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Different qguantum computing principles

= Discrete-variable quantum computing (DVQC): eigenstates of a discrete
variable form the computational basis of a finite-dimensional Hilbert space
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= Continuous-variable quantum computing (CVQC): eigenstates of a
continuous variable form the basis of an infinite-dimensional Hilbert space

) = j cOlRdx,  (lx) = §(' — %)



DVQC: Gate-based universal quantum computers

= Mathematical model
|l/)out> — Um YT U1|¢0>

= Hardware realizations with ~100
superconducting qubits, e.g., by
IBM, Google, Rigetti, Intel, ...
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DVQC: Gate-based universal quantum computers

Mathematical model

|¢out> =Up - U1|¢O>

Hardware realizations with ~100
superconducting qubits, e.g., by
IBM, Google, Rigetti, Intel, ...

QTRL 4-5/ 9 (expected in 2035)

QTRL

Quantum Technology
Readiness Levels
describing the maturity
of Quantum Computing
Technology

QCs (QAs) exceed power of
classical computers

Scalable version of QC (QA)
completed and qualified in test

Prototype QC (QA) built solving
small but user-relevant problems

https://www.fz-juelich.de/ias/isc/EN/Research/ModellingSimulation/QIP/QTRL/ node.html

Copyright: Kristel Michielsen, Thomas Lippert — Forschungszentum Julich


https://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/QIP/QTRL/_node.html

DVQC: Quantum annealing

= Mathematical model = Ground-state evolution

d
o) = arg min(yp|H[y) H@®[yp(@)) = i ()
1P) A t

E,
= Path of Hamiltonians for t € [0, T] \ /

A() = Eo(t) — By (2)

H@®) =(1- f(t))HI + f(t)Hp

with easy-to-compute ground state
|y for the initial Hamiltonian H,




DVQC: Quantum annealing

= Mathematical model

o) = arg min{yp|H [3p)
)

= Hardware realizations by D-Wave
with up to 5000 qubits

= QTRL8-9

QT R L QCs (OAs) exceed power of )
classical computers

Quantum Technology P

Readiness Levels Scalable version of QC (QA)

describing the maturity completed and qualified in test

of Quantum Computing

Technol ogy Prototype QC (QA) built solving

small but user-relevant problems

https://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/QIP/QTRL/ node.html

Copyright: Kristel Michielsen, Thomas Lippert — Forschungszentum Julich


https://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/QIP/QTRL/_node.html

CVQC

= Hardware realizations by Xanadu a
(photonic), concepts for trapped
ions [Maslennikov et al. 2019] @ @

= Comprehensive introduction by ki : —emes e
S.Buck et al. (2021) -

= Quantum search by A.K. Pati et al. . 0

(2020) and D. Su et al. (2018)

Squeezed State l Squeezed + Displaced


https://ieeexplore.ieee.org/document/8873188
https://arxiv.org/abs/2107.02151
https://arxiv.org/abs/quant-ph/0002082
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.032316

Different interpretations of the word “quantum algorithm”

= Theoretical analysis of an algorithm — HHL paper (2008) claims
exponential speedup for “solving” Ax=b under conditions on the matrix A

= Application-specific theoretical analysis — Montanaro et al. (2016) shows
that no exponential speedup for P,-FEM can be achieved for fixed dimension

= Application-specific circuit + cost estimation — Cao et al. (2013) present
textbook quantum circuits for solving Poisson’s equation with FDM

= Execution of application-specific circuit on QVM — Wang et al. (2020)
demonstrate a fast Poisson solver on Sunway TaihuLight (yes, it works &)

= Execution of application-specific circuit on QPU — Morrell et al. (2021)
show that solving a 2x2 system on IBM-Q fails due to noise (doesn’t work <)



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.032324
https://iopscience.iop.org/article/10.1088/1367-2630/15/1/013021
https://link.springer.com/article/10.1007/s11128-020-02669-7
https://arxiv.org/abs/2108.09004

What should we aim for?

exponential
speedup

"some”
speedup

M. Troyer: super-quadratic

speedup is a must because

= operations will be 10-12
orders of magnitude slower

= |/O will be 10.000x slower

“It works!”

NISQ future QCs


https://www.youtube.com/watch?v=WY3htdKUGsA

Quantum algorithms for solving PDEs

| Schrédinger’s equation Hamiltonian simulation
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4 discretization
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QML, QNPU, lattice Boltzmann, ...

CVQC
PDE | CVQC algorithms: QML, ...

Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.


https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Quantum algorithms for solving PDEs

Schrodinger’s equation

Y = —iHY

Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.


https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Schrodinger’s equation

Given: x = Ax, x(ty) = x, P = —iHY

Von Neumann measurement [von Neumann 1932, Childs et al. 2002]

(0 iAt

O ) s H=iaT®10),(11 - 14 ® [1),0]

= State after Hamiltonian simulation [Leyton, Osborne 2008]

© (jHt)¥
k=0 k!

W) = e [)[0), = ) D)I0), = [)0), + tAl)|1)p — -

= Post-selection on “1” after measurement on the ancillary qubit

=  Procedure from [HHL 2008] to correct for first-order truncation

= Caveat: success probability %tz (roughly 16/t? ‘fresh’ states [i) needed)


https://press.princeton.edu/books/hardcover/9780691178561/mathematical-foundations-of-quantum-mechanics
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.66.032314
https://arxiv.org/abs/0812.4423
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502

Schrodinger’s equation

Given: x = Ax, x(ty) = x, P = —iHY

Matrix decomposition A = Ay + A,

= Baker—Campbell-Hausdorff formula

LAt Ayt |

eldt = ¢ ethat if [Ay, Al =0

= Hamiltonian simulation of 4;; and 4, via unitary dilation of 0 = e44t

0 \/1—02> R _
[P)|0) = O[)|0) + V1 = 0?[)|1)
(\/1—02 -0 v v v

= Black-Scholes equation [Gonzalez-Conde et al. 2021]

fe = af + bfy — cfix = (ib(=i0,) + al + c(—id,)*)f
= Caveat: exponential scaling in t if [Ay, A4] # 0 [Berry 2014]



https://arxiv.org/abs/2101.04023v3
https://iopscience.iop.org/article/10.1088/1751-8113/47/10/105301/meta

Schrodinger’s equation

Given: x = Ax, x(ty) = x, P = —iHY

Derivative of Schrodinger’s equation [Costa et al. 2019]

Y = _Hzl/)

Hermitian matrix

H=(pr o) = =% 5)

Wave equation
Ouef = —Af ~ Af = find A= BB"

Example: graph Laplacian

1 e=Ww),v<w 1 -1 0 0
Bev = _1 e = (v, W), v>w = Bev = (O . . 0
0 otherwise O 0 1 -1


https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.012323

Quantum algorithms for solving PDEs

Hamiltonian simulation

o ) = e~ HE[y)

Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.


https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Hamiltonian simulation

Hamiltonian simulation (approach #1) 1)) = e [1ho)

= Given: Hamiltonian H (2"x2™ Hermitian on n qubits), time t, and error ¢
= Goal: find an algorithm to approximate U such that ||U — e[| < e

= Decomposition into local Hamiltoniane Tl Invd 100A1

) _ (A+B)t+ [AB] +0(t3)

=  Suzuki-Trotter decomposition [Suzuki 1991]

r

—iHt . g —iHeE
e ~ e ), r>1
=1


https://www.science.org/doi/10.1126/science.273.5278.1073
https://aip.scitation.org/doi/10.1063/1.529425

Hamiltonian simulation

Hamiltonian simulation (approach #2) ) = e~ 1io)

= Given: Hamiltonian H (2"x2™ Hermitian on n qubits), time t, and error €
= Goal: find an algorithm to approximate U such that ||U — e[| < e

= Truncated Taylor expansion

et =] — iHt —1H?t? + LH3¢3 + -
= Linear combination of unitary operators [Berry et al. 2015]

—_— n __
H = Z agH{; = H" = 2 a{)l ...a{)kH{)l '"an
»f) ’gl,,’gn



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.090502

Hamiltonian simulation

, , : . : _ ,—iHt
Hamiltonian simulation (complexity) ) = e [Yo)
_ Gate complexity [1] Query complexity [2]-[5]
1st-order Trotter O(t*/e) O (Sst(st/e)g)

Tavior expansion O tlog®(t/e) i $*||H llmax log s* | HImax/€
YR loglogt/e l0g10g 5[ Hl|max/€
Quantum walk O(t/e) O(s||H|lmax t/VE)

Quantum signal log1/e
Orocessing O(t +log1/€) 0 <St”H”max + loglog 1/

[1] Childs 2017, [2] Kothari 2017, [3] Berry 2015, [4] Berry 2015, [5] Low 2017


https://www.pnas.org/content/115/38/9456
https://www.youtube.com/watch?v=PerdRJ-offU
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.090502
https://ieeexplore.ieee.org/document/7354428
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.010501

Leyton and Osborne 2008

= First-order systems of the form
f1(x) N 0 N 5
x(t) = : ) fi (x) = Z akjl XXy, Z |x]| =1
fn(x) ,1=1 =1
= Example: Orszag-McLaughlin dynamical system

X] = Xj+1Xj+2 + Xj_1Xj_2 - ij+1Xj_1, ] = 1, .. N
* |a;;| =0(1) and 4 is s-sparse, i.e., each f; involves at most s/2 monomials
and each variable x; appears in at most s/2 polynomials f;

= Lipschitz constant: ||[F(x —y)|| < 0) - [|lx —y|[inball ||x]| < 1, ||yl £ 1
= We assume that the initial state can be prepared efficiently


https://arxiv.org/abs/0812.4423

Leyton and Osborne 2008

Schrodinger’s equation Hamiltonian simulation .
— M

Y, = —iHY ) = e Htah,)

= Explicit Euler method

W'y = eAY)0) = [Y(t+ AD)) = [P(1)) + AtAlp(t))
= Success probability of a single step ;At?; 16/At? ‘fresh’ [1)) needed

m m
= Temporal scaling (Al—fz) , Spatial scaling (Al—fz) log N for m steps

= Hamiltonian simulation must be performed with error § < (30(1)) ™" to
ensure that the m-th iterate is exponentially close to the desired state


https://arxiv.org/abs/0812.4423

QuDiffEq
= Quantum algorithms for linear and . —
nonlinear differential equations A .

= Papers with Code \

= [Leyton, Osborne 2008] \ \

= [Berry et al. 2010] .

= [Xin et al. 2018] >~

0.5 \\\

561 == xz - 3X12
.7&2 = _xz - x1x2


https://physics.paperswithcode.com/paper/a-quantum-algorithm-to-solve-nonlinear
https://physics.paperswithcode.com/paper/high-order-quantum-algorithm-for-solving
https://physics.paperswithcode.com/paper/a-quantum-algorithm-for-solving-linear

Gonzalez-Conde et al. 2022 u

Black-Scholes equation for European put options
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Precision comparable to classical methods with 10 qubits and 94 entangling
gates on fault-tolerant QC. Complexity O(poly n). Success probability 0.6.


https://arxiv.org/abs/2101.04023

Suau et al. 2022

Wave equations
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https://dl.acm.org/doi/10.1145/3430030

Quantum algorithms for solving PDEs

linear system

Ax =D

Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.


https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

linear system

Given: x = Ax + b, x(ty) = x, ‘ Ax = b

Unroll Euler method in time

O(poly(1/e))
xm

I 0 0 0 X0
—(I+Athd) I 0 0 X1 | _ [ Atb
0 0 —(I+Athd) I Xm Atb

Apply HHL-type algorithm to obtain the solution at all times

|x) = zm |65 ]7)

j=0

Application and analysis for the heat equation yields poor
scaling with precision [Linden et al. 2020] even with the
improved variant of the QLSA ‘solver’ [Berry et al. 2017]



https://arxiv.org/abs/2004.06516
https://link.springer.com/article/10.1007/s00220-017-3002-y

Solution: x(t) = e?xy + (et —NA™b

= Truncated exponentials

k

T
j=0J"

(eZ—-1)z71 = Z

= Linear system [Berry et al. 2017]

m-1
i (AAYI) = 0)lxo) +AL )
]:
I
—AtA I
— AtA/2 I
—AtA/3 1
-1 -1 -1 -1 I
—AtA I
—AtA/2 I
—AtA/3 1

-1

-1

-1

I
-1

linear system
Ax =1Db

O(poly log(1/¢))

k

7)1

j=1 J!

)

L1
-1 1

2,3,2

j(k +1) + 1)|b)



https://link.springer.com/article/10.1007/s00220-017-3002-y

linear system

Given: x = A(t)x + b(t), x(ty) = xg Ax=b

O(poly log(l/e))
= Chebyshev pseudo-spectral approximation ,

" l
MO =) Gl = %)= AW +b() & =cos—

= Rescaled differential equation (Childs and Liu 2020)

tn+1 tn

x(y(@®) = -=—="HAy®)x(y@®) + b(y@®)],

where y: [t", t"t1] » [-1,1] is defined as y:t » 1 — %

= Combined with the C,, . ,-approach from [Berry et al. 2017] this extends
their work to ODEs with time-dependent coefficient matrices and vectors



https://link.springer.com/article/10.1007/s00220-020-03699-z
https://link.springer.com/article/10.1007/s00220-017-3002-y

Quantum algorithms for solving PDEs

Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.


https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

QLSA
Quantum linear ‘solver’ algorithm _

O(s\kNlog1l/e)

= Original HHL algorithm [Harrow et al. 2008] O(s%k?log(N) /e)

= Problem:a = (xT|M|x) s.t. Alx)=1|b)

= |mproved versions of HHL

= VTAA [Ambainis 2010] O(s?klog3 klog(N) /€3)
= AQC [Subasi et al. 2019] 0 (x? log(k)/€)
= AQC [An and Lin 2019] O(x poly log(x/€))

= QLSA w/o phase estimation [Childs et al. 2017] O(poly log(1/€))

= Dense matrices [Wossnig et al. 2018] O(x%VNpoly log(N) /e



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/1010.4458
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.060504
https://arxiv.org/abs/1909.05500
https://doi.org/10.1137%2F16m1087072
https://doi.org/10.1103%2FPhysRevLett.120.050502

Original HHL algorithm

21
A=2]_=O lwdwl, [ b=)  biw),

Inverse Quantum Phase Estimation

\ ‘ Quantum Phase Estimation (QPE) } i
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Figure 1 from [Morrell and Wong 2021]



https://arxiv.org/abs/2108.09004

State preparation: [Y;nit) = Uprepl0)

General states cannot be prepared efficiently, not even approximated
N grid points = n =IlogN qubits = |Uprep| = O(N)

uniformly controlled rotations [Mottonen et al. 2004] using 0(2™) gates

Certain states of the form [y) = };; \/p; |i) can be prepared efficiently, e.g.,
using quantum GANs [Zoufal et al. 2019] using O(poly n) gates

Reducing time complexity by adding ancillary qubits
= Low-depth approach: 0(n?) using 0(2"?) ancillae [Zhang et al. 2021]
= s-sparse states: ©(logns) using O(nslogs) ancillae [Zhang et al. 2022]



https://arxiv.org/abs/quant-ph/0407010
https://dx.doi.org/10.1038/s41534-019-0223-2
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.043200
https://inspirehep.net/literature/2020777

Does any of this work in practice?

= QLSAforAx =0»b

= HW-realization for 2x2 matrix [Cai et al. 2013], [Barz et al. 2013], [Pan
et al. 2013], and 8x8 matrix [WWen et al. 2018]

= 2X2,4X%4, and 8x8 on IBM, Rigetti, lonQ [Cornelissen et al. 2021]

= QOther authors report that “due to imperfection and noise in a real
quantum computer [ibmq_santiago], the hardware execution of the
same circuit does not give satisfactory results” [Morrell and Wong 2021]

= Okay, so no chance for solving ODEs / transient PDEs with QC in near term

= How about solving Poisson’s equation discretized by FDM / FEM?


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.230501
https://www.nature.com/articles/srep06115
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.022313
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.012320
https://arxiv.org/abs/2104.10698
https://arxiv.org/abs/2108.09004

O(s\VkNlog1/e) versus O(poly log(1/€))

S v/

= (General state preparation is exponentially expensive, i.e., O(N)
= Polynomials/functions with local support can be prepared efficiently

=k =0(N%?) in standard FEM = no exponential speedup
= Quantum-SPAI precondioner, i.e. PAx = Pb [Clader et al. 2013]
= (O(s?) queries to PA-oracle; O(s?3) runtime
= k=0(1)ork=0(ogN)

g =7

= 1/e = O(N) in most discretization schemes = no exponential speedup


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.250504

No exponential speedup for elliptic problems for fixed d

m w/o preconditioner optimal preconditioner

d+1 d
Conjugate Gradients o Ixl2) 2 5 1x[2))\2
€ €
([ xll1]x]3 _
Childs et al. 2017 0 ((M)) 0 (”x”1>
€ €
[Montanaro, Pallister 2016]: O(h(n)) = 0(h(n)log*n)

= State preparation + g-SPAI preconditioner + PA-oracle in O(log(1/¢))

= To distinguish between two e-close states requires 0(,/1/¢) queries


https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.032324

Quantum algorithms for solving PDEs

Schrodinger’s equation Hamiltonian simulation

Yy = —iHY \ [) = et ah,)

linear system
Ax =b
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Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.


https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Quantum algorithms for solving PDEs

linear system
Ax =b
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Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.


https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Variational quantum algorithms [Cerezo et al. 2020]

% (©)) = V(0)[0) C(0) = (Y (©)|H|p(©))

Classical optimizer 0 = m@in C(0)



https://www.nature.com/articles/s42254-021-00348-9

Variational quantum linear solver [Bravo-Prieto et al. 2020]

Efficient(!) decomposition into unitaries + efficient(!) state preparation

A=) ad,  Ib)=Blo)
k

Cost function

|®) L |b) = C(©) large B
|®) || |[b) = C(0) small } |P) = Aly(0))

Ground-state Hamiltonian
H = AT(I - |bXb])A

Cost function

C(0) = (Y (O)|H|P(0)) = (P|P) — (P[b}b|P)


https://arxiv.org/abs/1909.05820

Variational quantum linear solver [Bravo-Prieto et al. 2020]

Efficient(!) decomposition into unitaries + efficient(!) state preparation

A=) ad,  Ib)=Blo)
k

Cost function

|®) L |b) = C(©) large B
|®) || |[b) = C(0) small } |P) = Aly(0))

Ground-state Hamiltonian
H = AT(I - |bXb])A

Normalized cost function
[{(P|b)|*

C®) =1



https://arxiv.org/abs/1909.05820

Variational quantum linear solver [Bravo-Prieto et al. 2020]

= Towards an implementable cost function
(@] D) = Zklc;cl(o|vf(@)A£AlV(@)|o)

(@|b) = Xk lc;;cl(0|B+AlV(®)|0)(0|B+ARV(®)|0)

1

= [Liu et al. 2021]: oot S /
= Decomposition of the d-dimensional ose // s
Poisson matrix (FDM) into O(log N) st} / o |e—eaei]
terms consisting of identities and Soos /
Y5 spin operators |1){(0] and |0)(1] 0ssy
= Difficulties to convergence the e
classical optimizer for 50-100 qubits oss

= Fully connected measurement circuits T2 s 4 s s 7

Number of layers


https://arxiv.org/abs/1909.05820
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.022418
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Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.
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Summary and recommendations

= ODEs/ transient PDEs (long term)
= ‘smart’ time integrators that reduce the condition number (QLSA)

= Steady-state PDEs (near to mid term)
= ‘smart’ discretization that reduce the condition number (QLSA)
= problems that admit efficient matrix decompositions (V-QLSA)

= Service to QC
= improve VQAs using classical CSE techniques



