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Design-through-Analysis

Ideally, we want a quick interaction between design (left) and analysis (right).
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Design-through-Analysis

following examples may be mentioned: shell buckling analysis is
very sensitive to geometric imperfections, boundary layer phe-
nomena and lift and drag are sensitive to precise geometry of aero-
dynamic and hydrodynamic configurations, and sliding contact
between bodies cannot be accurately represented without precise
geometric descriptions. Automatic adaptive mesh refinement has
not been as widely adopted in industry as one might assume from

the extensive academic literature because mesh refinement re-
quires access to the exact geometry, and thus it also requires seam-
less and automatic communication with CAD, which simply does
not exist. Without accurate geometry and mesh adaptivity, conver-
gence and -precision results are in many cases impossible.

Deficiencies in current engineering analysis procedures also
preclude successful application of important pace setting technol-

Fig. 1. Engineering designs are becoming increasingly complex. As the number of parts comprising an object increases, so too does the amount of time required for it to be
manufactured. Such growth in complexity makes analysis a time consuming and expensive endeavor. (Courtesy of General Dynamics/Electric Boat Corporation.)

Fig. 2. Estimation of the relative time costs of each component of the model generation and analysis process at Sandia National Laboratories. Note that the process of building
the model completely dominates the time spent performing analysis. (Courtesy of Ted Blacker, Sandia National Laboratories.)

�

Ted Blacker, Sandia National Laboratories
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Design-through-Analysis

We are mainly interested in ‘designs’ that are created algorithmically based on
user-definable design parameters (e.g., wrap angle) and mathematical expressions.
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Syllabus: Design-through-Analysis

IGA fundamentals
• Introduction to B-splines
• Geometry modelling and PDE analysis
• Assembly of system matrices
• Multi-patch coupling
• Adaptive spline technologies
• Efficient solution techniques

Analysis-suitable parametrizations
• PDE-based parametrization techniques

Gradient-based design optimization
• Gradient-based design optimization
• Algorithmic differentiation and

computational aspects
• Selected applications
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IGA fundamentals: Geometry modelling and PDE analysis with B-splines
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Finite element analysis with B-spline basis functions
As in parametric finite elements, we transform integrals over the physical domain Ω into
integrals over the (entire!) parametric domain Ω̂ by means of the integration rule∫

Ω
w(x) dx =

∫
Ω̂
w(x(ξ)) |det J(ξ)| dξ

with the Jacobian matrix given by

J(ξ) =
(

∂xa
∂ξb

)
a,b=1:2

Example
∂x1
∂ξ1

= ∂x(ξ, η)
∂ξ

=
Nb∑
j=1

xj
d

dξ
Bjξ

(ξ)Bjη (η)

whereby the derivative of the univariate B-spline basis function is given by

d

dt
Bi,p(t) = p

ti+p − ti
Bi,p−1(t) − p

ti+p+1 − ti+1
Bi+1,p−1(t)

7 / 69



Finite element analysis with B-spline basis functions
As in parametric finite elements, we transform integrals over the physical domain Ω into
integrals over the (entire!) parametric domain Ω̂ by means of the integration rule∫

Ω
w(x) dx =

∫
Ω̂
w(x(ξ)) |det J(ξ)| dξ

with the Jacobian matrix given by

J(ξ) =
(

∂xa
∂ξb

)
a,b=1:2

Example
∂x1
∂ξ1

= ∂x(ξ, η)
∂ξ

=
Nb∑
j=1

xj
d

dξ
Bjξ

(ξ)Bjη (η)

whereby the derivative of the univariate B-spline basis function is given by

d

dt
Bi,p(t) = p

ti+p − ti
Bi,p−1(t) − p

ti+p+1 − ti+1
Bi+1,p−1(t)

7 / 69



Finite element analysis with B-spline basis functions, cont’d
Making further use of the chain rule of differentiation

∇xu(x) = ∇ξu(ξ) · J(ξ)−1

we obtain the following expression for, e.g.

k(w, u) = κ

∫
Ω

∇xw · ∇xudx = κ

∫
Ω̂

(∇ξw(ξ) · J(ξ)−1) · (∇ξu(ξ) · J(ξ)−1) |det J(ξ)| dξ

Similar expression can be derived for a(w, u), ⟨w, u⟩ and l(w) in the same way as it is done
in classical finite element analysis. The main difference consists in the fact that Ω̂ = [0, 1]2
denotes the entire parametric domain and not a single reference element T̂ . This requires
some extra effort in the assembly of matrices/vectors via numerical integration.

From now on we will refer to the above approach as isogeometric analysis (IGA).
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denotes the entire parametric domain and not a single reference element T̂ . This requires
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From now on we will refer to the above approach as isogeometric analysis (IGA).

T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. CMAME, 194(39):4135–4195, 2005.
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Matrix assembly for standard C0-FEA

0
0

1

1

9 / 69



Matrix assembly for standard C0-FEA

0
0

1

1

9 / 69



Matrix assembly for standard C0-FEA

0
0

1

1

9 / 69



Matrix assembly for standard C0-FEA

0
0

1

1

9 / 69



Matrix assembly for standard C0-FEA

0
0

1

1

9 / 69



Matrix assembly for standard C0-FEA

0
0

1

1

9 / 69



Matrix assembly for standard C0-FEA

0
0

1

1

9 / 69



Matrix assembly for IGA
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Additional notes
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IGA fundamentals: Refinement and adaptive splines
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Refinement techniques in IGA
Like in classical FEA, the B-spline space Vh,p

can be refined with respect to h and p:

• Knot insertion (‘h-refinement’)
• Order elevation (‘p-refinement’)

In both cases, the represented object (geome-
try and solution) is preserved exactly.

• k-refinement is a unique IGA feature to
achieve higher order and higher
continuity at the same time

J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA.
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38 Isogeometric Analysis: Toward Integration of CAD and FEA

Ξ = {0, 0, 0, 1, 1, 1} Ξ = {0, 0, 0, .5, 1, 1, 1}
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Figure 2.19 Knot insertion. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by .

Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis : Toward integration of cad and fea. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from delft on 2021-08-20 10:24:37.
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Figure 2.21 Order elevation. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by .

across element boundaries, order elevation coincides exactly with the traditional notion of
p-refinement. Knot insertion and order elevation, however, provide us with more to work with
than do the two standard notions of refinement.

As mentioned above, we can insert new knot values with multiplicities equal to one to define
new elements across whose boundaries functions will be C p−1. We can also repeat existing
knot values to lower the continuity of the basis across existing element boundaries. This makes
knot insertion a more flexible process than simple h-refinement. Similarly, we have a more
flexible higher-order refinement as well. It stems from the fact that the processes of order
elevation and knot insertion do not commute. If a unique knot value, ξ̄ , is inserted between

Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis : Toward integration of cad and fea. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from delft on 2021-08-20 10:24:37.
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Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5} Ξ̄ = {0, 0, 0, .5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4, 4.5, 5, 5, 5}

Original curve and control points Refined curve and control points

Refined ten element meshOriginal five element mesh
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Figure 2.20 Knot insertion. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by . Each element has been evenly split in the
parametric domain.

mesh, and basis functions of the unrefined curve are shown on the left. A new knot is inserted
at ξ̄ = 0.5. The new curve, shown on the right, is geometrically and parametrically identical
to the original curve, but the control points are changed, the mesh is partitioned, and the basis
is richer. There is one more control point, one more element, and one more basis function than
in the unrefined case. This process may be repeated to enrich the solution space by adding
more basis functions of the same order while leaving the curve unchanged. Figure 2.20 shows
the more advanced case of a global refinement of the curve from Figure 2.10.

Insertion of new knot values clearly has similarities with the classical h-refinement strategy
in finite element analysis as it splits existing elements into new ones. It differs, however, in the
number of new functions that are created, as well as in the continuity of the basis across the
newly created element boundaries (C p−1 in this case). To perfectly replicate h-refinement, one
would need to insert each of the new knot values p times so that the functions will be C0 across

Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis : Toward integration of cad and fea. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
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Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5} Ξ̄ = {0, 0, 0, 0, 1, 1, 2, 2,
3, 3, 4, 4, 4, 5, 5, 5, 5}
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Figure 2.22 Order elevation. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by . Note the increased multiplicity of internal knots.
This is done to preserve discontinuities in the appropriate derivatives of the curve.

two distinct knot values in a curve of order p, the number of continuous derivatives of the
basis functions at ξ̄ is p − 1. If we subsequently elevate the order to q, the multiplicity of
every distinct knot value (including the knot just inserted) is increased so that discontinuities
in the pth derivative of the basis are preserved. That is, the basis still has p − 1 continuous
derivatives at ξ̄ , although the polynomial order is now q. If, instead, we elevated the order of
the original, coarsest curve to q and only then inserted the unique knot value ξ̄ , the basis would
have q − 1 continuous derivatives at ξ̄ . We refer to this latter procedure as k-refinement. We
know of no analogous practice in standard finite element analysis.

It is important that we point out that this notion of k-refinement is not the same as the
“k-convergence” described in Kagan et al., 1998 in which the position of the knots is altered.
It bears more in common with the “k-version finite element method” of Surana et al., 2002 in
that k refers to continuity, but the motivations are different. The increased continuity in Surana

Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis : Toward integration of cad and fea. ProQuest Ebook Central <a
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Adaptive spline technologies
• Powell-Sabin splines [Powell, Sabin 1977, Speleers et al. 2012]
• H(ierarchical) B-splines [Forsey, Bartels 1988, Kraft 1997, Vuong et al. 2011]
• T-splines [Sederberg et al. 2003, U.S. patent in 2007 to T-Splines, Inc., now Autodesk]
• Polynomial splines over hierarchical T-meshes [Deng, Chen 2007, Wang et al. 2011]
• U(nstructured)-splines [Thomas et al. 2008, Coreform LLC]
• T(runcated) H(ierarchical) B-splines [Gianelli et al. 2012]
• L(ocally) R(efinable) splines [Dokken et al. 2013]
• ...
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A gentle introduction to THB splines

• Let V 0 ⊂ V 1 ⊂ · · · ⊂ V N−1 be a sequence of N nested
spline spaces defined on the domain Ω0.

• Let Bℓ denote the B-spline basis associated to the space V ℓ

with φ̂ℓ
i ∈ Bℓ, i = 1, . . . , N ℓ

b being its basis functions.
• Let Ω0 ⊆ Ω1 ⊆ · · · ⊆ ΩN−1 be a sequence of nested

domains as depicted on the right.

488 C. Giannelli et al. / Computer Aided Geometric Design 29 (2012) 485–498

(a) nested domains (b) hierarchical mesh

Fig. 2. A nested sequence of domains for the construction of the spline hierarchy according to relation (1), i.e., Ω" ⊇ Ω"+1 for " = 0, . . . ,2, for the two-
dimensional case.

(a) Only dyadic refinement is considered.
(b) Ω"+1 is restricted to be the union of supports of B-splines of level ".
(c) The boundaries of adjacent domains Ω" and Ω"+1 must be disjoint.
(d) The modified support definition (2) is not used and H0 is initialized as the set of B-splines in B0 whose support is

completely contained in Ω0.

Moreover, the definition in Kraft’s thesis (Kraft, 1998) additionally considers the auxiliary subdomain

ω" =
{

x ∈ Ω"
∣∣ ∀β ∈ B": x ∈ suppβ ⇒ suppβ ⊆ Ω"

}
,

for " = 0, . . . , N − 1, which represents the biggest subset of Ω" such that H"
B spans the restriction of V " to ω" . He requires

that these subdomains are nested as well,

(e) ω" ⊇ ω"+1,

which implies (c).
Definition 1 was firstly considered by Vuong et al. (2011). It allows for refinement close to subdomain boundaries ∂Ω" ,

which was not covered by the original construction presented in Kraft (1997). Throughout this paper, the notion of hierar-
chical B-splines (HB) refers to Definition 1 without Kraft’s restrictions (a–e).

Hierarchical B-splines do not satisfy the partition of unity property. In addition, the number of overlapping basis func-
tions associated to different hierarchical levels easily increases. This motivates the construction of another basis for the
hierarchical spline space. The key idea behind the proposed approach relies on the following definition.

Definition 2. Let τ ∈ V " and let

τ =
∑

β∈B"+1

c"+1
β (τ )β, c"+1

β ∈ R, (3)

be its representation with respect to the finer basis of V "+1. The truncation of τ with respect to B"+1 and Ω"+1 is defined
as

trunc"+1 τ =
∑

β∈B"+1,supp β '⊆Ω"+1

c"+1
β (τ )β. (4)

By applying the truncation mechanism to hierarchical B-splines of coarse levels, we can introduce the THB-spline basis.

Definition 3. The truncated hierarchical B-spline basis T is recursively constructed as follows:

(I) Initialization: T 0 = H0.
(II) Recursive case: T "+1 = T "+1

A ∪ T "+1
B , for " = 0, . . . , N − 2, where

T "+1
A =

{
trunc"+1 τ : τ ∈ T " ∧ suppτ '⊆ Ω"+1},

Hierarchical B-spline basis H := HN−1:

H0 := B0

Hℓ+1 :=
{
φ̂ℓ

i ∈ Hℓ : supp φ̂ℓ
i ̸⊆ Ωℓ+1

}
∪
{
φ̂ℓ+1

i ∈ Bℓ+1 : supp φ̂ℓ+1
i ⊆ Ωℓ+1

}
with supp f :=

{
x : f(x) ̸= 0 ∧ x ∈ Ω0}.

Gianelli et al. THB-splines: The truncated basis for hierarchical splines, CAGD 29:485–498, 2012.
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ω" =
{

x ∈ Ω"
∣∣ ∀β ∈ B": x ∈ suppβ ⇒ suppβ ⊆ Ω"

}
,

for " = 0, . . . , N − 1, which represents the biggest subset of Ω" such that H"
B spans the restriction of V " to ω" . He requires

that these subdomains are nested as well,

(e) ω" ⊇ ω"+1,

which implies (c).
Definition 1 was firstly considered by Vuong et al. (2011). It allows for refinement close to subdomain boundaries ∂Ω" ,

which was not covered by the original construction presented in Kraft (1997). Throughout this paper, the notion of hierar-
chical B-splines (HB) refers to Definition 1 without Kraft’s restrictions (a–e).

Hierarchical B-splines do not satisfy the partition of unity property. In addition, the number of overlapping basis func-
tions associated to different hierarchical levels easily increases. This motivates the construction of another basis for the
hierarchical spline space. The key idea behind the proposed approach relies on the following definition.

Definition 2. Let τ ∈ V " and let

τ =
∑

β∈B"+1

c"+1
β (τ )β, c"+1

β ∈ R, (3)

be its representation with respect to the finer basis of V "+1. The truncation of τ with respect to B"+1 and Ω"+1 is defined
as

trunc"+1 τ =
∑

β∈B"+1,supp β '⊆Ω"+1

c"+1
β (τ )β. (4)

By applying the truncation mechanism to hierarchical B-splines of coarse levels, we can introduce the THB-spline basis.

Definition 3. The truncated hierarchical B-spline basis T is recursively constructed as follows:

(I) Initialization: T 0 = H0.
(II) Recursive case: T "+1 = T "+1

A ∪ T "+1
B , for " = 0, . . . , N − 2, where

T "+1
A =

{
trunc"+1 τ : τ ∈ T " ∧ suppτ '⊆ Ω"+1},

Hierarchical B-spline basis H := HN−1:

H0 := B0

Hℓ+1 :=
{
φ̂ℓ

i ∈ Hℓ : supp φ̂ℓ
i ̸⊆ Ωℓ+1

}
∪
{
φ̂ℓ+1

i ∈ Bℓ+1 : supp φ̂ℓ+1
i ⊆ Ωℓ+1

}
with supp f :=

{
x : f(x) ̸= 0 ∧ x ∈ Ω0}.

Gianelli et al. THB-splines: The truncated basis for hierarchical splines, CAGD 29:485–498, 2012.
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A gentle introduction to THB splines, cont’d

B-splines of level 0

B-splines of level 1

HB-splines (lack the partition-of-unity property)

Illustrations taken from https://gismo.github.io/thbSplineBasis_example.html
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A gentle introduction to THB splines
Truncated Hierarchical B-spline basis T := T N−1:

T 0 := B0

T ℓ+1 :=
{

truncℓ+1τ : τ ∈ T ℓ ∧ supp τ ̸⊆ Ωℓ+1
}

∪
{
φ̂ℓ+1

i ∈ Bℓ+1 : supp φ̂ℓ+1
i ⊆ Ωℓ+1

}
with the truncation operator defined as follows:

Let τ ∈ V ℓ and its representation in terms of the finer basis Bℓ+1 be given by

τ =
Nℓ+1

b∑
j=1

cℓ+1
j (τ)φ̂ℓ+1

j , cℓ+1
j (τ) ∈ R, φ̂ℓ+1

j ∈ Bℓ+1

Then

truncℓ+1τ :=
Nℓ+1

b∑
j=1

supp φ̂ℓ+1
j

̸⊆Ωℓ+1

cℓ+1
j (τ)φ̂ℓ+1

j , cℓ+1
j (τ) ∈ R, φ̂ℓ+1

j ∈ Bℓ+1

Gianelli et al. THB-splines: The truncated basis for hierarchical splines, CAGD 29:485–498, 2012.
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IGA fundamentals: Efficient solution techniques
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State of the art in IGA solvers

Direct solvers
• Performance study [Collier et al. 2012]
• Refined IGA [Garcia et al. 2018]

Preconditioning techniques
• Schwarz methods [da Veiga et al. 2012 & 2013]
• Sylvester equation [Sangalli & Tani 2016]
• Nonsymmetric systems [Tani 2017]
• BPX [Cho & Vásquez 2018]
• Fast diagonalization [Montardini et al. 2019]
• Space-time IGA [Hofer et al. 2019]
• Schwarz methods [Cho 2020]
• Directional splitting [Calo et al. 2021]
• Kronecker product [Loli et al. 2021]

p-multigrid techniques
• (Block-)ILUT smoother [Tielen et al. 2018, 2020]
• Multiplicative Schwarz smoother [de la Riva 2020]

h-multigrid techniques
• Full multigrid [Hofreither 2016]
• THB-splines [Hofreither et al. 2017]
• Symbol-based [Donatelli 2017]
• Boundary correction [Hofreither et al. 2017]
• Subspace corrected smoother [Takacs et al. 2017]
• Multiplicative Schwarz smoother [de la Riva 2018]
• Biharmonic equation [Sogn et al. 2019]
• Immersed IGA [de Prenter et al. 2020]
• Bilaplacian equation [de la Riva et al. 2020]
• (Non-)conforming multipatch [Takacs 2020]

Transient problems
• Parallel splitting solvers [Puzyrev et al. 2019]
• Space-time solvers [Langer et al. 2016]
• Space-time solvers [Loli et al. 2020]
• Space-time least-squares [Montardini et al. 2020]
• MGRIT-IGA [Tielen et al. 2021]
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Condition number

where Mk and Kk are the mass matrix and the sti↵ness matrix of IGA approximation for a generic
k = 0, . . . , p � 1. In [16] the authors prove for d = 1, p � 1 and n � 2 (where n is the number of
elements, so that h ⇠ 1/n) that

�min(Mp�1) � c(p)h, �min(Kp�1) � ⇡2c(p)h. (65)

Other estimates about the clustering of the eigenvalues of the matrix corresponding to the IGA
approximation of the advection-di↵usion-reaction operator for d = 1 are proved in [16].

We have numerically computed the extreme eigenvalues of the mass and sti↵ness matrices for
both IGA-C0 and IGA-Cp�1 using the function eigs of Matlab for di↵erent values of h and p.
Starting from these values we have estimated the analytic behavior of the extreme eigenvalues
(and then the spectral condition number) of the IGA matrices w.r.t. both h and p.

For the sake of clearness, we anticipate in Table 3 the estimated behavior of the spectral
condition number of mass and sti↵ness matrices for all the three approaches (SEM-NI, IGA-C0

and IGA-Cp�1). In the next sections we show the numerical computed values and the estimated
behavior of the extreme eigenvalues and of the condition number of the mass and sti↵ness IGA
matrices.

4.1. IGA-C0 mass matrix

We denote with M0 the mass matrix associated with IGA-C0 approximation. Our numerical
results show that, for any value of h > 0 and p � 1, �min(M0) and �max(M0) behave as:

�min(M0) ⇠ hdp�d/24�pd, (66)

�max(M0) ⇠ hdp�d, (67)

Table 3: Behavior of the condition numbers of mass and sti↵ness matrices

SEM-NI IGA-C0 IGA-Cp�1

K(M) ⇠ pd ⇠ p�d/24pd

0

�1

p

log10 h

⇠
�

e
4

�d/h
4pd(hp)�d/2

⇠ epd

1

h = 1/p

K(K) ⇠ h�2p3

h = (p2+d/24�dp)1/2

1 pp

⇠ h�2p2

0

�1

⇠ p�d/24dp

log10 h

p

⇠ h�2p

0

�1

1

h = 1/plog10 h

h = e�dp/2

⇠
�

e
4

�d/h
p�d/2h�d/2�14dp

⇠ pedp

25

From: P. Gervasio, L. Dedè, O. Chanon, and A. Quarteroni, DOI: 10.1007/s10915-020-01204-1
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Sparsity pattern: 2d single patch, p = 1
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Sparsity pattern: 2d single patch, p = 2
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Sparsity pattern: 2d single patch, p = 3

0 5 10 15 20
nz = 400

0

2

4

6

8

10

12

14

16

18

20

p=3,r=0

refh = 0

0 5 10 15 20
nz = 400

0

2

4

6

8

10

12

14

16

18

20

p=3,r=0

0 10 20 30 40 50
nz = 1426

0

10

20

30

40

50

p=3,r=1

refh = 1

0 5 10 15 20 25 30
nz = 782

0

5

10

15

20

25

30

p=3,r=1

0 50 100 150
nz = 5368

0

20

40

60

80

100

120

140

160

180

p=3,r=2

refh = 2

0 10 20 30 40 50
nz = 1924

0

10

20

30

40

50

p=3,r=2

0 100 200 300 400 500 600
nz = 20812

0

100

200

300

400

500

600

p=3,r=3

refh = 3

0 20 40 60 80 100 120
nz = 5720

0

20

40

60

80

100

120

p=3,r=3

IG
A-
C

0
IG

A-
C

p
−

1

20 / 69



Sparsity pattern: 2d multi-patch IGA-Cp−1, refh = 3
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Sparsity pattern: 2d multi-patch IGA-Cp−1, refh = 3
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Sketch of our solution strategy
• Coarsening in p reduces the stencil but not so much the number of unknowns

• p-multigrid with direct projection Vh,p ↘ Vh,1
• note that spaces are not nested (Vh,p ̸⊃ Vh,p−1 ̸⊃ . . . )
• ILUT smoother at single-patch level

• For p = 1, IGA-C0 reduces to FEA with Lagrange finite elements
• h-multigrid with established smoothers and coarse-grid solvers

• Exploit the block structure of multi-patch topologies by using a block-ILUT smoother
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where Mk and Kk are the mass matrix and the sti↵ness matrix of IGA approximation for a generic
k = 0, . . . , p � 1. In [16] the authors prove for d = 1, p � 1 and n � 2 (where n is the number of
elements, so that h ⇠ 1/n) that

�min(Mp�1) � c(p)h, �min(Kp�1) � ⇡2c(p)h. (65)

Other estimates about the clustering of the eigenvalues of the matrix corresponding to the IGA
approximation of the advection-di↵usion-reaction operator for d = 1 are proved in [16].

We have numerically computed the extreme eigenvalues of the mass and sti↵ness matrices for
both IGA-C0 and IGA-Cp�1 using the function eigs of Matlab for di↵erent values of h and p.
Starting from these values we have estimated the analytic behavior of the extreme eigenvalues
(and then the spectral condition number) of the IGA matrices w.r.t. both h and p.

For the sake of clearness, we anticipate in Table 3 the estimated behavior of the spectral
condition number of mass and sti↵ness matrices for all the three approaches (SEM-NI, IGA-C0

and IGA-Cp�1). In the next sections we show the numerical computed values and the estimated
behavior of the extreme eigenvalues and of the condition number of the mass and sti↵ness IGA
matrices.

4.1. IGA-C0 mass matrix

We denote with M0 the mass matrix associated with IGA-C0 approximation. Our numerical
results show that, for any value of h > 0 and p � 1, �min(M0) and �max(M0) behave as:

�min(M0) ⇠ hdp�d/24�pd, (66)

�max(M0) ⇠ hdp�d, (67)

Table 3: Behavior of the condition numbers of mass and sti↵ness matrices
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Sketch of our solution strategy
• Coarsening in p reduces the stencil but not so much the number of unknowns

• p-multigrid with direct projection Vh,p ↘ Vh,1
• note that spaces are not nested (Vh,p ̸⊃ Vh,p−1 ̸⊃ . . . )
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• note that spaces are not nested (Vh,p ̸⊃ Vh,p−1 ̸⊃ . . . )
• ILUT smoother at single-patch level

• For p = 1, IGA-C0 reduces to FEA with Lagrange finite elements
• h-multigrid with established smoothers and coarse-grid solvers

• Exploit the block structure of multi-patch topologies by using a block-ILUT smoother

• robust with respect to h, p, Np, and ‘the PDE’
• computational efficient throughout all problem sizes
• applicable to locally refined THB-splines
• good spatial solver for transient problems (Part II)
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The complete multigrid cycle

p = 3 h

p = 2 h

p = 1 h

p = 1 2h

p = 1 4h

p-multigrid

h-multigrid

IGA-Cp−1

IGA-C0

(Block-)ILUT Gauss-Seidel direct solve
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The complete multigrid algorithm – the outer p-multigrid part
1. Starting from u(0,0)

h,p apply ν1 pre-smoothing steps:

u(0,m)
h,p := u(0,m−1)

h,p + Sh,p

(
fh,p − Ah,p u(0,m−1)

h,p

)
, m = 0, 1, . . . , ν1

2. Restrict the residual onto Vh,1:

rh,1 = Ih,1
h,p

(
fh,p − Ah,p u(0,ν1)

h,p

)
, Ih,1

h,p := M−1
h,1 Mh,p,1

mass lumping

with Mh,p,1 = {(φi, ψj)}i,j , where φi ∈ Vh,p and ψj ∈ Vh,1
3. Solve the residual equation with an h-multigrid method:

Ah,1 eh,1 = rh,1

4. Project the error onto Vh,p and update the solution:

u(0,ν1)
h,p := u(0,ν1)

h,p + Ih,p
h,1 ( eh,1) , Ih,p

h,1 := M−1
h,p Mh,1,p

mass lumping (B-splines!)

5. Apply ν2 post-smoothing steps as in 1. to obtain u(1,0)
h,p := u(0,ν1+ν2)

h,p and repeat steps
1.–5. until ∥ r(k)

h,p∥ < tol∥ r(0)
h,p∥ for some tolerance parameter tol.
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h,p := u(0,ν1)

h,p + Ih,p
h,1 ( eh,1) , Ih,p

h,1 := M−1
h,p Mh,1,p

mass lumping (B-splines!)

5. Apply ν2 post-smoothing steps as in 1. to obtain u(1,0)
h,p := u(0,ν1+ν2)

h,p and repeat steps
1.–5. until ∥ r(k)

h,p∥ < tol∥ r(0)
h,p∥ for some tolerance parameter tol.
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The complete multigrid algorithm – the inner h-multigrid part
3.1. Starting from u(k,0)

h,1 apply ν1 pre-smoothing steps:

u(k,m)
h,1 := u(k,m−1)

h,1 + Sh,1
(

fh,1 − Ah,1 u(k,m−1)
h,1

)
, m = 0, 1, . . . , ν1

3.2. Restrict the residual onto V2h,1:

r2h,1 = I2h,1
h,1

(
fh,1 − Ah,1 u(k,ν1)

h,1

)
, I2h,1

h,1 linear interpolation

3.3. Solve the residual equation by applying h-multigrid recursively or the coarse-grid solver:

A2h,1 e2h,1 = r2h,1

3.4. Project the error onto Vh,1 and update the solution:

u(k,ν1)
h,1 := u(k,ν1)

h,1 + Ih,1
2h,1 ( e2h,1) , Ih,1

2h,1 := 1
2

(
I2h,1
h,1

)⊤

3.5. Apply ν2 post-smoothing steps as in 3.1. to obtain u(k+1,0)
h,1 := u(k,ν1+ν2)

h,1 and repeat
steps 3.1.–3.5. according to the h-multigrid cycle (V- or W-cycle).
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Multigrid components

h-multigrid p-multigrid

restriction operator I2h,1
h,1 linear interpolation Ih,p

h,1 := M−1
h,p Mh,1,p

prolongation operator Ih,1
2h,1 := 1

2

(
I2h,1
h,1

)⊤
Ih,1
h,p := M−1

h,1 Mh,p,1

smoothing operator
incomplete LU factorization of Ah,p ≈ Lh,p Uh,p, whereby
all elements smaller than 10−13 are dropped and the
amount of non-zero entries per row are kept constant

Ah,p operator rediscretization
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Spectrum of the iteration matrix: Poisson on quarter annulus, p = 2
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Spectrum of the iteration matrix: Poisson on quarter annulus, p = 3
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Spectrum of the iteration matrix: Poisson on quarter annulus, p = 4
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Numerical examples
#1: Poisson’s equation on a quarter annulus domain with radii 1 and 2

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 60 3 163 3 473
h = 2−9 5 32 3 61 3 163 3 452

R. Tielen et al. 2020, DOI: 10.1016/j.cma.2020.113347
28 / 69

https://doi.org/10.1016/j.cma.2020.113347


Numerical examples

#2: CDR equation with D =
(

1.2 −0.7
−0.4 0.9

)
, v = (0.4,−0.2)⊤, and r = 0.3 on the unit

square domain

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 5 − 3 − 3 − 4 −
h = 2−7 5 − 3 − 4 − 4 −
h = 2−8 5 − 3 − 3 − 4 −
h = 2−9 5 − 4 − 3 − 4 −

R. Tielen et al. 2020, DOI: 10.1016/j.cma.2020.113347
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Computational efficiency: p- vs. h-multigrid
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Computational efficiency: {h, p}-multigrid + {ILUT,SCMS}-smoother
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Numerical examples: THB splines
#3: Poisson’s equation on the unit square domain

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−4 6 17 8 47 7 177 10 1033
h = 2−5 6 16 7 44 8 182 7 923
h = 2−6 6 17 5 43 6 201 12 1009

0 1000 2000 3000
nz = 267064

0

500

1000

1500

2000

2500

3000

R. Tielen et al. 2020, DOI: 10.1016/j.cma.2020.113347
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Block ILUT
Exact LU decomposition of the block matrix A

A11 AΓ1
. . . ...

ANpNp AΓNp

A1Γ · · · ANpΓ AΓΓ

 =


L1

. . .
LNp

B1 · · · BNp I




U1 C1
. . . ...

UNp CNp

S

 ,

with

Aℓℓ = Lℓ Uℓ, Bℓ = AℓΓ U−1
ℓ , Cℓ = L−1

ℓ AΓℓ, S = AΓΓ −
Np∑
ℓ=1

Bℓ Cℓ

Let us replace Lℓ and Uℓ by their (local) ILUT factorizations (compute in parallel!)

Aℓℓ ≈ L̃ℓ Ũℓ, B̃ℓ = AℓΓ Ũ−1
ℓ , C̃ℓ = L̃−1

ℓ AΓℓ, S̃ = AΓΓ −
Np∑
ℓ=1

B̃ℓ C̃ℓ
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Block ILUT
Approximate LU decomposition of the block matrix A

A11 AΓ1
. . . ...

ANpNp AΓNp

A1Γ · · · ANpΓ AΓΓ

 ≈


L̃1

. . .
L̃Np

B̃1 · · · B̃Np I




Ũ1 C̃1
. . . ...

ŨNp C̃Np

S̃

 ,
with

Aℓℓ = Lℓ Uℓ, Bℓ = AℓΓ U−1
ℓ , Cℓ = L−1

ℓ AΓℓ, S = AΓΓ −
Np∑
ℓ=1

Bℓ Cℓ

Let us replace Lℓ and Uℓ by their (local) ILUT factorizations (compute in parallel!)

Aℓℓ ≈ L̃ℓ Ũℓ, B̃ℓ = AℓΓ Ũ−1
ℓ , C̃ℓ = L̃−1

ℓ AΓℓ, S̃ = AΓΓ −
Np∑
ℓ=1

B̃ℓ C̃ℓ

I.C.L. Nievinski et al. Parallel implementation of a two-level algebraic ILU(k)-based domain
decomposition preconditioner, TEMA (São Carlos) 19(1), Jan-Apr 2018
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Numerical examples: Block-ILUT vs. global ILUT
#1: Poisson’s equation on the quarter annulus domain with radii 1 and 2

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 3(5) 4(7) 4(9) 3(5) 3(7) 4(11) 2(4) 2(6) 4(−) 2(4) 2(6) −(−)
h = 2−6 3(5) 3(5) 4(7) 3(5) 3(7) 4(10) 3(6) 2(7) 3(11) 3(5) 3(7) 3(10)
h = 2−7 3(5) 3(5) 3(5) 3(5) 3(6) 3(8) 3(5) 2(6) 3(10) −(5) 6(7) 3(11)

Numbers in parentheses correspond to global ILUT

R. Tielen et al. A block ILUT smoother for multipatch geometries in Isogeometric Analysis, To appear
in: Springer INdAM Series, Springer, 2021
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Numerical examples: Block-ILUT vs. global ILUT

#2: CDR equation with D =
(

1.2 −0.7
−0.4 0.9

)
, v = (0.4,−0.2)⊤, and r = 0.3 on the unit

square domain

p = 2 p = 3 p = 4 p = 5
# patches # patches # patches # patches

4 16 64 4 16 64 4 16 64 4 16 64
h = 2−5 4(6) 4(8) 7(11) 3(6) 3(9) 5(15) 2(6) 3(8) 5(15) 2(5) 2(7) 4(14)
h = 2−6 4(6) 4(7) 5(8) 3(6) 3(8) 4(10) 3(7) 3(9) 4(13) 3(7) 3(8) 3(13)
h = 2−7 4(6) 4(6) 4(7) 3(6) 3(7) 3(8) 2(7) 3(7) 3(10) 4(6) 3(8) 3(12)

Numbers in parentheses correspond to global ILUT

R. Tielen et al. A block ILUT smoother for multipatch geometries in Isogeometric Analysis, To appear
in: Springer INdAM Series, Springer, 2021
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Numerical examples: Block-ILUT vs. global ILUT
#4: Poisson’s equation on the Yeti footprint

p = 2 p = 3 p = 4 p = 5
block global block global block global block global

h = 2−3 4 5 2 4 2 4 2 4
h = 2−4 4 8 3 5 3 5 2 4
h = 2−5 4 8 3 6 3 5 3 5

R. Tielen et al. A block ILUT smoother for multipatch geometries in Isogeometric Analysis, To appear
in: Springer INdAM Series, Springer, 2021

36 / 69



Part II: Multigrid reduction in time (MGRIT)

T0 T1 · · · TNt/m

t0 t1 · · · tm tNt∆tF

∆tC = m∆tF
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S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th

Copper Mountain Conference on Multigrid Methods 2013
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Sketch of the MGRIT algorithm
Heat-Eq: Find un+1

h,p ∈ Vh,p such that

[ Mh,p + ∆tF Kh,p] un+1
h,p = Mh,p un

h,p + fh,p

Writing out the above two-level scheme for all time levels yields

Ah,p uh,p =


Ih,p

−Ψh,p Mh,p Ih,p

. . . . . .

−Ψh,p Mh,p Ih,p





u0
h,p

u1
h,p

...

uNt
h,p

 = ∆tF


Ψh,p fh,p

Ψh,p fh,p

...
Ψh,p fh,p


with

Ψh,p = [ Mh,p + ∆tF Kh,p]−1

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th

Copper Mountain Conference on Multigrid Methods 2013
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Sketch of the MGRIT algorithm, cont’d
Reordering of Ah,p into (F)ine and (C)oarse time levels yields[

AF F AF C

ACF ACC

]
=
[

IF 0
ACF A−1

F F IC

] [
AF F 0

0 S

] [
IF A−1

F F AF C

0 IC

]

with block-diagonal fine-level system matrix

AF F = INt/m,Nt/m ⊗


Ih,p

−Ψh,p Mh,p Ih,p

. . . . . .
−Ψh,p Mh,p Ih,p


︸ ︷︷ ︸

m×m blocks

and the Schur complement S = ACC − ACF A−1
F F AF C
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Sketch of the MGRIT algorithm, cont’d
Approximate the Schur complement

S =


I

−(Ψh,p Mh,p)m I
. . . . . .

−(Ψh,p Mh,p)m I

 ≈


I

−Φh,p Mh,p I
. . . . . .

−Φh,p Mh,p I


with coarse integrator

Φh,p = [ Mh,p + ∆tC Kh,p]−1

S. Friedhoff, et al. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel, 16th

Copper Mountain Conference on Multigrid Methods 2013
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The MGRIT-IGA V-cycle

l = 0 ∆t

l = 1 ∆tm

l = 2 ∆tm2

l = 3 ∆tm3

l = 4 ∆tm4

relaxation exact solve restriction interpolation
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MGRIT-IGA implementation
G+Smo: Geometry plus Simulation Modules

• open-source cross-platform IGA library written in C++
• dimension-independent code development using templates
• building on Eigen C++ library for linear algebra

XBraid: Parallel Multigrid in Time
• open-source implementation of the optimal-scaling

multigrid solver in MPI/C with C++ interface)
• extendable by overloading callback functions

Try it yourself
https://github.com/gismo/gismo/tree/xbraid/extensions/gsXBraid
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Numerical examples: Strong scaling of MGRIT-IGA
#5: Heat-Eq with h = 2−6 spatial resolution solved for Nt = 10.000 time steps with
backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)
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Numerical examples: Speed-up of MGRIT-IGA
#5: Heat-Eq with h = 2−6 spatial resolution solved for Nt = 10.000 time steps with
backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)
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Numerical examples: Weak scaling of MGRIT-IGA
#5: Heat-Eq with h = 2−6 spatial resolution solved for Nt = cores/64 · 1.000 time steps
with backward Euler method on 128 Xeon Gold 6130 CPUs (2.10GHz, 96GB, 16 cores)
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Do we really need p-multigrid or would a standard solver be good enough?
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Further reading on IGA solvers
R. Tielen, M. Möller, D. Göddeke and C. Vuik: p-multigrid methods and their comparison to
h-multigrid methods within Isogeometric Analysis, CMAME 372 (2020)

R. Tielen, M. Möller and C. Vuik: A block ILUT smoother for multipatch geometries in Isogeometric
Analysis, In: Springer INdAM Series, Springer, 2021

R. Tielen, M. Möller and C. Vuik: Multigrid Reduced in Time for Isogeometric Analysis, Submitted
to: Proceedings of the Young Investigators Conference 2021.

R. Tielen, M. Möller and C. Vuik: Combining p-multigrid and multigrid reduced in time methods to
obtain a scalable solver for Isogeometric Analysis, arXiv:2107.05337

R. Tielen: p-multigrid methods for isogeometric analysis, doctoral thesis, TU Delft, to be defended
in Oct. 2021
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Analysis-suitable parametrizations: PDE-based parametrization techniques
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Notation
Jacobian of the push-forward mapping

J =
(
xξ xη

yξ yη

)

Metric tensor of the push-forward mapping

G = J⊤J

(
xξ · xξ· xξ · xη

xη · xξ· xη · xη

)
=
(
g11 g12
g21 g22

)
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Problem formulation
Let Ω̂ = [0, 1]2 and x(ξ, η) = (x(ξ, η), y(ξ, η))⊤, x : Ω̂ → Ω ⊂ R2. Furthermore, let a
homeomorphic boundary correspondence x|Γ̂ = Γ with Γ̂ := ∂Ω̂ and Γ := ∂Ω be given.

The aim is to extend the mapping into the interior such that it is bijective and (optionally)
satisfies additional ‘grid’ quality criteria (e.g. local orthogonality of grid lines).
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Solution strategy
Let us represent the geometry mapping in terms of a given1 B-spline basis Bh,p

xh,p(ξ, η) =
∑

j∈JB

xjφ̂j(ξ, η) +
∑

j∈JI

xjφ̂j(ξ, η), xj ∈ R2, φ̂j ∈ Bh,p

Here, JB and JI are index sets that identify the basis functions that vanish and do not
vanish at the boundary, respectively. Formally, JB ∩ JI = ∅ and JB ∩ JI = {1, 2, . . . , Nb}.

In a first step, we will determine the position of the boundary control points xj , j ∈ IB

such that xh,p(ξ, η)
∣∣
Γ̂ = Γ (homeomorphic boundary correspondence).

In a second step, we will extend the geometry mapping into the interior, that is, we will
determine the position of the inner control points xj , j ∈ II such that the resulting
mapping is bijective and (optionally) satisfies additional ‘grid’ quality criteria.

1We will see that the ‘right’ basis is constructed step by step via adaptive local refinement
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Step 1: constructing B-spline boundary curves from analytic contours
Let the boundaries of Ω̂ and Ω be subdivided into four segments S = {n, s,w, e}⋃

α∈S
γα = Γ̂ and

⋃
α∈S

Γα = Γ

with corresponding homeomorphic boundary transformations

fα : γα → Γα
, α ∈ S

Furthermore, let

Ξα
ξ =

[
ξα

1 , ξ
α
2 , . . . , ξ

α
Nξ+pξ+1

]
and Ξα

η =
[
ηα

1 , η
α
2 , . . . , η

α
Nξ+pη+1

]
be uniform open knot vectors for the north/south and east/west boundary curves,
respectively, and Vα

h,p the corresponding one-dimensional B-spline spaces.
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Step 1: constructing B-spline boundary curves from analytic contours
For each α ∈ S we individually do the following:

• L2(Γ̂α)-project fα onto Vα
h,p with the two corner points constrained to the values of

fα(0) and fα(1) to obtain the initial B-spline curve fα
h,p

• define the element-wise average residual function as error indicator

E(fα
h,p) =

∑
ek∈γα

1
|ek|

∫
ek

∥fα
h,p(t) − fα(t)∥2 dt

where ek denotes a one-dimensional element on Γ̂ (defined by the unique values of the
knot vector) and |ek| its length in the parametric domain.

• Elements for which the above error indicator is too large are refined by adding an
additional knot in the center. The projection and refinement steps are then repeated
until all elements are sufficiently accurate or a maximum refinement level is reached.
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Step 1: constructing B-spline boundary curves from point clouds
In many engineering applications, boundaries are given as ordered sets of points, i.e.

Pα = {pα
1 ,pα

2 , . . .pα
Mα}, α ∈ S

For each of the four boundary segments, let us recursively define

lαi := lαi−1 + ∥pi − pi−1∥, i = 2, 3, . . . ,Mα

starting at lα1 = 0. From that we compute the arc-length parametrized sequence

tαi := lαi
lαMa

, i = 1, 2, . . . ,Mα

Furthermore, let

XB := {xj : j ∈ JB}, mα(t) :=


(t, 1) if α = n
(t, 0) if α = s
(0, t) if α = w
(1, t) if α = e
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Step 1: constructing B-spline boundary curves from point clouds
The aim is to select xj ∈ XB such that xh,p(mα(tαi )) ≃ pα

i at the parametric values.

We perform a least-squares regression (possibly with stabilization) to minimize

R(Γ,XB) = 1
2
∑
α∈S

(
Mα∑
i=1

∥∥xh,p(mα(tαi )) − pα
i

∥∥2 +γ
∫

γα

∥∥∂txh,p
∥∥2 dγ

)

where γ > 0 is a parameter and ∂t denotes the directional derivative in tangential direction.

The mismatch
rα

i = ∥xh,p(mα(tαi )) − pα
i ∥

is used as error indicator. If rα
i > tol we insert an additional knot ξα

l+ 1
2
at the center of the

knot span [ξα
l , ξ

α
l+1] ⊂ Ξα

ξ that contains the parameter value tαi .
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Step 1: result
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Overview of methods to compute inner control points (step 2)
• Algebraic methods
• Optimization based methods

• convex/non-convex cost function
• unconstrained/constrained optimization

• PDE based methods
• parabolic, hyperbolic, and elliptic schemes
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Algebraic methods
Idea: generate a mapping by evaluating a closed-form expression

Coon’s patch approach

x(ξ, η) = (1 − ξ)x(0, η) + ξx(1, η)
+ (1 − η)x(ξ, 0) + ηx(ξ, 1)

−
[
1 − ξ ξ

](x(0, 0) x(0, 1)
x(1, 0) x(1, 1)

)(
1 − η
η

)

There is no guarantee that the resulting mapping is bijective, that is, free of foldings.
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Optimization based methods
Idea: generate a mapping by solving the minimization problem∫

Ω̂
α1Q1(x) + α2Q2(x) + . . . dξ → min

x∈Ω̂
s.t. x|Γ̂ = Γ

where αk ≥ 0 and the cost functions Qk(x) are as follows:

length: Q(x) = ∥xξ∥2 + ∥xη∥2

uniformity: Q(x) = ∥xξξ∥2 + 2∥xξη∥2 + ∥xηη∥2

Liao: Q(x) = g2
11 + 2g2

12 + g2
22

area: Q(x) = detJ2

(area) orthogonality: Q(x) = g11g22 or Q(x) = g2
12

eccentricity: Q(x) =
(xξ · xξξ

g11

)2
+
(xη · xηη

g22

)2

Again, there is no guarantee that the resulting mapping is bijective.
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Optimization methods, cont’d
Penalization: a possible remedy to mitigate grid folding is to impose an infinite barrier
close to the boundary of the feasibility region, e.g.

Winslow: Q(x) = g11 + g22
det J

Constrained optimization: another approach is to augment the optimization problem with
constraints that ensure that the resulting mapping is bijective (non-trivial!).

[Hinz et al. 2020]: in the context of IGA det J is a piecewise-polynomial function of higher
polynomial degree that can be projected onto a spline basis that contains it.
A sufficient condition for det J > 0 is that all coefficients of the basis expansion are positive
(as B-spline basis functions are strictly positive on their support).

However, we need an initial guess that already satisfies the constraint.
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Elliptic grid generation (EGG)
Instead of starting from the push-forward mapping x : Ω̂ → Ω ⊂ R2 let us consider the
inverse mapping x−1 = ξ : Ω → Ω̂ and impose the Laplace problem

∆ξ = 0 in Ω s.t. ξ|Γ = Γ̂

Assuming that Ω ⊂ R2 is an open, simply connected domain that is topologically equivalent
to Ω̂ = [0, 1]2 and a homeomorphic boundary correspondence ξ|Γ = Γ̂ is given one can
show (Chap. 9, Castillo: Mathematical Aspects of Numerical Grid Generation, SIAM 1991)
that the exact solution is bijective. This only holds for planar parametrizations and only if
the target domain is convex (that’s why we start with the pull-back mapping).

Let is invert the above problem and scale it to obtain a nonlinear elliptic problem

L(x) := g22xξξ − 2g12xξη + g11xηη

g11 + g22 + ϵ
= 0 in Ω̂ s.t. x|Γ̂ = Γ

Since g11 ≥ 0 and g22 ≥ 0 the denominator is strictly positive for some parameter ϵ > 0.
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Elliptic grid generation (EGG), cont’d
Variational problem find x ∈ V2

Γ := {w ∈ H2(Ω̂) × H2(Ω̂) : w|Γ̂ = Γ} such that∫
Ω̂

σ · L(x) dξ = 0 ∀σ ∈ V2
0

The discretized version is obtained by letting V2
h,p,{Γ,0} := [span Bh,p]2 + b.c. ≈ V2

{Γ,0} for a
B-spline basis Bh,p that is at least C1 and seeking xh,p ∈ V2

h,p,Γ such that∫
Ω̂

σh,p · L(xh,p) dξ = 0 ∀σh,p ∈ V2
h,p,0

This is a nonlinear problem for the inner control points xj , j ∈ JI as the boundary control
points xj , j ∈ JB are fixed through the Dirichlet boundary condition xh,p

∣∣
Γ̂ = Γh,p.

We solve this root-finding problem with a Newton-type algorithm combined with a multigrid
solver to speed up convergence. Details can be found in the doctoral thesis by Jochen Hinz.
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Examples

Parametrization of the U.S. state of Indiana with 2338 bicubic THB-spline basis functions.
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Examples

Parametrization of North-Rhine Westphalia with 2676 bicubic THB-spline basis functions.
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Examples

Three-patch parametrization of the fluid passage of the twin-screw rotary compressor with
tensor-product bicubic+linear B-splines with special treatment for C0 multi-patch coupling.
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Design optimization of a cooling element

Design parameters

λ = (xk, yk, rk), k = 1, 2, 3, 4

Governing equation

−κ∆uλ(x) + 10−3uλ(x) = A exp
(

−∥x − x0∥
2σ2

)
in Ωλ

κ ∂nu
λ(x) =

{
−hcooling + FL sin(πy) on Γλ

L

−hcooling on Γλ \ Γλ
L

with

−hcooling =
4∑

k=1

r3
k

20∥x − xk∥2 (uλ(x) − T∞)

All details can be found in: J. Hinz et al. The role of PDE-based parameterization techniques in
gradient-based IGA shape optimization applications. CMAME 378, 113685, 2021.
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Design optimization of a cooling element, cont’d
The aim is to minimize the ‘idealized manufacturing costs’ of the cooling element such that
the heat source temperature Tλ(uλ,Ωλ) does not exceed the upper bound Tmax = 80.

Optimization problem

J(uλ,Ωλ,λ) :=
∫

Ωλ
1 dS +

4∑
k=1

100r2
k

π
→ min

λ∈Λ
s.t. Tmax − Tλ ≥ 0

where Λ is the space of all ‘admissible’ designs (30 additional inequalities), i.e. the active
coolers do not overlap and the genus of Ωλ does not change (no topology change).

Solution strategy

λℓ EGG−−→ Ωλℓ

h,p
IGA−−→ uλℓ

h̃,p̃
evaluate−−−−−→ J(uλℓ

h̃,p̃,Ω
λℓ

h,p,Ωλℓ

h,p) compute−−−−−→ dJ
dα

IPOPT−−−−→ λℓ+1

All details can be found in: J. Hinz et al. The role of PDE-based parameterization techniques in
gradient-based IGA shape optimization applications. CMAME 378, 113685, 2021.
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Design optimization of a cooling element, cont’d

Temperature field uλ0
h,p of the initial guess of the cooling element, Jλ0

h,p = 10.66
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Design optimization of a cooling element, cont’d

Temperature field of uλ4
h,p the cooling element after ℓ = 4 iterations
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Design optimization of a cooling element, cont’d

Temperature field uλ7
h,p of the cooling element after ℓ = 7 iterations

68 / 69



Design optimization of a cooling element, cont’d

Temperature field uλ10
h,p of the cooling element after ℓ = 10 iterations
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Design optimization of a cooling element, cont’d

Temperature field uλ13
h,p of the cooling element after ℓ = 13 iterations
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Design optimization of a cooling element, cont’d

Temperature field uλ15
h,p of the cooling element after ℓ = 15 iterations, Jλ15

h,p = 6.29
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Further reading on IGA parametrization techniques ahs design optimization
J. Hinz: PDE-based parameterization techniques for isogeometric analysis applications, doctoral
thesis, TU Delft, 2020

J. Hinz, A. Jaeschke, M. Möller and C. Vuik: The role of PDE-based parametrization techniques in
gradient-based IGA shape optimization, CMAME 378:113685, 2021

A. Shamanskiy, M. Gfrerer, J. Hinz and B. Simeon: Isogeometric parametrization inspired by large
elastic deformation, CMAME 363:112920, 2020

J. Hinz, J. Helmig, M. Möller and S. Elgeti: Boundary-conforming finite element methods for
twin-screw extruders using spline-based parametrization techniques, CMAME 361:112740, 2020

J. Hinz, M. Möller and C. Vuik: An IGA framework for PDE-based planar parametrization on convex
multipatch domains, In: Proceedings of IGAA 2018

J. Hinz, M. Möller and C. Vuik: Spline-based parameterization techniques for twin-screw machine
geometries, In: IOP Conf. Series: Material Science and Engineering 425(1):012030, 2018

M. Möller and J. Hinz: Isogeometric analysis framework for the numerical simulation of rotary screw
machines, In: IOP Conf. Series: Material Science and Engineering 425(1):012032, 2018

J. Hinz, M. Möller and C. Vuik: Elliptic grid generation techniques in the framework of isogeometric
analysis applications, CAGD 65, 2018
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