
On the impact of quantum computing technology on future
developments in high-performance scientific computing

Matthias Möller, Numerical Analysis, 
Delft Institute of Applied Mathematics, TU Delft

M. Möller and C. Vuik

Ethics and Information Technology

December 2017, Volume 19, Issue 4, pp. 253-269 
DOI: https://link.springer.com/article/10.1007/s10676-017-9438-0

https://link.springer.com/article/10.1007/s10676-017-9438-0

Outline
• High-performance scientific computing

• Past, present and possible future trends

• FEM making friends with exotic hardware

• Q-accelerated scientific computing

• Potential use case examples

• Challenges and open problems

History of computing

• Redesign of algorithms is mandatory to
exploit compute capabilities of modern
hardware (multi-threading, vectorisation)

• “Algorithm follows hardware”

2001: IBM Power4 
first multi-core CPU

1971: Intel 4004 first 
commercial microprocessor

2017: Intel Xeon Platinum 
28 cores and AVX-512

1976: Cray-1

first vector processor

History of computing

Credit: K. Rupp, 2015

Free lunch is over

History of accelerated-computing

2006: GeForce G80 
first CUDA-capable GPU

1999: GeForce 256 
“the world’s first GPU”

2017: Tesla V100

2013: Intel Xeon Phi

2017: NEC

SX-Aurora

History of accelerated-computing

Credit: TOP500, Nov 2017

History of accelerated-computing

2006: GeForce G80 
first CUDA-capable GPU

1999: GeForce 256 
“the world’s first GPU”

2017: Tesla V100  
Tensor Cores (ML)

2013: Intel Xeon Phi

2012: Maxeler Technologies

FPGA-based DataFlow Engine

(Maximum Performance Comp.)

2016: Google TPUs (ML)

2017: NEC

SX-Aurora

20??: HIVE

• Accelerated-computing is mainstream but
still requires redesign of algorithms

• Application-specific hardware designs are
becoming more popular paving the way for
special-purpose functional acceleration

• “Hardware follows application”

Future trends in scientific computing
• Heterogeneous (most probably cloud-based) HPC clusters

• multi-core/socket CPU-based host nodes

• general-purpose many-core accelerators (GPUs, MICs, VPs)

• special-purpose functional accelerators (TPUs, FP{G,A}As, QC?)

Future trends in scientific computing
• Expected paradigm shifts (“since the free lunch is over”)

• closer co-design of compute hardware and applications

• more fine-grained application-specific solution algorithms

• new concepts like in-memory-computing, computing in space

• rediscovery of ‘old’ approaches

• mixed-precision: Wilkinson ’63, Strzodka et al. ’08, NVIDIA ’16

• A

The Finite Element Method
From textbook version to HPC implementation

FEM in a nutshell
• Poisson eq: -uxx-uyy=f in Ω s.t. u=0 on 𝛤

• Discretisation by the finite element method:

• Basis expansion of the solution  
 

 uh(x,y)=u1B1(x,y)+…+unBn(x,y)  

• Assemble sparse stiffness matrix Ah  
 

 aij = ∫Ω Bi,xBj,x + Bi,yBj,y dΩ 
 

and right-hand side vector fh  
 

 fi = ∫Ω Bi f(x,y) dΩ

• Solve linear system Ahuh=fh

Credit: Comsol

User-definable

basis functions

Unknown

coefficients

FEM in a nutshell
• Poisson eq: -uxx-uyy=f in Ω s.t. u=0 on 𝛤

• Discretisation by the finite element method:

• Basis expansion of the solution  
 

 uh(x,y)=u1B1(x,y)+…+unBn(x,y) 

• Assembly of stiffness matrix Ah  
 

 aij = ∫Ω Bi,xBj,x + Bi,yBj,y dΩ 
 

and right-hand side vector fh  
 

 fi = ∫Ω Bi f(x,y) dΩ

• Solve linear system Ahuh=fh

Credit: Wikipedia

Q-accelerated integration (Heinrich 2002)?

FEM in a nutshell
• Poisson eq: -uxx-uyy=f in Ω s.t. u=0 on 𝛤

• Discretisation by the finite element method:

• Basis expansion of the solution  
 

 uh(x,y)=u1B1(x,y)+…+unBn(x,y) 

• Assembly of stiffness matrix Ah  
 

 aij = ∫Ω Bi,xBj,x + Bi,yBj,y dΩ 
 

and right-hand side vector fh  
 

 fi = ∫Ω Bi f(x,y) dΩ

• Solution of linear system Ahuh=fh

Credit: Wikipedia

Beyond textbook FEM

HPC is a challenge HPC-suitable by design
Credit: J. Hinz, TU Delft

An exotic FEM solver
• Matrix-free solver for quadratic B-

Spline basis functions; on-the-fly
calculation of matrix coefficients

• MAX4/MAX5 implementations

Credit: R. v. Nieuwpoort, TU Delft

70
7.

A
m

at
ri

x-
fr

ee
da

ta
fl

ow
im

p
le

m
en

ta
ti

on

7.8. Build results 71

This can be solved, but this requires a re-design into multiple kernels. Unfortunately, there was not
enough time to do this. Instead, some optimizations were used, such as hardcoding the mapping, which
allows to save some resources. When a 32-bit floating point format is used and pipelining is mostly disabled,
the design fits on an older DFE, the MAX4:

FINAL RESOURCE USAGE
Logic utilization: 249336 / 262400 (95.02%)
Primary FFs: 338724 / 524800 (64.54%)
Secondary FFs: 60228 / 524800 (11.48%)
Multipliers (18x18): 1074 / 3926 (27.36%)
DSP blocks: 546 / 1963 (27.81%)
Block memory (M20K): 1892 / 2567 (73.70%)

The design meets timing at the very low clock speed of 20 MHz. While the single precision datatype that
is used is not precise enough to converge well, the DFE implementation still works. So while the implemen-
tation is not of practical use, it does show that even an unoptimized DFE implementation can be faster than
a CPU implementation.

The problem is illustrated in figure 7.6. It can be seen that, while both versions use the BiCGSTAB method,
the CPU version converges faster, and to a more accurate solution, due to the higher precision that the CPU
version uses.

Figure 7.6: A comparison of the convergence speed of the CPU and the DFE. Both use the BiCGSTAB method, but the CPU uses higher
precision.

Even with this low clock frequency, the DFE version is about five times as fast as the CPU version: 1000
BiCGSTAB iterations are done in about 10 seconds instead of the 50 seconds that the CPU version takes.

50 s on CPU @2.0GHz (DP)

10 s on MAX4 @20MHz (SP) <- 5x faster

25-30x faster (projected) on MAX5 with

48bit custom data format for reals

Another exotic FEM solver
• Solution to the linear system

Ahuh=fh can be interpreted as
the steady-state limit of the
initial value problem 
 
 duh(t)/dt = fh-Ahuh(t),  
 uh(0) = u0 

• Acceleration potential using
(virtual) analog computing

1
s

1
s

1/16

1/16

1
s

1/16

1
s

1/16

1
s

1/32

2

2

2

2

x_1

x_2

x_3

x_4

x_5

Another exotic FEM solver
• Solution to the linear system

Ahuh=fh can be interpreted as
the steady-state limit of the
initial value problem 
 
 duh(t)/dt = fh-Ahuh(t),  
 uh(0) = u0 

• Acceleration potential using
(virtual) analog computing

• Next steps:

• (Ah, fh)/s—ts value-time scaling to
reduce the dynamic range

• “Assembly” of Ah, fh via steady
state continuous process

• “Reduction” of uh into scalar
output quantity J=uhTMuh

• Prototype FPGA-implementation

• Inspiration for Q-FEM solver(?)

Quantum Computers 
The next step in accelerator technologies?

Simulation-based forecasting
• PDE-based mathematical model: 

physical conservation laws

• Discretisation in space:

 5 million grid points
x 100 vertical levels
x 10 prognostic variables
= 5 billion unknowns in space

• Discretisation in time:

864 time steps for 72h-forecast

Credit: K. Cantner, AGI

Simulation-based forecasting
• Quantity of interest (QoI): 

Time evolution of field variables

• ECMWF at Reading, UK today: 

simulation of single 10-day forecast in
one hour with 10,000 processors

• Future challenges: 
increase model resolution by factor
2,000 (1km, 200 levels, 100 variables)
and time-step size to improve forecast
accuracy requires 20 million processors!

• Suitable for Q-acceleration:  
no, due to large size of output data

Credit: Cameron Beccario, https://earth.nullschool.net/

Simulation-based engineering
• QoI: key performance functionals 

“find J1(U), J2(U),… such that U solves the
discretised problem formulation”

• Example: cruise L/D (higher is better) 
B747-200 (1969): 15.3 
B777-200 (1994): 19.3

• Future challenges: 
increase model resolution and complexity;
turbulence modelling; CAD integration;
virtual twins for lifetime analysis

• Suitable for Q-acceleration: 
maybe, since it fits into QLSA setup but
the problem sizes might be too large

Lift

drag

resulting force

Credit: Siemens

Simulation-based optimisation
• Input: design parameters p1, p2,…

controlling the shape of the wing

• QoI: Pareto front of optimal design
parameters p* such that the solutions U(p*)
to the discretised PDE problems maximise
‘all’ key performance functionals f1, f2,…

• Solution approaches: pk → pk+1

• Gradient-free methods: evolution-
inspired algorithms for generating
populations of parameters

• Gradient-based methods: choose
parameters ‘in the direction’ that brings
U(pk+1) closer to an optimal state

Simulation-based optimisation
• Future challenges: 

“curse of dimensionality”; efficient
exploration of entire design space

• Suitable for Q-acceleration: 
maybe, since efficient quantum
algorithms for gradient estimation
and quantum-based optimisation
exist, however, mainly for discrete
optimisation problems

Uncertainty quantification
• Ensemble forecasting: 

Monte-Carlo analysis accounting for
uncertainties in initial conditions,
mathematical model, data etcetera

• QoI: range of possible scenarios (in
terms of target functionals) and their
likelihood of occurrence

• Suitable for Q-acceleration: 
maybe, since QC requires multiple
simulation runs anyway but the
problem sizes might be too large

Credit: ECMWF

Quantum linear solvers
• QLSA: HHL ’08, Ambainis ’10, Clader et al. ’13, Childs et al. ’15, Kerenidis ‘17

• Input:

• NxN s-sparse Hermitian matrix A with condition number ϰ=||A|| ||A||-1 and
eigenvalues 1/ϰ ≦ |ƛi| ≦ 1, and a right-hand side unit vector f

• Output:
• Scalar QoI J(u)=uTMu (M is a matrix) such that u solves Au=f

• Complexity:

• Best classical algorithm O(ϰ1/2 N)

• Quantum algorithms O(ϰlog3ϰ logN)—O(ϰ2 logN) ⬅ exponential speed-up

Q-FEM solver for Poisson’s equation
• Ah is s.p.d., s-sparse, well-conditioned ✔

• fh is unit vector (after dynamic range scaling) ✔

• Matrix entries in row are accessible in time O(s) ✔

• Efficient ‘preparation’ of right-hand side quantum state (✔)

• Can we compute ||uh||2 = uhTuh where uh solves Poisson’s equation?

Q-FEM solver for Poisson’s equation

• “when one compares quantum and classical algorithms for the FEM fairly by considering
every aspect of the problem – including the complexity of producing an accurate
approximation of the desired classical output – an apparent exponential quantum
advantage can sometimes disappear”

• “there are still two types of problem where quantum algorithms for the FEM could achieve
a significant advantage over classical algorithms: those where the solution has large
higher-order derivatives, and those where the spatial dimension is large”

Q-accelerated scientific computing
• Challenges

• Sufficient #qubits for realistic problem sizes

• Q-system hw/sw infrastructure, error correction

• Open problems

• Real numbers (IEEE-754, continuous encoding, custom formats)

• Divide-and-conquer/domain decomposition (no-cloning principle!)

• Validation of results (using classical supercomputers?)

• Reproducibility of simulations (but that’s a problem in HPC as well)

Let’s get ready for Q-accelerated scientific
computing and exchange ideas both ways!

Thank you for your attention!

