What is Hardware-Oriented Numerics?

Matthias Moller

Numerical Analysis

DIAM lunch colloquium, November 16, 2016

Overview

@ From Numerical Analysis to Hardware-Oriented Numerics

@® HWON example: mixed-precision methods

© HWON application: simulation of flow problems

3
TUDelft

Numerical Analysis: Past, Present, and Future(?)

Given a problem p € P:
@ Find a method m € M that solves problem p

® Find an algorithm a € A that realizes method m

Qol: errors, rate of convergence, FLOP, stability, monotonicity, . ..

5
TUDelft 3/32

Numerical Analysis: Past, Present, and Future(?)

Given a problem p € P:
@ Find a method m € M that solves problem p

® Find an algorithm a € A that realizes method m

Qol: errors, rate of convergence, FLOP, stability, monotonicity, . ..

Given a hardware h € H:

® Find an implementation i € Z that realizes algorithm a

Qol: FLOPS, memory bandwidth, parallel speed-up, ...

5
TUDelft 3/32

Numerical Analysis: Past, Present, and Future(?)

Given a problem peP: (I)BVP

@ Find a method m € M that solves problem p
continuous Galerkin P{-FEM

® Find an algorithm a € A that realizes method m
matrix-free Krylov solver with element-wise Gaussian quadrature

Qol: errors, rate of convergence, FLOP, stability, monotonicity, . ..

Given a hardware h € H:

® Find an implementation i € Z that realizes algorithm a
OpenMP parallelized SHMEM C++ code using Eigen library

Qol: FLOPS, memory bandwidth, parallel speed-up, ...

7
TUDelft 3/32

Proposition 1

The only quality measure of a numerical algorithm and its imple-
mentation that matters in practical applications is the wall-clock
time (and possibly the amount of memory) required to solve a
problem p € P to a prescribed accuracy on a concrete hardware.

2
TUDelft 4/32

Hardware in practice: your laptop/desktop computer

| CPU |

Bus

(p]
<
w0
~+
D
3

<>
<>

Memory
Harddisk

3
TUDelft

Hardware in practice: your laptop/desktop computer

|core0 ”corel " core? " core3|

e multi-core CPU

o parallel algorithms
o vectorized algorithms

| System Bus

1

<>

Memory
Harddisk

3
TUDelft 5/ 32

Hardware in practice: your laptop/desktop computer

|core0 ”corel " core? " core3|

e multi-core CPU | L1 ” L1 " L1 " L1 |
o parallel algorithms
o vectorized algorithms | L2 " L2
® memory hierarchy I I
e cache-oblivious algorithms | System Bus |
e latency hiding algorithms I
5 =
= T

2
TUDelft 5/ 32

Hardware in practice: your laptop/desktop computer

|core0 ”corel " core? " core3|

e multi-core CPU | L1 ” L1 " L1 " L1 |
o parallel algorithms
e vectorized algorithms | L2 | L2
e memory hierarchy I I
e cache-oblivious algorithms | System Bus |
e latency hiding algorithms I I
e many-core accelerator (GPU) _
e algorithms for heterogeneous > 5 4(—'00
architectures (off-loading) 2 3 o
< 5 2
- <

2
TUDelft 5/ 32

Hardware in practice: DIAM cluster

e multi-core CPU core0][core1][core2][core3 core0][core1][core2][core3
e vectorized algorithms C T T C T T
. T T T T
e memory hierarchy [Seenbe e — SeenBe]
e cache-oblivious algorithms NI NEIEE
e latency hiding algorithms R SRR
s 2 B = z o
e many-core accelerators °
o algorithms for heterogeneous Moo
architectures (off-loading)
e network-connected devices
o distributed algorithms for even T T T T
[System Bus — System Bus]

more heterogeneous systems
e asynchronous algorithms
o fault-tolerant algorithms

Memory
Harddisk
GTX 745
Memory
Harddisk

Delft 6 /32

Hardware in practice: DIAM cluster

e multi-core CPU core0][core1][core2][core3 core0][core1][core2][core3
e vectorized algorithms CoT T CoT T
e memory hierarchy | Isym = e — Isym 2]
e cache-oblivious algorithms NI NEIEE
e latency hiding algorithms ell2]]: AR
= E 3 = S o
e many-core accelerators . &
e algorithms for heterogeneous ‘ N ‘
architectures (off-loading)
e network-connected devices
o distributed algorithms for even T T T T
[System Bus — System Bus]

more heterogeneous systems
e asynchronous algorithms
e fault-tolerant algorithms

Memory
Harddisk
GTX 745
Memory
Harddisk

Delft 6 /32

Hardware in practice: Top500 from November 2016

Name Specs Cores
1 | Sunway TL | Shenwei 260C 1.45 GHz 10,649,600
2 | Tianhe-2 Intel 12C 2.2GHz + Xeon Phi 1.1 GHz | 3,120,000
3 | Titan Opteron 16C 2.2GHz + NVIDIA GPU 560,640
4 | Sequoia IBM BlueGene/Q Power 16C 1.6GHz 1,572,864
5 | Cori Intel 16C 2.3GHz + Xeon Phi 1.4 GHz 622,336

3
TUDelft 7/32

Hardware in practice: Top500 from November 2016

Name Specs Cores
1 | Sunway TL | Shenwei 260C 1.45 GHz 10,649,600
2 | Tianhe-2 Intel 12C 2.2GHz + Xeon Phi 1.1 GHz | 3,120,000
3 | Titan Opteron 16C 2.2GHz + NVIDIA GPU 560,640
4 | Sequoia IBM BlueGene/Q Power 16C 1.6GHz 1,572,864
5 | Cori Intel 16C 2.3GHz + Xeon Phi 1.4 GHz 622,336

CHI P TECHNOLOGY ACCELERATORS/CO-PROCESSORS

= I|
= Ill -— AMD,
- 8 || B [L mimi
- III||] T

learspeed CSX600 ——Cell
WOW B K W K W WU WD WU W MWW WM W WM 2006 2007 2008 2008 2010 2011 2002 2013 006 2005 2006

3
TUDelft

Strategies to deal with ongoing hardware trend

e Just ignore it; it will pass!

3
TUDelft

Strategies to deal with ongoing hardware trend

e Just ignore it; it will pass! No, it will not because it's physics
that keeps us from simply increasing single core performance.

40 Years of Microprocessor Trend Data

107 :
P Transistors
ok W a (thousands)
REYS Yo
108 s aada - Single-Thread
A P SN Performance
1ot LA gg8p TS (SpecINT x 10%)
353 :
. . ::::A:Eal!*l“-‘ Frequency (MHz)
° P ;
a ® i“. : v Typical Power
102 A N 2.. e'-,;&'§“¥v ?}_ (Watts)
; v :
. - - oY }i i ‘,:.’.fi | Number of
10 T s ® L * :‘t ¢ Logical Cores
A m v 7 y v vy snoe
100 ; be DR AP SGPPU DO :
1
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

5
TUDelft 8/32

Strategies to deal with ongoing hardware trend

e Just ignore it; it will pass! No, it will not because it's physics
that keeps us from simply increasing single core performance.

e Then let’'s cheat physics!

5
TUDelft 8/32

Strategies to deal with ongoing hardware trend

e Just ignore it; it will pass! No, it will not because it's physics
that keeps us from simply increasing single core performance.

e Then let’s cheat physics! Better not, the costs are prohibitive
and there will be an end to this strategy, again set by physics.

] r—

'FU Delft 8 /32

Strategies to deal with ongoing hardware trend
e Just ignore it; it will pass! No, it will not because it's physics
that keeps us from simply increasing single core performance.

e Then let’s cheat physics! Better not, the costs are prohibitive
and there will be an end to this strategy, again set by physics.

o Trust in the power of compilers/tools to auto-magically
parallelize /vectorize/distribute/make it fault-tolerant/...
your algorithm!

5
TUDelft 8/32

Strategies to deal with ongoing hardware trend
e Just ignore it; it will pass! No, it will not because it's physics
that keeps us from simply increasing single core performance.

e Then let’s cheat physics! Better not, the costs are prohibitive
and there will be an end to this strategy, again set by physics.

o Trust in the power of compilers/tools to auto-magically
parallelize /vectorize/distribute/make it fault-tolerant/...
your algorithm! Good luck, and thanks for the fish.

5
TUDelft 8/32

Proposition 2

It's time (since 2005) for a radical paradigm shift: Hardware
trends must be incorporated into the design and analysis of nu-
merical methods and algorithms, and their implementations.

7
TUDelft 9/32

Hardware-Oriented Numerics

State of the art

Given a problem p € P and a target hardware h € H:

® Find best combination (m, a, i), € M x A xZ that solves problem
p on hardware h in shortest time with prescribed accuracy

z
TUDelft 10 / 32

Hardware-Oriented Numerics

State of the art

Given a problem p € P and a set of target hardware {hy, hp,...} c H:

® Find best combinations (m, a, i), p, € M x A x T that solve
problem p on hardware hy in shortest time with prescribed accuracy

z
TUDelft 10 / 32

Hardware-Oriented Numerics

State of the art

Given a problem p € P and a set of target hardware {hy, hp,...} c H:

® Find best combinations (m, a, i), p, € M x A x T that solve
problem p on hardware hy in shortest time with prescribed accuracy

Next step

® Develop a strategy that automatically inspects the available
hardware and chooses the best combinations (m, a, i)p. s,

z
TUDelft 10 / 32

Hardware-Oriented Numerics

State of the art

Given a problem p € P and a set of target hardware {hy, hp,...} c H:

® Find best combinations (m, a, i), p, € M x A x T that solve
problem p on hardware hy in shortest time with prescribed accuracy

Next step

® Develop a strategy that automatically inspects the available
hardware and chooses the best combinations (m, a, i)p. s,

Future vision

© Automatically determine and schedule best combinations
(m,a,i)p;n € Mx AxT for multi-physics problems
{p1,p2,...} ¢ P and target hardware {hy, hp,...} cH

i3
TUDelft 10 / 32

HWON, is it really that new?

Iterative refinement

For m=1 repeat e Wilkinson 1948: code for the

Automatic Computing Engine

©® Compute residual to solve linear system Ax = b

rm=b— Axm
® Solve system
Adm=rm
©® Add correction
Xm+l = Xm + dm

until convergence

z
TUDelft 11/ 32

HWON, is it really that new?

Iterative refinement

For m=1 repeat e Wilkinson 1948: code for the

Automatic Computing Engine

©® Compute high-prec residual to solve linear system Ax = b

rhp — php _ phpyhp Mixed-precision variant
e Wilkinson 1963/Moler 1967:

Solve low-prec system .
o P Y error + convergence analysis

AP = LP(rfP)
©® Add high-prec correction

X = xPP + HP(d%)

until convergence

z
TUDelft 11/ 32

HWON, is it really that new?

Iterative refinement

For m=1,... repeat
@ Compute high-prec residual

rrfrzp = php _ Ahpx,’,’,”
® Solve low-prec system

AP = LP(rfP)
©® Add high-prec correction

X = xPP + HP(d%)

until convergence

z
TUDelft 11/ 32

e Wilkinson 1948: code for the
Automatic Computing Engine
to solve linear system Ax = b

Mixed-precision variant

e Wilkinson 1963/Moler 1967:
error 4+ convergence analysis

e Anderson et al. 1995: driver
for the LAPACK benchmark

HWON, is it really that new?

Iterative refinement

For m=1,... repeat
@ Compute high-prec residual

rrfrzp = php _ Ahpx,’,’,”
® Solve low-prec system

AP = LP(rfP)
©® Add high-prec correction

X = xPP + HP(d%)

until convergence

z
TUDelft 11/ 32

Wilkinson 1948: code for the
Automatic Computing Engine
to solve linear system Ax = b
Mixed-precision variant

Wilkinson 1963 /Moler 1967:
error 4+ convergence analysis

Anderson et al. 1995: driver
for the LAPACK benchmark

Goddeke et al. 2007: speed-up
double-precision on GPUs

HWON, is it really that new?

Iterative refinement

For m=1,... repeat

@ Compute high-prec residual
rrfrzp = php _ Ahpx,’,’,”

® Solve low-prec system
AP = LP(rfP)

® Add high-prec correction

h h l/
x P =xP +HP(d}F)

until convergence

z
TUDelft 11/ 32

Wilkinson 1948: code for the
Automatic Computing Engine
to solve linear system Ax = b
Mixed-precision variant

Wilkinson 1963 /Moler 1967:
error 4+ convergence analysis

Anderson et al. 1995: driver
for the LAPACK benchmark

Goddeke et al. 2007: speed-up
double-precision on GPUs

NVIDIA SC15: Mixed-precision
arithmetic on Pascal GPUs

Mixed-precision methods

Iterative refinement

For m=1,... repeat 1d Poisson problem with 40

© Compute residual unknowns and Jacobi 'solver’

—(di -1
= b A, dm = (diagA) " rm

® Solve system

Al = G

[Iresl
3

©® Add correction

10710

X, =Xm + d == double-precision
m+1 (u i == single-precision

10718

0 2000 4000 6000 8000 10000 12000

until convergence terations

z
TUDelft 12 /32

Mixed-precision methods

Iterative refinement

For m=1,... repeat

@ Compute residual
r,‘,’,p = pap _ Adpx,‘,’,”
® Solve system
AP = SP(riP)
©® Add correction
Xty = X+ DP(d}?)

until convergence

1d Poisson problem with 40
unknowns and Jacobi 'solver’

dsP = (diagA®)'SP(rP)

0 2000 4000 6000 8000
#iterations

10000 12000

z
TUDelft 12 /32

Mixed-precision methods

Iterative refinement

For m=1,... repeat 1d Poisson problem with 40

© Compute residual unknowns and Jacobi 'solver’

rdb _ pp _ pdp o d? = (diagA®) 'SP (177)

® Solve system

AP = SP(riP)

©® Add correction

(710 | [== double-precision
dp d s 5iNgle-precision
_ p sp = mixed-precision
X =xP +DP et
m+1 m dm —— ::::;—‘;:ec\s\an
15
10 0 2000 4000 6000 8000 10000 12000
o #iterations
until convergence

z
TUDelft 12 /32

Mixed-precision methods in practice

Theory: The mixed-precision iterative refinement converges to
high-precision accuracy if matrix A is 'not too ill-conditioned’

#iter ~ f (log(conda(A)), log(€enigh/€low))

z
TUDelft 13/ 32

Mixed-precision methods in practice

Theory: The mixed-precision iterative refinement converges to
high-precision accuracy if matrix A is 'not too ill-conditioned’

#iter ~ f(log(conda(A)), log(€nigh/€low))

Application: preconditioned mixed-precision defect correction iteration

d d ~1/pdp _ pdpd
xph = x5+ (CP)~H (b — A%PxP)

with single-precision preconditioner C°P. This strategy can be applied
recursively, e.g., if the hardware supports multiple precisions efficiently.

z
TUDelft 13/ 32

Mixed-precision methods on GPUs

NVIDIA Tesla P100

Memory 12GB

DP perf. | 5.3 TeraFLOPS

SP perf. | 10.6 TeraFLOPS

HP perf. | 21.2 TeraFLOPS

If you only store the preconditioner
C as matrix and realize the multi-
plication with A as on-the-fly oper-
ation the maximum number of non-
zero entries you can store is

o ~2.1€% in double precision

o ~4.3¢% in single precision

o ~8.9¢% in half precision
Solution/preconditioning step is

e ~ 2x faster in single precision

e ~ 4x faster in half precision

compared to double precision

i3
TUDelft

Mixed-precision methods on FPGAs

Field Programmable Gate Array ~ Within the limits of the hardware you
can define your own (non-IEEE 754)
representation of numbers

aaaaaaaa

PROGRAMMABLE

0]
INTERCONNECT § 1/ BLOCKS.
3
H

¢ Floating-point number
:I:O.d1d2 e dn . ﬁe

e Fixed-point number Qm.n
n+m+1, i.e. signed integer
with n fractional bits

BOOOO0000
BOOOOO000
j:fag=Refe=tutateate]
jifaZ=RaZateatatel
sosesss bEEASES

LOGIC BLOCKS.

<3
TUDelft 15 / 32

Mixed-precision methods on FPGAs

Field Programmable Gate Array ~ Within the limits of the hardware you
can define your own (non-IEEE 754)
representation of numbers

nnnnnnnn

o
PROGRAMMABLE o3
INTERCONNECT 2 o

io

i ¢ Floating-point number

””””””” i :I:O.dldz...dn~ﬁe

e Fixed-point number Qm.n
n+m+1, i.e. signed integer
with n fractional bits

oo
Do
o0
003
b 110 BLOCKS
230 ¢
oo
o0

LOGIC BLOCKS.

Ongoing Honours project by Dennis Pouw:
Smart software technologies for enabling next-generation HWON

5
TUDelft 15 / 32

Mixed-precision methods on FPGAs

Field Programmable Gate Array ~ Within the limits of the hardware you
can define your own (non-IEEE 754)
representation of numbers

mmmmmmmm

PROGRAMMABLE
INTERCONNECT

110 BLOCKS.

i ¢ Floating-point number

5252353 i :I:O.dldz...dn~ﬁe

e Fixed-point number Qm.n
n+m+1, i.e. signed integer
with n fractional bits

LOGIC BLOCKS.

Ongoing Honours project by Dennis Pouw:
Smart software technologies for enabling next-generation HWON

Topic for Bachelor project:
Mixed-precision iterative refinement on reconfigurable hardware

5
TUDelft 15 / 32

HWON: Not just for nerds anymore

#include <vector>
#include <vexcl/vexcl.hpp>
vex :: Context ctx(vex:: Filter:: DoublePrecision);

typedef double high;
typedef float low;

// Double—precision matrix in CSR format and dense vectors
std ::vector<int> row = { 0, 1, 4, 7, 10, 11 };

// Single—precision preconditioner
std :: vector<low> fdata = { 1.0, 2.0, 2.0, 2.0, 1.0 };
vex ::vector<low> C(ctx, fdata);

// Mixed—precision iterative refinement
for (int iter=0; iter <10; iter++)
x += (b—-Axx)/C;

std :: vector<int> col = { 0,
0o, 1, 2,
1, 2, 3,
2, 3, 4,
4 3}

std :: vector<high> ddata = { 1.0,

-1.0, 2.0, -1.0,

-1.0, 2.0, -1.0,
~1.0, 2.0, -1.0,
1.0 };

vex ::sparse ::csr<high> A(ctx, row.size(), col.size(), row, col, ddata);
vex :: vector<high> b(ctx, row.size()), x(ctx, row.size()); b

= iz x =

My research interest

High-resolution methods for flow problems on HPC architectures
e Convection-diffusion problems

e Compressible flow problems

o
< T T r T T

© L
=]

© L
=

0.4

0.0

0.5 10 15 2.0 25 3.0

Variational formulation

Divergence form of a first-order problem

Oru+V-f(u)=0

3
TUDelft 18//132

Variational formulation

Divergence form of a first-order problem

Oru+V-f(u)=0

Galerkin ansatz ("find solution u s.t. for all w")
fgzw&tu—Vw-f(u)dQ+/rwn-fb(u)ds=0

with boundary fluxes f2. Here you can impose boundary conditions

z
TUDelft 18 / 32

Spatial discretization

Fletcher’s group formulation?
up =Y pa(x)ua(t), fn=2 pa(x)fa(t), fa=F(ua)
A A

Semi-discrete problem
M+ Cf +Sf° =0

with constant coefficient matrices

M = [fﬂ YAPB dﬂ] C= [—fQVsoAQOB dﬂ] S= [frwAsOBndS]

They can be assembled and stored during pre-processing step

'C.A.J. Fletcher, CMAME 37 (1983) 225-244.

z
TUDelft 19 / 32

Spatial discretization

Fletcher’s group formulation?
up = pa(x)ua(t), frn=> wa(x)fa(t), fa=Ff(ua)
A A

Semi-discrete problem
M+ Cf+Sf> =0

Read the above as sequence of SpMV-operations

dim dim
Cf=> Cyfy, SF°= Sufy
d=1 d=1

'C.A.J. Fletcher, CMAME 37 (1983) 225-244.

z
TUDelft 19 / 32

Fully discrete problem

Abstract formulation of semi-discrete problem

M+ N(u) =0

7
TUDelft 20 / 32

Fully discrete problem

Abstract formulation of semi-discrete problem
Mua+ N(u) =0
Discretization in time by explicit SSP Runge-Kutta method, e.g.
Mu™® = Mu™ - AtN(u")

Mu"*t = %Mu” + %Mu(l) - %AtN(u(l))

e
TUDelft 20/ 32

Fully discrete problem

Abstract formulation of semi-discrete problem
Mua+ N(u) =0
Discretization in time by explicit SSP Runge-Kutta method, e.g.
Mu™® = Mu™ - AtN(u")

Mu"*t = %Mu" + %Mu(l) - %AtN(u(l))

Finishing touches
e Stabilization of divergence term by algebraic flux correction

o Efficient implementation by smart-and-fast expression templates

z
TUDelft 20 / 32

What is a good choice of basis functions in the spirit of HWON?

.3
TUDelft 21/32

What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)

e
TUDelft 21/32

What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)
» High-order FEM? greater FLOP /byte ratio (+)

e
TUDelft 21 /32

What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)
» High-order FEM? greater FLOP /byte ratio (+)

e Structured grids? overset grids for complex geometries (7)

z
TUDelft 21/ 32

What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)

High-order FEM? greater FLOP /byte ratio (+)

Structured grids? overset grids for complex geometries (?)

Unstructured grids? flexible (+), high-order grid
generation open problem (-), indirect addressing (-)

z
TUDelft 21/ 32

What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)
» High-order FEM? greater FLOP /byte ratio (+)

e Structured grids? overset grids for complex geometries (7)

¢ Unstructured grids? flexible (+), high-order grid
generation open problem (-), indirect addressing (-)

 Discontinuous Galerkin? well-established in HPC (+),
unstructured grids (7), excessive duplication of DOFs (-)

5
TUDelft 21/ 32

What is a good choice of basis functions in the spirit of HWON?
* Low-order FEM? low FLOP /byte ratio (-)
» High-order FEM? greater FLOP /byte ratio (+)

e Structured grids? overset grids for complex geometries (7)

¢ Unstructured grids? flexible (+), high-order grid
generation open problem (-), indirect addressing (-)

 Discontinuous Galerkin? well-established in HPC (+),
unstructured grids (7), excessive duplication of DOFs (-)

e Continuous Galerkin? unconventional in hyperbolic flows
(?), less DOFs (+), stabilization more problematic (-)

5
TUDelft 21/ 32

The big picture

o Combine unstructured multi-block coarse grid ('patches’) with

o topologically structured fine grid within each patch;
¢ locally refined fine grid where required for accuracy

e Apply Isogeometric Analysis approach on each patch
e Couple multiple patches by DG- or Nitsche-type approach

5
TUDelft 22 /32

The big picture

» Combine unstructured multi-block coarse grid ('patches’) with

¢ topologically structured fine grid within each patch;
¢ locally refined fine grid where required for accuracy

e Apply Isogeometric Analysis approach on each patch
e Couple multiple patches by DG- or Nitsche-type approach

HWON considerations:
* associate patches with devices (DG to reduce communication)

5
TUDelft 22 /32

The big picture

» Combine unstructured multi-block coarse grid ('patches’) with

¢ topologically structured fine grid within each patch;
¢ locally refined fine grid where required for accuracy

e Apply Isogeometric Analysis approach on each patch

e Couple multiple patches by DG- or Nitsche-type approach
HWON considerations:

* associate patches with devices (DG to reduce communication)

e if a patch becomes computationally too expensive then split it up
into multiple patches (intrinsically supported by IgA via successive
continuity reduction) and reschedule new patches to (more) devices

5
TUDelft 22 /32

Polynomial spaces

Definition

The space of polynomials of degree p over the interval [a, b] is

MP([a, b]) :={q(x) eC=([a,b]) : q(x) = éc,-x",c; eR}

Example: N%([0,1])
e Canonical basis
B={1,x,x*}

e Polynomials
q(x) = co + c1x + x>

z
TUDelft 23 / 32

Spline space

Let P = {a=xi <--- < Xps1 = b} be a partition of the interval

Qp and M = {1 < m; < p+1} a set of positive integers. The
polynomial spline of degree p is defined as s : Qo —~ R if

S|[X,',X,'+1] € np([xi7xi+1])7 I = 1,...,k

d d i=2
@Si—l(xi) = wsi(Xi), j=0

Lk,
yeees P M

Polynomial splines of degree p form the spline space S(Qo, p, M, P).

%
TUDelft 24 /32

Knot vectors

A knot vector is a sequence of non-decreasing values &; € [a, b] c R
in the parameter space Qg = [a, b]

== (€1a£2a s 7§I7+P+1)

where
e pis the polynomial order of the B-splines
e n is the number of B-spline functions
e & is the i-th knot with knot index i

\ J

Knots &; can have multiplicity 1 < m; < p+1. The knot vector is called
open if the first and last knot have multiplicity p + 1.

5
TUDelft 25 / 32

B-spline basis functions

Cox-de Boor recursion formula

1 if&<E<8in
0 otherwise

- -0 |
Nio(§) = {
— 3

§-&i

€i+p+1 - §
Eivp—&i

Eivpr1 — Gin1

Nip(€) = Nip-1(€) + Nii1,p-1(§)

z
TUDelft 26 / 32

B-spline basis functions

0.6 - a

0.4+ 8

0.2} .

0

0 0.5 1 1.5 2 2.5 3
Linear basis functions corresponding to = ={0,0,0,1,2,3,3,3}

1
TUDelft 27 / 32

B-spline basis functions

0.6 - a

0.4+ 8

0.2} .

0

0 0.5 1 1.5 2 2.5 3
Quadratic basis functions corresponding to = ={0,0,0,1,2,3,3,3}

1
TUDelft 27 / 32

Properties of B-spline basis functions

Compact support

supp Nip(§) = [&i,&ivps1), i=1,...,n

Strict positiveness

Ni,p(£)>0 forge(€ia€i+p+l)7 i:]-?"'an

Partition of unity

zn: Nip(§) =1 forall £€a,b]
i-1

7
TUDelft 28 / 32

Spline curves

Geometric mapping G: Qg — Q, ~ Q

n
G(¢) = Z Ni »(€)B; set of control points B; e RY,d > 1
i1

3
TUDelft 29/ 32

Spline surfaces

Geometric mapping G: Qg — Qp ~ Q

n m
G(&,1) =Y S Nip(€)Njg(n)Bij BjjeRY d>2
i=1j=1

3
TUDelft 30 /32

Spline surfaces

Geometric mapping G: Qg — Q) ~ Q
G(§) =) ¥a(£)Ba
A

Ba ¢ R d > 2, multi-index A

Ao
e
oS
Jessiasiess

5
TUDelft 30 / 32

Marriage of geometry and discretization

Geometric mapping

G(¢) = Z@A(E)BA 'push-forward’ G : Qp — Qj,
A

Ansatz space

Vi =span{pa(x) =@ao G '(x)} 'pull-back’ G™: Qp > Qo

1
TUDelft 31 /32

Application: Convection-diffusion equation

Convection skew to the mesh

AFC

Quadratic bi-variate B-spline basis functions.

z
TUDelft 32 /32

Application: Convection-diffusion equation

Convection skew to the mesh

AFC

Quadratic bi-variate B-spline basis functions.

i3
TUDelft 32 /32

Application: Convection-diffusion equation

Convection skew to the mesh

o

Quadratic bi-variate B-spline basis functions.

i3
TUDelft 32 /32

Application: PDEs on evolving manifolds

Human brain development (MSc project by J. Hinz)

There is much more to investigate in a master project if you are interested.

z
TUDelft 32 /32

	From Numerical Analysis to Hardware-Oriented Numerics
	HWON example: mixed-precision methods
	HWON application: simulation of flow problems

