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Part 1: Solution accuracy
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Model problem #1

Poisson equation in bounded domain Ω with Lipschitz continuous
boundary Γ with f ∈ L2(Ω) and h ∈ L2(ΓN):

−∆u = f in Ω

u = g on ΓD

∂nu = h on ΓN

If Ω is convex, g = 0, and ΓN = ∅ then [Nečas 1967]

u ∈ H2(Ω) and ∥u∥2,Ω ≤ c(Ω)∥f ∥0,Ω

Otherwise u ∈ H1
g ,D(Ω) ∶= {v ∈ H1(Ω) ∶ v = w + g ,w ∈ H1

0,D(Ω)}
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A-priori error analysis

Weak form: Find u ∈ H1
g ,D(Ω) such that

(∇u,∇w) = (f ,w) + ⟨h,w⟩ΓN
∀w ∈ H1

0,D(Ω)

Optimal approximation property of the FEM

inf
vh∈V (p)h

∥u − vh∥0,Ω = O(hp+1)

inf
vh∈V (p)h

∥∇h(u − vh)∥0,Ω = O(hp)

A word of caution: asymptotic convergence for h → 0 is combated by
round-off errors in practical computations w/ finite-precision arithmetic
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Interplay of approximation and round-off errors
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Interplay of approximation and round-off errors

Best computable solution uh is obtained for⋆

Nopt = (αTβT

αRβR
)

1
βT +βR

with smallest possible error

Emin = αT ( 1

Nopt
)
βT

+ αR ( 1

Nopt
)
βR

● How sensitive are αT , βT , αR , βR to problem parameters?

● Can we develop an a-posteriori hp−adaptation strategy?

⋆J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004
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P2-FEM in 1d: u(x) = (2πc1)−2 sin(2πc1x), f (x) = sin(2πc1x), Ω = (0,1)

solution
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Analysis of further influence factors

● Type of boundary conditions: no influence

● Imposition of Dirichlet boundary conditions: no influence

● Computer precision: αR changes, βR remains constant

● Solution strategy: moderate influence
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All results (also using mixed FEM) were produced with deal.II code⋆

⋆J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004
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A-posteriori hp-adaptation strategy

Input: initial geometry with mesh width h and approximation order p,
tolerances for Emin and maximum mesh refinement steps

1 Normalization: compute uh on coarse mesh and scale f /∥uh∥
2 Approximation error prediction: compute uh, uh/2, ... on coarse

meshes until asymptotic convergence rate is observed → αT , βT

3 Round-off error prediction: use lookup table from previous
simulations or use manufactured solution that can be resolved
exactly by Pp-FEM (possibly using lower precision) → αR , βR

4 Effective error prediction: compute Nopt and Emin

Output: Nopt and Emin. If the estimated error satisfies the required
tolerance compute uopt otherwise repeat procedure with
p ∶= p + 1 or switch to mixed FEM formulation
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Model problem #2

Helmholtz equation:

((0.01 + x)(1.01 − x)ux)x − (0.01i)u(x) = 1.0 in (0,1)
u(0) = 0

ux(1) = 0
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Is this of practical relevance?
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problem #1 with Ω = (0,1)

Yes ...

● since high-order methods can
improve the ’effective’ accuracy of
solutions by orders of magnitudes

● since h-refinement is only effective
in a small range of refinements for
(very) high-order methods and
should therefore be used with care

● since the same phenomenon is
observed already for moderately
refined meshes in 2d (and 3d)
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Part 2: Solver efficiency
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Efficient solvers for IGA discretizations

h-multigrid methods enhanced with

● boundary corrected mass-Richardson smoother [Hofreither 2017]

● hybrid smoother [Sogn 2018]

● multiplicative Schwarz smoother [de la Riva 2018]

● ...

Preconditioners based on

● Schwarz methods [Beirão da Veiga 2012]

● Sylvester equation [Sangalli 2016]

● BPX for (T)HB [Bracco et al. 2019]

● ...
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Basics of multigrid methods [Strang 2006]

Repeat until converged ufine is reached

1 Iterate on Afineufine = ffine to reach ũfine

2 Restrict the residual rfine ∶= ffine −Afine ũfine to the coarse level by
applying the restriction operator, i.e. rcoarse = Icoarse

fine rfine

3 Solve for the coarse level correction AcoarseEcoarse = rcoarse

4 Prolongate Ecoarse back to the fine level by Efine = Ifine
coarseEcoarse

5 Add the correction, i.e. ûfine ∶= ũfine + Efine

6 Iterate on Afine ûfine = ffine to reach ufine

Step 3 calls the multigrid procedure recursively until a coarse level is
reached, where the error equation can be solved ’exactly’.
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Motivation for using p-multigrid methods

The linear system Ah,puh,p = fh,p

● becomes more difficult to solve for increasing p

● reduces to C 0-FEM for p = 1 (where h-multigrid works fine)

In contrast to h-multigrid methods

● the #DoFs does not reduce significantly on coarser p-levels

● the stencil reduces significantly on coarse p-levels

● the spaces are not nested, i.e. (Sp−1
h,p /⊃ Sp−2

h,p−1 /⊃ . . . )
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V-cycle p-multigrid variants

p = 3 h = 2−5

p = 2 h = 2−5

p = 1 h = 2−5

p = 1 h = 2−4

p = 1 h = 2−3

⎫⎪⎪⎬⎪⎪⎭
p-multigrid

⎫⎪⎪⎬⎪⎪⎭
h-multigrid

⎧⎪⎪⎨⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩

Sp−1
p -IGA

P1-FEM

indirect projection direct projection

● ILUT or GS smoothing is applied at each level (●)

● LU decomposition is applied as direct coarse level solver
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Prolongation and restriction

Prolongation in h

I h,1
2h,1 is linear interpolation

Restriction in h

I2h,1
h,1 = 1

2 (I h,1
2h,1)

⊺

Prolongation in p

Ih,p
h,p−1 ∶= (Mp

p)−1Mp
p−1

Restriction in p

Ih,p−1
h,p ∶= (Mp−1

p−1)−1Mp−1
p

Let φq
i denote the i th basis function from Sq−1

h,q . Then define

(Mr
q)(i ,j) ∶= ∫

Ω̂h

φq
i (ξ) φ

r
j (ξ) c(ξ) dΩ̂

Replace Mq
q by its row-sum lumped counterpart (→ diagonal matrix)
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ILUT smoother [Saad 1994]

Setup: Incomplete LU factorization of Ah,p ≈ Lh,pUh,p thereby

1 dropping all elements lower than tolerance τ = 10−13

2 keeping only the N (= average number of non-zero entries
in each row of Ah,p) largest elements in each row

Application: perform s = 1, . . . , ν smoothing steps

e
(s)
h,p = (Lh,pUh,p)−1(fh,p −Ah,pu

(s)
h,p)

u
(s+1)
h,p = u

(s)
h,p + e

(s)
h,p
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Model problem #1, revisited

Obtaining coarse level operators

● Galerkin projection AG
h,p−1 = I

h,p−1
h,p Ah,p Ih,p

h,p−1

● re-discretization of Ah,p on each level

Poisson equation on quarter annulus with radii 1 and 2, g = 0, ΓN = ∅,
f such that u(x , y) = −(x2 + y2 − 1)(x2 + y2 − 4)xy2

p = 2 κ(AG
h,1) κ(ARD

h,1 ) p = 3 κ(AG
h,2) κ(ARD

h,2 )
h = 2−4 6.00 ⋅ 107 9.78 ⋅ 102 h = 2−4 7.00 ⋅ 109 1.56 ⋅ 103

h = 2−5 4.79 ⋅ 109 4.19 ⋅ 103 h = 2−5 6.15 ⋅ 1010 6.71 ⋅ 103

h = 2−6 2.94 ⋅ 1010 1.76 ⋅ 104 h = 2−6 4.99 ⋅ 1011 2.84 ⋅ 104

h = 2−7 5.48 ⋅ 1010 7.28 ⋅ 104 h = 2−7 7.58 ⋅ 1012 1.18 ⋅ 105
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V-cycle p-multigrid variants, revisited

p = 3 h = 2−5

p = 2 h = 2−5

p = 1 h = 2−5

p = 1 h = 2−4

p = 1 h = 2−3
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⎧⎪⎪⎨⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩

Sp−1
p -IGA

P1-FEM

indirect projection direct projection

● Setup: Assembly of Ah,p, Ih,p−1
h,p , Ih,p

h,p−1 each O(Ndofp
3d) flops

ILUT factorization of Ah,p O(Ndofp
2d) flops

Gauss-Seidel ’setup’ O(Ndof ) flops

● V-cycle: Application of smoother, rest/prol each O(Ndofp
d ) flops

● Numerical tests show same V-cycle counts for both variants
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The final V-cycle p-multigrid variant
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● ILUT (p > 1) / GS smoothing (p = 1) is applied at each level (●)

● LU decomposition is applied as direct coarse level solver
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Model problem #1: V-cycle counts

V-cycle p-multigrid as a solver

p = 2 p = 3 p = 4 p = 5
ILUT⋆ GS ILUT⋆ GS ILUT⋆ GS ILUT⋆ GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 60 3 163 3 473
h = 2−9 5 32 3 61 3 163 3 452

V-cycle h-multigrid shows similar convergence behavior

⋆ILUT (p > 1), GS (p = 1)
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Model problem #1: V-cycle counts

V-cycle p-multigrid as preconditioner in BiCGStab

p = 2 p = 3 p = 4 p = 5
ILUT⋆ GS ILUT⋆ GS ILUT⋆ GS ILUT⋆ GS

h = 2−6 2 13 2 18 2 41 2 78
h = 2−7 2 12 2 20 2 41 2 92
h = 2−8 3 13 2 19 2 43 2 95
h = 2−9 3 13 2 21 2 41 2 95

V-cycle h-multigrid shows similar convergence behavior

⋆ILUT (p > 1), GS (p = 1)
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Model problem #1: CPU times for h = 2−6
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Model problem #1: CPU times for h = 2−7
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Model problem #1: CPU times for h = 2−8
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Model problem #1: CPU times for h = 2−9
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Model problem #3

Convection-diffusion-reaction equation in Ω = (0,1)2

−∇ ⋅ ([ 1.2 −0.7
−0.4 0.9

]∇u) + [ 0.4
−0.2

] ⋅ ∇u + 0.3u = f in Ω

u = 0 on Γ

with f such that u(x , y) = sin(πx) sin(πy)
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Model problem #3: V-cycle counts

V-cycle p-multigrid as a solver

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 5 − 3 − 3 − 4 −
h = 2−7 5 − 3 − 4 − 4 −
h = 2−8 5 − 3 − 3 − 4 −
h = 2−9 5 − 4 − 3 − 4 −

V-cycle h-multigrid shows similar convergence behavior
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Model problem #3: V-cycle counts

V-cycle p-multigrid as preconditioner in BiCGStab

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 2 7 2 13 2 29 2 65
h = 2−7 2 8 2 13 2 29 2 70
h = 2−8 2 7 2 12 2 29 2 64
h = 2−9 2 7 2 14 2 28 2 72

V-cycle h-multigrid shows similar convergence behavior
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Conclusion and outlook

1 a-posteriori hp-adaptation strategy to find (h,p) pair that
ensures computable approximations with prescribed accuracy

● integration as fully automated procedure in simulation code
● further analysis of influence factors, i.e. iterative solvers
● use of number formats that are less sensitive to round-off errors

2 p-multigrid method with ILUT smoother as efficient solver

● application to biharmonic equation and within NSE solver
● extension to block-ILUT smoother for multi-patch IGA
● optimization of assembly procedure in G+Smo

High-order methods, are they a curse or a blessing? ... a challenge!

Thank you very much!
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