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Overview

1 From Numerical Analysis to Hardware-Oriented Numerics

2 HWON example: mixed-precision methods

3 HWON application: simulation of flow problems
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Numerical Analysis: Past, Present, and Future(?)

Given a problem p ∈ P:

(I)BVP

1 Find a method m ∈ M that solves problem p

continuous Galerkin P1-FEM

2 Find an algorithm a ∈ A that realizes method m

matrix-free Krylov solver with element-wise Gaussian quadrature

QoI: errors, rate of convergence, FLOP, stability, monotonicity, . . .

Given a hardware h ∈ H:

3 Find an implementation i ∈ I that realizes algorithm a

OpenMP parallelized SHMEM C++ code using Eigen library

QoI: FLOPS, memory bandwidth, parallel speed-up, . . .
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Proposition 1

The only quality measure of a numerical algorithm and its imple-
mentation that matters in practical applications is the wall-clock
time (and possibly the amount of memory) required to solve a
problem p ∈ P to a prescribed accuracy on a concrete hardware.
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Hardware in practice: your laptop/desktop computer

• multi-core CPU
• parallel algorithms
• vectorized algorithms

• memory hierarchy
• cache-oblivious algorithms
• latency hiding algorithms

• many-core accelerator (GPU)
• algorithms for heterogeneous

architectures (off-loading)
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Hardware in practice: DIAM cluster

• multi-core CPU
• parallel algorithms
• vectorized algorithms

• memory hierarchy
• cache-oblivious algorithms
• latency hiding algorithms

• many-core accelerators
• algorithms for heterogeneous

architectures (off-loading)

• network-connected devices
• distributed algorithms for even

more heterogeneous systems
• asynchronous algorithms
• fault-tolerant algorithms

Network
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Hardware in practice: Top500 from November 2016

Name Specs Cores

1 Sunway TL Shenwei 260C 1.45 GHz 10,649,600

2 Tianhe-2 Intel 12C 2.2GHz + Xeon Phi 1.1 GHz 3,120,000

3 Titan Opteron 16C 2.2GHz + NVIDIA GPU 560,640

4 Sequoia IBM BlueGene/Q Power 16C 1.6GHz 1,572,864

5 Cori Intel 16C 2.3GHz + Xeon Phi 1.4 GHz 622,336
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Strategies to deal with ongoing hardware trend

• Just ignore it; it will pass!

No, it will not because it’s physics
that keeps us from simply increasing single core performance.

• Then let’s cheat physics!

Better not, the costs are prohibitive
and there will be an end to this strategy, again set by physics.

• Trust in the power of compilers/tools to auto-magically
parallelize/vectorize/distribute/make it fault-tolerant/...
your algorithm!

Good luck, and thanks for the fish.
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Proposition 2

It’s time (since 2005) for a radical paradigm shift: Hardware
trends must be incorporated into the design and analysis of nu-
merical methods and algorithms, and their implementations.

9 / 32



Hardware-Oriented Numerics

State of the art

Given a problem p ∈ P and a target hardware h ∈ H:

1 Find best combination (m, a, i)p,h ∈ M×A× I that solves problem
p on hardware h in shortest time with prescribed accuracy

Next step

2 Develop a strategy that automatically inspects the available
hardware and chooses the best combinations (m, a, i)p,hk

Future vision

3 Automatically determine and schedule best combinations
(m, a, i)pj ,hk ∈ M×A× I for multi-physics problems
{p1,p2, . . .} ⊂ P and target hardware {h1,h2, . . .} ⊂ H
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HWON, is it really that new?

Iterative refinement

For m = 1, . . . repeat

1 Compute residual

rm = b −Axm

2 Solve system

Adm = rm

3 Add correction

xm+1 = xm + dm

until convergence

• Wilkinson 1948: code for the
Automatic Computing Engine
to solve linear system Ax = b

Mixed-precision variant

• Wilkinson 1963/Moler 1967:
error + convergence analysis

• Anderson et al. 1995: driver
for the LAPACK benchmark

• Göddeke et al. 2007: speed-up
double-precision on GPUs

• NVIDIA SC15: Mixed-precision
arithmetic on Pascal GPUs
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Mixed-precision methods

Iterative refinement

For m = 1, . . . repeat

1 Compute residual

rm = b −Axm

2 Solve system

Adm = rm

3 Add correction

xm+1 = xm + dm

until convergence

1d Poisson problem with 40
unknowns and Jacobi ’solver’

dm = (diagA)
−1rm
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Mixed-precision methods in practice

Theory: The mixed-precision iterative refinement converges to
high-precision accuracy if matrix A is ’not too ill-conditioned’

#iter ≈ f (log(cond2(A)), log(εhigh/εlow))

Application: preconditioned mixed-precision defect correction iteration

xdpm+1 = xdpm + (C sp
)
−1

(bdp −Adpxdpm )

with single-precision preconditioner C sp. This strategy can be applied
recursively, e.g., if the hardware supports multiple precisions efficiently.

13 / 32



Mixed-precision methods in practice

Theory: The mixed-precision iterative refinement converges to
high-precision accuracy if matrix A is ’not too ill-conditioned’

#iter ≈ f (log(cond2(A)), log(εhigh/εlow))

Application: preconditioned mixed-precision defect correction iteration

xdpm+1 = xdpm + (C sp
)
−1

(bdp −Adpxdpm )

with single-precision preconditioner C sp. This strategy can be applied
recursively, e.g., if the hardware supports multiple precisions efficiently.

13 / 32



Mixed-precision methods on GPUs

NVIDIA Tesla P100

Memory 12GB

DP perf. 5.3 TeraFLOPS

SP perf. 10.6 TeraFLOPS

HP perf. 21.2 TeraFLOPS

If you only store the preconditioner
C as matrix and realize the multi-
plication with A as on-the-fly oper-
ation the maximum number of non-
zero entries you can store is

• ≈ 2.1e9 in double precision

• ≈ 4.3e9 in single precision

• ≈ 8.9e9 in half precision

Solution/preconditioning step is

• ≈ 2× faster in single precision

• ≈ 4× faster in half precision

compared to double precision
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Mixed-precision methods on FPGAs

Field Programmable Gate Array Within the limits of the hardware you
can define your own (non-IEEE 754)
representation of numbers

• Floating-point number
±0.d1d2 . . .dn ⋅ β

e

• Fixed-point number Qm.n
n +m + 1, i.e. signed integer
with n fractional bits

Ongoing Honours project by Dennis Pouw:
Smart software technologies for enabling next-generation HWON

Topic for Bachelor project:
Mixed-precision iterative refinement on reconfigurable hardware
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HWON: Not just for nerds anymore

#i n c l u d e <v e c t o r>
#i n c l u d e <v e x c l / v e x c l . hpp>
vex : : Context c t x ( vex : : F i l t e r : : D o u b l e P r e c i s i o n ) ;

t y p e d e f d o u b l e h i g h ;
t y p e d e f f l o a t low ;

// Double−p r e c i s i o n m a t r i x i n CSR format and dense v e c t o r s
s t d : : v e c t o r<i n t> row = { 0 , 1 , 4 , 7 , 10 , 11 } ;
s t d : : v e c t o r<i n t> c o l = { 0 ,

0 , 1 , 2 ,
1 , 2 , 3 ,

2 , 3 , 4 ,
4 } ;

s t d : : v e c t o r<high> ddata = { 1 . 0 ,
−1.0 , 2 . 0 , −1.0 ,

−1.0 , 2 . 0 , −1.0 ,
−1.0 , 2 . 0 , −1.0 ,

1 . 0 } ;
vex : : s p a r s e : : c s r<high> A( ctx , row . s i z e ( ) , c o l . s i z e ( ) , row , c o l , ddata ) ;
vex : : v e c t o r<high> b ( ctx , row . s i z e ( ) ) , x ( ctx , row . s i z e ( ) ) ; b = 1 ; x = 0 ;

// S i n g l e −p r e c i s i o n p r e c o n d i t i o n e r
s t d : : v e c t o r<low> f d a t a = { 1 . 0 , 2 . 0 , 2 . 0 , 2 . 0 , 1 . 0 } ;
vex : : v e c t o r<low> C( ctx , f d a t a ) ;

// Mixed−p r e c i s i o n i t e r a t i v e r e f i n e m e n t
f o r ( i n t i t e r =0; i t e r <10; i t e r++ )

x += ( b−A∗x )/C ;

16 / 32



My research interest

High-resolution methods for flow problems on HPC architectures

• Convection-diffusion problems

• Compressible flow problems
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Variational formulation

Divergence form of a first-order problem

∂tu +∇ ⋅ f(u) = 0

Galerkin ansatz (”find solution u s.t. for all w”)

∫
Ω
w∂tu −∇w ⋅ f(u)dΩ + ∫

Γ
wn ⋅ fb(u)ds = 0

with boundary fluxes fb. Here you can impose boundary conditions

18 / 32



Variational formulation

Divergence form of a first-order problem

∂tu +∇ ⋅ f(u) = 0

Galerkin ansatz (”find solution u s.t. for all w”)

∫
Ω
w∂tu −∇w ⋅ f(u)dΩ + ∫

Γ
wn ⋅ fb(u)ds = 0

with boundary fluxes fb. Here you can impose boundary conditions

18 / 32



Spatial discretization

Fletcher’s group formulation1

uh = ∑
A

ϕA(x)uA(t), fh = ∑
A

ϕA(x)fA(t), fA = f(uA)

Semi-discrete problem

Mu̇ +Cf + Sfb = 0

with constant coefficient matrices

M = [∫
Ω
ϕAϕB dΩ] C = [−∫

Ω
∇ϕAϕB dΩ] S = [∫

Γ
ϕAϕBnds]

They can be assembled and stored during pre-processing step

1C.A.J. Fletcher, CMAME 37 (1983) 225–244.
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b
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Fully discrete problem

Abstract formulation of semi-discrete problem

Mu̇ +N(u) = 0

Discretization in time by explicit SSP Runge-Kutta method, e.g.

Mu(1)
=Mun −∆tN(un)

Mun+1
=

1

2
Mun +

1

2
Mu(1)

−
1

2
∆tN(u(1)

)

Finishing touches

• Stabilization of divergence term by algebraic flux correction

• Efficient implementation by smart-and-fast expression templates

20 / 32



Fully discrete problem

Abstract formulation of semi-discrete problem

Mu̇ +N(u) = 0

Discretization in time by explicit SSP Runge-Kutta method, e.g.

Mu(1)
=Mun −∆tN(un)

Mun+1
=

1

2
Mun +

1

2
Mu(1)

−
1

2
∆tN(u(1)

)

Finishing touches

• Stabilization of divergence term by algebraic flux correction

• Efficient implementation by smart-and-fast expression templates

20 / 32



Fully discrete problem

Abstract formulation of semi-discrete problem

Mu̇ +N(u) = 0

Discretization in time by explicit SSP Runge-Kutta method, e.g.

Mu(1)
=Mun −∆tN(un)

Mun+1
=

1

2
Mun +

1

2
Mu(1)

−
1

2
∆tN(u(1)

)

Finishing touches

• Stabilization of divergence term by algebraic flux correction

• Efficient implementation by smart-and-fast expression templates

20 / 32



Question 1

What is a good choice of basis functions in the spirit of HWON?

• Low-order FEM? low FLOP/byte ratio (-)

• High-order FEM? greater FLOP/byte ratio (+)

• Structured grids? overset grids for complex geometries (?)

• Unstructured grids? flexible (+), high-order grid
generation open problem (-), indirect addressing (-)

• Discontinuous Galerkin? well-established in HPC (+),
unstructured grids (?), excessive duplication of DOFs (-)

• Continuous Galerkin? unconventional in hyperbolic flows
(?), less DOFs (+), stabilization more problematic (-)
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The big picture

• Combine unstructured multi-block coarse grid (’patches’) with
• topologically structured fine grid within each patch;
• locally refined fine grid where required for accuracy

• Apply Isogeometric Analysis approach on each patch

• Couple multiple patches by DG- or Nitsche-type approach
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Polynomial spaces

Definition

The space of polynomials of degree p over the interval [a,b] is

Πp
([a,b]) ∶= {q(x) ∈ C∞([a,b]) ∶ q(x) =

p

∑
i=0

cix
i , ci ∈ R}

Example: Π2([0,1])

• Canonical basis
B = {1, x , x2

}

• Polynomials
q(x) = c0 + c1x + c2x

2
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Spline space

Definition

Let P = {a = x1 < ⋅ ⋅ ⋅ < xp+1 = b} be a partition of the interval
Ω0 and M = {1 ≤ mi ≤ p + 1} a set of positive integers. The
polynomial spline of degree p is defined as s ∶ Ω0 ↦ R if

s ∣[xi ,xi+1] ∈ Πp
([xi , xi+1]), i = 1, . . . , k

d j

dx j
si−1(xi) =

d j

dx j
si(xi),

i = 2, . . . , k ,
j = 0, . . . ,p −mi

Polynomial splines of degree p form the spline space S(Ω0,p,M,P).
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Knot vectors

Definition

A knot vector is a sequence of non-decreasing values ξi ∈ [a,b] ⊂ R
in the parameter space Ω0 = [a,b]

Ξ = (ξ1, ξ2, . . . , ξn+p+1)

where

• p is the polynomial order of the B-splines

• n is the number of B-spline functions

• ξi is the i-th knot with knot index i

Knots ξi can have multiplicity 1 ≤ mi ≤ p + 1. The knot vector is called
open if the first and last knot have multiplicity p + 1.
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B-spline basis functions

Cox-de Boor recursion formula

p = 0

Ni ,0(ξ) = {
1 if ξi ≤ ξ < ξi+1

0 otherwise

p > 0

Ni ,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni ,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ)
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B-spline basis functions

0 0.5 1 1.5 2 2.5 3
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Linear basis functions corresponding to Ξ = {0,0,0,1,2,3,3,3}
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B-spline basis functions
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Quadratic basis functions corresponding to Ξ = {0,0,0,1,2,3,3,3}
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Properties of B-spline basis functions

Compact support

supp Ni ,p(ξ) = [ξi , ξi+p+1), i = 1, . . . ,n

Strict positiveness

Ni ,p(ξ) > 0 for ξ ∈ (ξi , ξi+p+1), i = 1, . . . ,n

Partition of unity

n

∑
i=1

Ni ,p(ξ) = 1 for all ξ ∈ [a,b]
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Spline curves

Geometric mapping G ∶ Ω0 ↦ Ωh ≃ Ω

G(ξ) =
n

∑
i=1

Ni ,p(ξ)Bi set of control points Bi ∈ Rd ,d ≥ 1
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Spline surfaces

Geometric mapping G ∶ Ω0 ↦ Ωh ≃ Ω

G(ξ, η) =
n

∑
i=1

m

∑
j=1

Ni ,p(ξ)Nj ,q(η)Bi ,j Bi ,j ∈ Rd ,d ≥ 2
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Spline surfaces

Geometric mapping G ∶ Ω0 ↦ Ωh ≃ Ω

G(ξ) = ∑
A

ϕ̂A(ξ)BA BA ∈ Rd ,d ≥ 2, multi-index A
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Marriage of geometry and discretization

Geometric mapping

G(ξ) = ∑
A

ϕ̂A(ξ)BA ’push-forward’ G ∶ Ω0 ↦ Ωh

Ansatz space

Vh = span{ϕA(x) = ϕ̂A ○G−1
(x)} ’pull-back’ G−1

∶ Ωh ↦ Ω0
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Application: Convection-diffusion equation

Convection skew to the mesh

Quadratic bi-variate B-spline basis functions.
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Application: PDEs on evolving manifolds

Human brain development (MSc project by J. Hinz)

There is much more to investigate in a master project if you are interested.
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