What is Hardware-Oriented Numerics?
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Overview

@ From Numerical Analysis to Hardware-Oriented Numerics

@® HWON example: mixed-precision methods

© HWON application: simulation of flow problems
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Numerical Analysis: Past, Present, and Future(?)

Given a problem p € P:
@ Find a method m € M that solves problem p

® Find an algorithm a € A that realizes method m

Qol: errors, rate of convergence, FLOP, stability, monotonicity, . ..
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Given a problem p € P:
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Numerical Analysis: Past, Present, and Future(?)

Given a problem peP: (I)BVP

@ Find a method m € M that solves problem p
continuous Galerkin P{-FEM

® Find an algorithm a € A that realizes method m
matrix-free Krylov solver with element-wise Gaussian quadrature

Qol: errors, rate of convergence, FLOP, stability, monotonicity, . ..

Given a hardware h € H:

® Find an implementation i € Z that realizes algorithm a
OpenMP parallelized SHMEM C++ code using Eigen library

Qol: FLOPS, memory bandwidth, parallel speed-up, ...
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Proposition 1

The only quality measure of a numerical algorithm and its imple-
mentation that matters in practical applications is the wall-clock
time (and possibly the amount of memory) required to solve a
problem p € P to a prescribed accuracy on a concrete hardware.
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Hardware in practice: your laptop/desktop computer
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Hardware in practice: your laptop/desktop computer

|core0 ”corel " core? " core3|

e multi-core CPU

o parallel algorithms
o vectorized algorithms

| System Bus
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Hardware in practice: your laptop/desktop computer

|core0 ”corel " core? " core3|

e multi-core CPU | L1 ” L1 " L1 " L1 |
o parallel algorithms
o vectorized algorithms | L2 " L2
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Hardware in practice: your laptop/desktop computer

|core0 ”corel " core? " core3|

e multi-core CPU | L1 ” L1 " L1 " L1 |
o parallel algorithms
e vectorized algorithms | L2 | L2
e memory hierarchy I I
e cache-oblivious algorithms | System Bus |
e latency hiding algorithms I I
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Hardware in practice: DIAM cluster

e multi-core CPU core0][core1][core2][core3 core0][core1][core2][core3
e vectorized algorithms C T T C T T
. T T T T
e memory hierarchy [ Seenbe e — SeenBe ]
e cache-oblivious algorithms NI NEIEE
e latency hiding algorithms R SRR
s 2 B = z o
e many-core accelerators °
o algorithms for heterogeneous Moo
architectures (off-loading)
e network-connected devices
o distributed algorithms for even T T T T
[ System Bus — System Bus ]

more heterogeneous systems
e asynchronous algorithms
o fault-tolerant algorithms
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Hardware in practice: DIAM cluster
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Hardware in practice: Top500 from November 2016

Name Specs Cores
1 | Sunway TL | Shenwei 260C 1.45 GHz 10,649,600
2 | Tianhe-2 Intel 12C 2.2GHz + Xeon Phi 1.1 GHz | 3,120,000
3 | Titan Opteron 16C 2.2GHz + NVIDIA GPU 560,640
4 | Sequoia IBM BlueGene/Q Power 16C 1.6GHz 1,572,864
5 | Cori Intel 16C 2.3GHz + Xeon Phi 1.4 GHz 622,336
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Hardware in practice: Top500 from November 2016

Name Specs Cores
1 | Sunway TL | Shenwei 260C 1.45 GHz 10,649,600
2 | Tianhe-2 Intel 12C 2.2GHz + Xeon Phi 1.1 GHz | 3,120,000
3 | Titan Opteron 16C 2.2GHz + NVIDIA GPU 560,640
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Strategies to deal with ongoing hardware trend

e Just ignore it; it will pass!
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Strategies to deal with ongoing hardware trend

e Just ignore it; it will pass! No, it will not because it's physics
that keeps us from simply increasing single core performance.

40 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
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Strategies to deal with ongoing hardware trend

e Just ignore it; it will pass! No, it will not because it's physics
that keeps us from simply increasing single core performance.

e Then let’'s cheat physics!
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that keeps us from simply increasing single core performance.
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Strategies to deal with ongoing hardware trend
e Just ignore it; it will pass! No, it will not because it's physics
that keeps us from simply increasing single core performance.

e Then let’s cheat physics! Better not, the costs are prohibitive
and there will be an end to this strategy, again set by physics.

o Trust in the power of compilers/tools to auto-magically
parallelize /vectorize/distribute/make it fault-tolerant/...
your algorithm!
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Strategies to deal with ongoing hardware trend
e Just ignore it; it will pass! No, it will not because it's physics
that keeps us from simply increasing single core performance.

e Then let’s cheat physics! Better not, the costs are prohibitive
and there will be an end to this strategy, again set by physics.

o Trust in the power of compilers/tools to auto-magically
parallelize /vectorize/distribute/make it fault-tolerant/...
your algorithm! Good luck, and thanks for the fish.
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Proposition 2

It's time (since 2005) for a radical paradigm shift: Hardware
trends must be incorporated into the design and analysis of nu-
merical methods and algorithms, and their implementations.
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Hardware-Oriented Numerics

State of the art

Given a problem p € P and a target hardware h € H:

® Find best combination (m, a, i), € M x A xZ that solves problem
p on hardware h in shortest time with prescribed accuracy
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Hardware-Oriented Numerics

State of the art

Given a problem p € P and a set of target hardware {hy, hp,...} c H:

® Find best combinations (m, a, i), p, € M x A x T that solve
problem p on hardware hy in shortest time with prescribed accuracy

Next step

® Develop a strategy that automatically inspects the available
hardware and chooses the best combinations (m, a, i)p. s,
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Hardware-Oriented Numerics

State of the art

Given a problem p € P and a set of target hardware {hy, hp,...} c H:

® Find best combinations (m, a, i), p, € M x A x T that solve
problem p on hardware hy in shortest time with prescribed accuracy

Next step

® Develop a strategy that automatically inspects the available
hardware and chooses the best combinations (m, a, i)p. s,

Future vision

© Automatically determine and schedule best combinations
(m,a,i)p;n € Mx AxT for multi-physics problems
{p1,p2,...} ¢ P and target hardware {hy, hp,...} cH
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HWON, is it really that new?

Iterative refinement

For m=1 repeat e Wilkinson 1948: code for the

Automatic Computing Engine

©® Compute residual to solve linear system Ax = b

rm=b— Axm
® Solve system
Adm=rm
©® Add correction
Xm+l = Xm + dm

until convergence
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HWON, is it really that new?

Iterative refinement

For m=1 repeat e Wilkinson 1948: code for the

Automatic Computing Engine

©® Compute high-prec residual to solve linear system Ax = b

rhp — php _ phpyhp Mixed-precision variant
e Wilkinson 1963/Moler 1967:

Solve low-prec system .
o P Y error + convergence analysis

AP = LP(rfP)
©® Add high-prec correction

X = xPP + HP(d%)

until convergence
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error 4+ convergence analysis

e Anderson et al. 1995: driver
for the LAPACK benchmark
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HWON, is it really that new?

Iterative refinement

For m=1,... repeat

@ Compute high-prec residual
rrfrzp = php _ Ahpx,’,’,”

® Solve low-prec system
AP = LP(rfP)

® Add high-prec correction

h h l/
x P =xP +HP(d}F)

until convergence
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Wilkinson 1948: code for the
Automatic Computing Engine
to solve linear system Ax = b
Mixed-precision variant

Wilkinson 1963 /Moler 1967:
error 4+ convergence analysis

Anderson et al. 1995: driver
for the LAPACK benchmark

Goddeke et al. 2007: speed-up
double-precision on GPUs

NVIDIA SC15: Mixed-precision
arithmetic on Pascal GPUs



Mixed-precision methods

Iterative refinement

For m=1,... repeat 1d Poisson problem with 40

© Compute residual unknowns and Jacobi 'solver’

—(di -1
= b A, dm = (diagA) " rm

® Solve system

Al = G

[Iresl
3

©® Add correction

10710

X, =Xm + d == double-precision
m+1 (u i == single-precision

10718

0 2000 4000 6000 8000 10000 12000

until convergence terations
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Mixed-precision methods

Iterative refinement

For m=1,... repeat

@ Compute residual
r,‘,’,p = pap _ Adpx,‘,’,”
® Solve system
AP = SP(riP)
©® Add correction
Xty = X+ DP(d}?)

until convergence

1d Poisson problem with 40
unknowns and Jacobi 'solver’

dsP = (diagA®)'SP(rP)

0 2000 4000 6000 8000
#iterations

10000 12000
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Mixed-precision methods

Iterative refinement

For m=1,... repeat 1d Poisson problem with 40

© Compute residual unknowns and Jacobi 'solver’

rdb _ pp _ pdp o d? = (diagA®) 'SP (177)

® Solve system

AP = SP(riP)

©® Add correction

(710 | [ == double-precision
dp d s 5iNgle-precision
_ p sp = mixed-precision
X =xP +DP et
m+1 m dm —— ::::;—‘;:ec\s\an
15
10 0 2000 4000 6000 8000 10000 12000
o #iterations
until convergence
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Mixed-precision methods in practice

Theory: The mixed-precision iterative refinement converges to
high-precision accuracy if matrix A is 'not too ill-conditioned’

#iter ~ f (log(conda(A)), log(€enigh/€low))

z
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Mixed-precision methods in practice

Theory: The mixed-precision iterative refinement converges to
high-precision accuracy if matrix A is 'not too ill-conditioned’

#iter ~ f(log(conda(A)), log(€nigh/€low))

Application: preconditioned mixed-precision defect correction iteration

d d ~1/pdp _ pdpd
xph = x5+ (CP)~H (b — A%PxP)

with single-precision preconditioner C°P. This strategy can be applied
recursively, e.g., if the hardware supports multiple precisions efficiently.
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Mixed-precision methods on GPUs

NVIDIA Tesla P100

Memory 12GB

DP perf. | 5.3 TeraFLOPS

SP perf. | 10.6 TeraFLOPS

HP perf. | 21.2 TeraFLOPS

If you only store the preconditioner
C as matrix and realize the multi-
plication with A as on-the-fly oper-
ation the maximum number of non-
zero entries you can store is

o ~2.1€% in double precision

o ~4.3¢% in single precision

o ~8.9¢% in half precision
Solution/preconditioning step is

e ~ 2x faster in single precision

e ~ 4x faster in half precision

compared to double precision

i3
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Mixed-precision methods on FPGAs

Field Programmable Gate Array ~ Within the limits of the hardware you
can define your own (non-IEEE 754)
representation of numbers

aaaaaaaa
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¢ Floating-point number
:I:O.d1d2 e dn . ﬁe

e Fixed-point number Qm.n
n+m+1, i.e. signed integer
with n fractional bits
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Mixed-precision methods on FPGAs

Field Programmable Gate Array ~ Within the limits of the hardware you
can define your own (non-IEEE 754)
representation of numbers
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Ongoing Honours project by Dennis Pouw:
Smart software technologies for enabling next-generation HWON
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Mixed-precision methods on FPGAs

Field Programmable Gate Array ~ Within the limits of the hardware you
can define your own (non-IEEE 754)
representation of numbers

mmmmmmmm

PROGRAMMABLE
INTERCONNECT

110 BLOCKS.

i ¢ Floating-point number

5252353 i :I:O.dldz...dn~ﬁe

e Fixed-point number Qm.n
n+m+1, i.e. signed integer
with n fractional bits

LOGIC BLOCKS.

Ongoing Honours project by Dennis Pouw:
Smart software technologies for enabling next-generation HWON

Topic for Bachelor project:
Mixed-precision iterative refinement on reconfigurable hardware
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HWON: Not just for nerds anymore

#include <vector>
#include <vexcl/vexcl.hpp>
vex :: Context ctx( vex:: Filter:: DoublePrecision );

typedef double high;
typedef float low;

// Double—precision matrix in CSR format and dense vectors
std ::vector<int> row = { 0, 1, 4, 7, 10, 11 };

// Single—precision preconditioner
std :: vector<low> fdata = { 1.0, 2.0, 2.0, 2.0, 1.0 };
vex ::vector<low> C(ctx, fdata);

// Mixed—precision iterative refinement
for (int iter=0; iter <10; iter++ )
x += (b—-Axx)/C;

std :: vector<int> col = { 0,
0o, 1, 2,
1, 2, 3,
2, 3, 4,
4 3}

std :: vector<high> ddata = { 1.0,

-1.0, 2.0, -1.0,

-1.0, 2.0, -1.0,
~1.0, 2.0, -1.0,
1.0 };

vex ::sparse ::csr<high> A(ctx, row.size(), col.size(), row, col, ddata);
vex :: vector<high> b(ctx, row.size()), x(ctx, row.size()); b

= iz x =




My research interest

High-resolution methods for flow problems on HPC architectures
e Convection-diffusion problems

e Compressible flow problems

o
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Variational formulation

Divergence form of a first-order problem

Oru+V-f(u)=0

3
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Variational formulation

Divergence form of a first-order problem

Oru+V-f(u)=0

Galerkin ansatz ("find solution u s.t. for all w")
fgzw&tu—Vw-f(u)dQ+/rwn-fb(u)ds=0

with boundary fluxes f2. Here you can impose boundary conditions

z
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Spatial discretization

Fletcher’s group formulation?
up =Y pa(x)ua(t), fn=2 pa(x)fa(t), fa=F(ua)
A A

Semi-discrete problem
M+ Cf +Sf° =0

with constant coefficient matrices

M = [fﬂ YAPB dﬂ] C= [—fQVsoAQOB dﬂ] S= [frwAsOBndS]

They can be assembled and stored during pre-processing step

'C.A.J. Fletcher, CMAME 37 (1983) 225-244.
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Spatial discretization

Fletcher’s group formulation?
up = pa(x)ua(t), frn=> wa(x)fa(t), fa=Ff(ua)
A A

Semi-discrete problem
M+ Cf+Sf> =0

Read the above as sequence of SpMV-operations

dim dim
Cf=> Cyfy, SF°= Sufy
d=1 d=1

'C.A.J. Fletcher, CMAME 37 (1983) 225-244.
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Fully discrete problem

Abstract formulation of semi-discrete problem

M+ N(u) =0

7
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Fully discrete problem

Abstract formulation of semi-discrete problem
Mua+ N(u) =0
Discretization in time by explicit SSP Runge-Kutta method, e.g.
Mu™® = Mu™ - AtN(u")

Mu"*t = %Mu” + %Mu(l) - %AtN(u(l))
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Fully discrete problem

Abstract formulation of semi-discrete problem
Mua+ N(u) =0
Discretization in time by explicit SSP Runge-Kutta method, e.g.
Mu™® = Mu™ - AtN(u")

Mu"*t = %Mu" + %Mu(l) - %AtN(u(l))

Finishing touches
e Stabilization of divergence term by algebraic flux correction

o Efficient implementation by smart-and-fast expression templates
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What is a good choice of basis functions in the spirit of HWON?
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What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)
» High-order FEM? greater FLOP /byte ratio (+)

e Structured grids? overset grids for complex geometries (7)
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What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)

High-order FEM? greater FLOP /byte ratio (+)

Structured grids? overset grids for complex geometries (?)

Unstructured grids? flexible (+), high-order grid
generation open problem (-), indirect addressing (-)

z
TUDelft 21/ 32



What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)
» High-order FEM? greater FLOP /byte ratio (+)

e Structured grids? overset grids for complex geometries (7)

¢ Unstructured grids? flexible (+), high-order grid
generation open problem (-), indirect addressing (-)

 Discontinuous Galerkin? well-established in HPC (+),
unstructured grids (7), excessive duplication of DOFs (-)
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What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)
» High-order FEM? greater FLOP /byte ratio (+)

e Structured grids? overset grids for complex geometries (7)

¢ Unstructured grids? flexible (+), high-order grid
generation open problem (-), indirect addressing (-)

 Discontinuous Galerkin? well-established in HPC (+),
unstructured grids (7), excessive duplication of DOFs (-)

e Continuous Galerkin? unconventional in hyperbolic flows
(?), less DOFs (+), stabilization more problematic (-)
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The big picture

o Combine unstructured multi-block coarse grid ('patches’) with

o topologically structured fine grid within each patch;
¢ locally refined fine grid where required for accuracy

e Apply Isogeometric Analysis approach on each patch
e Couple multiple patches by DG- or Nitsche-type approach
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The big picture

» Combine unstructured multi-block coarse grid ('patches’) with

¢ topologically structured fine grid within each patch;
¢ locally refined fine grid where required for accuracy

e Apply Isogeometric Analysis approach on each patch
e Couple multiple patches by DG- or Nitsche-type approach

HWON considerations:
* associate patches with devices (DG to reduce communication)
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The big picture

» Combine unstructured multi-block coarse grid ('patches’) with

¢ topologically structured fine grid within each patch;
¢ locally refined fine grid where required for accuracy

e Apply Isogeometric Analysis approach on each patch

e Couple multiple patches by DG- or Nitsche-type approach
HWON considerations:

* associate patches with devices (DG to reduce communication)

e if a patch becomes computationally too expensive then split it up
into multiple patches (intrinsically supported by IgA via successive
continuity reduction) and reschedule new patches to (more) devices

5
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Polynomial spaces

Definition

The space of polynomials of degree p over the interval [a, b] is

MP([a, b]) :={q(x) eC=([a,b]) : q(x) = éc,-x",c; eR}

Example: N%([0,1])
e Canonical basis
B={1,x,x*}

e Polynomials
q(x) = co + c1x + x>

z
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Spline space

Let P = {a=xi <--- < Xps1 = b} be a partition of the interval

Qp and M = {1 < m; < p+1} a set of positive integers. The
polynomial spline of degree p is defined as s : Qo —~ R if

S|[X,',X,'+1] € np([xi7xi+1])7 I = 1,...,k

d d i=2
@Si—l(xi) = wsi(Xi), j=0

Lk,
yeees P M

Polynomial splines of degree p form the spline space S(Qo, p, M, P).

%
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Knot vectors

A knot vector is a sequence of non-decreasing values &; € [a, b] c R
in the parameter space Qg = [a, b]

== (€1a£2a s 7§I7+P+1)

where
e pis the polynomial order of the B-splines
e n is the number of B-spline functions
e & is the i-th knot with knot index i

\ J

Knots &; can have multiplicity 1 < m; < p+1. The knot vector is called
open if the first and last knot have multiplicity p + 1.

5
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B-spline basis functions

Cox-de Boor recursion formula

1 if&<E<8in
0 otherwise

- -0 |
Nio(§) = {
— 3

§-&i

€i+p+1 - §
Eivp—&i

Eivpr1 — Gin1

Nip(€) = Nip-1(€) + Nii1,p-1(§)

z
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B-spline basis functions

0.6 - a

0.4+ 8

0.2} .

0

0 0.5 1 1.5 2 2.5 3
Linear basis functions corresponding to = ={0,0,0,1,2,3,3,3}
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B-spline basis functions

0.6 - a

0.4+ 8

0.2} .

0

0 0.5 1 1.5 2 2.5 3
Quadratic basis functions corresponding to = ={0,0,0,1,2,3,3,3}
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Properties of B-spline basis functions

Compact support

supp Nip(§) = [&i,&ivps1), i=1,...,n

Strict positiveness

Ni,p(£)>0 forge(€ia€i+p+l)7 i:]-?"'an

Partition of unity

zn: Nip(§) =1 forall £€a,b]
i-1

7
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Spline curves

Geometric mapping G: Qg — Q, ~ Q

n
G(¢) = Z Ni »(€)B; set of control points B; e RY,d > 1
i1

3
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Spline surfaces

Geometric mapping G: Qg — Qp ~ Q

n m
G(&,1) =Y S Nip(€)Njg(n)Bij  BjjeRY d>2
i=1j=1
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Spline surfaces

Geometric mapping G: Qg — Q) ~ Q
G(§) =) ¥a(£)Ba
A

Ba ¢ R d > 2, multi-index A

Ao
e
oS
Jessiasiess

5
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Marriage of geometry and discretization

Geometric mapping

G(¢) = Z@A(E)BA 'push-forward’ G : Qp — Qj,
A

Ansatz space

Vi =span{pa(x) =@ao G '(x)}  'pull-back’ G™: Qp > Qo

1
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Application: Convection-diffusion equation

Convection skew to the mesh

AFC

Quadratic bi-variate B-spline basis functions.
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Application: Convection-diffusion equation

Convection skew to the mesh

o

Quadratic bi-variate B-spline basis functions.
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Application: PDEs on evolving manifolds

Human brain development (MSc project by J. Hinz)

There is much more to investigate in a master project if you are interested.
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