh refinement steps

® Normalization: compute up on coarse mesh and scale f/|up||

@ Approximation error prediction: compute up, Uy, ... On coarse
meshes until asymptotic convergence rate is observed - aT, 571

©® Round-off error prediction: use lookup table from previous
simulations or use manufactured solution that can be resolved
exactly by Pp,-FEM (possibly using lower precision) — ag, r

O Effective error prediction: compute Nype and Eni,
Output: Nopr and Epjn. If the estimated error satisfies the required

tolerance compute up: otherwise repeat procedure with
p:=p+1 or switch to mixed FEM formulation
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Model problem #2

Helmholtz equation:

((0.01 + x)(1.01 - x)uy),, - (0.01/)u(x) =1.0 in (0,1)

u(0)=0

ug(1)=0
solution first derivative second derivative
1e0 1e0 1e0 T T T T

—o—algorithm

le-4 | |— brute-force le-4 @\Mw leal \,
le-8 | 1 ,E le8p | F le-8 xx@
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Model problem #2

Helmholtz equation:

((0.01+x)(1.01 - x)uy), - (0.01i)u(x) =1.0 in (0,1)
u(0)=0
u(1)=0

second derivative

solution first derivative
100% 100 % 100%
el el el
S 30% |- 4 2 g% 4 2 80% .
b & &
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Is this of practical relevance?

1D Poisson equation on unit interval

1006400
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Yes ...
® since high-order methods can
improve the 'effective’ accuracy of
solutions by orders of magnitudes

e ® since h-refinement is only effective
in a small range of refinements for
(very) high-order methods and

should therefore be used with care
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SP™LIGA solutions of model
problem #1 with Q = (0,1)
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Is this of practical relevance?

2D Poisson equation on unit square

8
I

® since high-order methods can

\ improve the 'effective’ accuracy of
o solutions by orders of magnitudes
® since h-refinement is only effective
i\ in a small range of refinements for

(very) high-order methods and
should therefore be used with care

e ® since the same phenomenon is
T TR e observed already for moderately
refined meshes in 2d (and 3d)
SPLIGA solutions of model
problem #1 with Q = (0,1)?
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Part 2: Solver efficiency
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Efficient solvers for IGA discretizations

h-multigrid methods enhanced with
* boundary corrected mass-Richardson smoother [Hofreither 2017]
* hybrid smoother [Sogn 2018]
* multiplicative Schwarz smoother [de la Riva 2018]
¢ .
Preconditioners based on
* Schwarz methods [Beirdo da Veiga 2012]
* Sylvester equation [Sangalli 2016]
* BPX for (T)HB [Bracco et al. 2019]

%
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Basics of multigrid methods [Strang 2006]

Repeat until converged uy,e is reached
@ lterate on Agpcugne = frne to reach Ugpe

® Restrict the residual rgne == frine — Afinelifine to the coarse level by

applying the restriction operator, i.e. reoarse = 150 ¥fine

©® Solve for the coarse level correction Acparse Ecoarse = Feoarse
O Prolongate E,.sc back to the fine level by Eg,e = |§g§,seEcoa,se
©® Add the correction, i.e. Ugpe = Ugne + Efine

O lterate on Agiplifne = frne to reach ugne

Step 3 calls the multigrid procedure recursively until a coarse level is
reached, where the error equation can be solved 'exactly’.

5
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Motivation for using p-multigrid methods

The linear system Ay ,up , = fp
® becomes more difficult to solve for increasing p
* reduces to C%-FEM for p = 1 (where h-multigrid works fine)

In contrast to h-multigrid methods
® the #DoFs does not reduce significantly on coarser p-levels
® the stencil reduces significantly on coarse p-levels
* the spaces are not nested, i.e. (Sj 4 Sf’,’:1 $...)

5
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V-cycle p-multigrid variants

indirect projection direct projection

} p-multigrid
} h-multigrid

* ILUT or GS smoothing is applied at each level (e)

® LU decomposition is applied as direct coarse level solver

5
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Prolongation and restriction

Prolongation in h Restriction in h

.
12,’,7”11 is linear interpolation 1'2;1’:11 = % (12;1'11)
Prolongation in p Restriction in p
-1ppqP hp— p-1\-1ppP-1
I,pl_(M) Mp—l (M 1) Mp

Let ¢? denote the /" basis function from 5;77;1. Then define

M)y = [, ¢(6) ¢5(&) (&) af

Replace M{ by its row-sum lumped counterpart (— diagonal matrix)
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ILUT smoother [Saad 1994]

Setup: Incomplete LU factorization of Ay, , ~ Lp ,Up , thereby
@ dropping all elements lower than tolerance 7 = 10713

@ keeping only the N (= average number of non-zero entries
in each row of Ay, ;) largest elements in each row

Application: perform s=1,...,v smoothing steps

efi,)) (LhpUnp) ™ (Fhp - Ah,pugf,);)

(s+1) _  (9) (s)
Unp = UWptenp

5
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Model problem #1, revisited

Obtaining coarse level operators
. C G _ 7hp-1 h,p
* Galerkin projection Ay, =7,7 " App 1,7 4
* re-discretization of Aj , on each level

1
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Model problem #1, revisited

Obtaining coarse level operators

* Galerkin projection Af —Ihp YA, IZS 1

* re-discretization of A, , on each level

Poisson equation on quarter annulus with radii 1 and 2, g =0, 'y = &,
f such that u(x,y) = —=(x%>+ y? = 1)(x® + y? — 4)xy?

p=2 | k(Ag)  w(ARR) | p
h=2"%16.00-10" 9.78-10?
h=2751]479-10° 4.19-10°
h=2"12094.101 1.76-10*
h=2""1548-10" 7.28.10*

3 | k(Ag,) (AR

417.00-10° 156-10°
516.15-1019 6.71-103
=61 4.99.10" 2.84-10*
7| 758-10% 1.18-10°

>> > >
I
N oo N !
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V-cycle p-multigrid variants, revisited

indirect projection direct projection

- } p-multigrid
} h-multigrid

* Setup: Assembly of A, p, I;;’g_l, Ig’g_l each O(Ngofp3?) flops

ILUT factorization of A, O(Ngofp??) flops
Gauss-Seidel 'setup’ O(Ngot ) flops

* V-cycle: Application of smoother, rest/prol each O(Ngoep? ) flops
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V-cycle p-multigrid variants, revisited

indirect projection direct projection

} p-multigrid
} h-multigrid

* Setup: Assembly of Ay, IZ}’,’:_I, I,’:”g_l each O(Ngop9) flops
ILUT factorization of Ay , O(Nygofp®?) flops

Gauss-Seidel 'setup’ O(Ngor ) flops
* V-cycle: Application of smoother, rest/prol each O(Ngoep? ) flops

® Numerical tests show same V-cycle counts for both variants
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The final V-cycle p-multigrid variant

p=3 h=27%
sgflich { p=2 h=27% } p-multigrid
p=1 h=27°

TN
VAR VAR

* ILUT (p>1) / GS smoothing (p =1) is applied at each level (o)
¢ LU decomposition is applied as direct coarse level solver
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Model problem #1: V-cycle counts

V-cycle p-multigrid as a solver

p=2 p=3 p=4 p=5
ILUT* GS | ILUT* GS | ILUT* GS | ILUT* GS
h=27° 4 30 3 62 3 176 3 491
h=2"7 4 29 3 61 3 172 3 499
h=28 5 30 3 60 3 163 3 473
h=2"° 5 32 3 61 3 163 3 452

V-cycle h-multigrid shows similar convergence behavior

*ILUT (p>1), GS (p=1)

7
TUDelft 23 / 30



Model problem #1: V-cycle counts

V-cycle p-multigrid as preconditioner in BiCGStab

p=2 p=3 p=4 p=5
ILUT* GS | ILUT* GS | ILUT* GS | ILUT* GS
h=2"° 2 13 2 18 2 41 2 78

h=2" 2 12 2 20 2 41 2 92
h=28 3 13 2 19 2 43 2 95
h=2"9 3 13 2 21 2 41 2 95

V-cycle h-multigrid shows similar convergence behavior

*ILUT (p>1), GS (p=1)
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Model problem #1: CPU times for h=2°
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Model problem #1: CPU times for h =277
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Model problem #1: CPU times for h=28
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Model problem #1: CPU times for h=2"°
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Model problem #3

Convection-diffusion-reaction equation in Q = (0,1)?

1.2 -07 0.4 .
-V- ([_0‘4 0‘9:| Vu) + [_0‘2] -Vu+03u=f inQ

u=0 onl

with f such that u(x,y) = sin(7x)sin(7y)
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Model problem #3: V-cycle counts

V-cycle p-multigrid as a solver

p=2 p=3 p=4 p=5

ILUT GS | ILUT GS | ILUT GS | ILUT GS
h=2 5 - 3 - 3 - 4 -
h=2""] 5 - 3 - 4 - 4 -
h=2"%| 5 - 3 - 3 - 4 -
h=2"2| 5 - 4 - 3 - 4 -

V-cycle h-multigrid shows similar convergence behavior
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Model problem #3: V-cycle counts

V-cycle p-multigrid as preconditioner in BiCGStab

p=2 p=3 p=4 p=5
ILUT GS | ILUT GS | ILUT GS | ILUT GS
h=27"° 2 7 2 13 2 29 2 65
h=2"1 2 8 2 13 2 29 2 70
h=2"8 2 7 2 12 2 29 2 64
h=279 2 7 2 14 2 28 2 72

V-cycle h-multigrid shows similar convergence behavior
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Conclusion and outlook

@ a-posteriori hp-adaptation strategy to find (h, p) pair that
ensures computable approximations with prescribed accuracy

® p-multigrid method with ILUT smoother as efficient solver

7
TUDelft 30 / 30
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ensures computable approximations with prescribed accuracy

® integration as fully automated procedure in simulation code
¢ further analysis of influence factors, i.e. iterative solvers
® use of number formats that are less sensitive to round-off errors

® p-multigrid method with ILUT smoother as efficient solver
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Conclusion and outlook

@ a-posteriori hp-adaptation strategy to find (h, p) pair that
ensures computable approximations with prescribed accuracy

® integration as fully automated procedure in simulation code
¢ further analysis of influence factors, i.e. iterative solvers
® use of number formats that are less sensitive to round-off errors

® p-multigrid method with ILUT smoother as efficient solver

® application to biharmonic equation and within NSE solver
® extension to block-ILUT smoother for multi-patch IGA
® optimization of assembly procedure in G+Smo

High-order methods, are they a curse or a blessing? ... a challenge!

Thank you very much!
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