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Quantum supremacy using a programmable 
superconducting processor
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Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, 
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Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1, 
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,  
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, 
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,  
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,  
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,  
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,  
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1, 
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Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,  
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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Recent advances in quantum computing have resulted in two 53-qubit processors: one from our group in IBM and a device described by 
Google in a paper published in the journal Nature. In the paper, it is argued that their device reached “quantum supremacy” and that “a state-
of-the-art supercomputer would require approximately 10,000 years to perform the equivalent task.” We argue that an ideal simulation of the 
same task can be performed on a classical system in 2.5 days and with far greater fidelity. This is in fact a conservative, worst-case estimate, 
and we expect that with additional refinements the classical cost of the simulation can be further reduced.
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quantum-accelerated scientific computing

§ concepts
§ qubits, gates, and simple algorithms

§ programming tools
§ LibKet and generation of resource-optimal quantum circuits

§ applications
§ quantum linear solvers and optimization algorithms

§ summary
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qubits, gates, and simple algorithms

concepts
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von Neumann model
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central processing unit

memory unit

control unit

arithmetic/logic unit

input
device

output
device

int a = 1;
int b = 2;
int c = a+b;



von Neumann model
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central processing unit

memory unit

control unit

arithmetic/logic unit

input
device

output
device

int a = 1;
int b = 2;
int c = a+b;

10001100000010100000110000100000

10001100010010110000001001100010

10101101100010100000010110100110

10000100100010100000010000010011

ld r0 mem(a)
ld r1 mem(b)
add r0 r1 r2
sd r2 mem(c)



a quantum computer model
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4 K ~ -269℃

20 mK ~ -273℃

300 K ~ 27℃

§ superconducting
§ trapped ion
§ quantum dots
§ NV centers
§ photonics (room temperature)



IBM’s 27-qubit processor
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data is ‘stored’ in qubits
and can by manipulated
by 1- and 2-qubit ‘gates’

2-qubit gates between nonadjacent 
qubits require additional ‘swap’ ops

controlled-NOT gate 
between q3 and q9

swap q3 q5
swap q9 q8
cnot q5 q8



quantum bits

§ qubit: quantum version of a bit

| ⟩𝜓 = 𝛼| ⟩0 + 𝛽| ⟩1 , 𝛼, 𝛽 ∈ ℂ, 𝛼 ! + 𝛽 ! = 1

§ computational basis

ℰ = | ⟩0 , | ⟩1 = 1
0 , 01

§ coefficients 𝛼, 𝛽 are the probability amplitues and 𝛼 ! and 𝛽 ! are the 
probabilities of measuring the basis states | ⟩0 and | ⟩1 , respectively

12



single-qubit states

§ Bloch sphere

| ⟩𝜓 = 𝑒"# cos
𝜃
2
| ⟩0 + 𝑒"$ sin

𝜃
2
| ⟩1

§ polar angle 𝜃 ∈ 0, 𝜋

§ azimutal angle 𝜑 ∈ [ )0,2𝜋

§ global phase 𝛿
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quantum gates

§ Pauli X § Hadamard

15

§ unitary operations represented by unitary matrices
§ all quantum gates are reversible, e.g. 𝐻𝐻% = 𝐼

X 0 1
1 0 H 1

2
1 1
1 −1



single-qubit gates

16

X

H

| ⟩0 | ⟩1

| ⟩0 | ⟩+ ≔
1
2
| ⟩0 + | ⟩1



single-qubit gates
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X

H

| ⟩0

| ⟩1 | ⟩0

| ⟩1

| ⟩0

| ⟩1

| ⟩+ ≔
1
2
| ⟩0 + | ⟩1

| ⟩− ≔
1
2
| ⟩0 − | ⟩1



U2 U3U1

single-qubit circuits

§ single-qubit gates 𝑈& are unitary matrices, i.e.

𝑈&𝑈&
% = 𝑈&

%𝑈& = 𝐼

§ quantum circuits are sequences of matrix-vector multiplications

| ⟩𝜓'() = 𝑈*𝑈!𝑈+ | ⟩𝜓",

18

ψin ψout



multi-qubit states

§ | ⟩𝜓- = 𝛼-| ⟩0 + 𝛽-| ⟩1 = 𝛼-
1
0 + 𝛽-

0
1

§ | ⟩𝜓+ = 𝛼+| ⟩0 + 𝛽+| ⟩1 = 𝛼+
1
0 + 𝛽+

0
1

§ tensor product of two single-qubit states

| ⟩𝜓- ⊗ | ⟩𝜓+ = 𝛼-𝛼+| ⟩00 + 𝛼-𝛽+| ⟩01 + 𝛽-𝛼+| ⟩10 + 𝛽-𝛽+| ⟩11 =: | ⟩𝜓-𝜓+

with
𝛼-𝛼+ ! + 𝛼-𝛽+ ! + 𝛽-𝛼+ ! + 𝛽-𝛽+ ! = 1

19

tensor product

| ⟩𝐴 ⊗| ⟩𝐵 = 𝑎++𝐵 𝑎+!𝐵
𝑎!+𝐵 𝑎!!𝐵



multi-qubit states

§ tensor product of 𝑛 single-qubit states

| ⟩𝜓-…𝜓, = 𝛾-…--| ⟩0…00 + 𝛾-…-+| ⟩0…01 +⋯+ 𝛾+…++| ⟩1…11

§ an 𝑛-qubit register can hold the 2, inputs ‘simultaneously’ in superposition

§ a few words of caution
§ it is impossible to obtain the 𝛾’s; one obtains a single binary answer, 

say, | ⟩001101 with probability 𝛾--++-+ ! upon measurement

§ a single run of a quantum circuit is not very useful; many runs are 
required to measure the correct answer with sufficient certainty

20



example: 3-bit password

password:
____

password:
____

classical: quantum:

Grover’s 
algorithm



Grover’s algorithm

§ quantum circuit on QI

§ quantum circuit on IBM

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

000 001 010 011 100 101 110 111

QI ideal QI noise IBM ideal
IBM nairobi IBM quito

22

noise



multi-qubit gates

𝐻⊗ 𝐼| ⟩00 =
1
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

1
0
0
0

=
1
2

1
0
1
0

=
| ⟩00 + | ⟩10

2
=

, ⟩0 + | ⟩1 ⊗ | ⟩0
2

23

H

I

| ⟩0

| ⟩0

| ⟩Ψ'() = 𝐻⊗ 𝐼| ⟩Ψ",| ⟩Ψ",



entanglement

𝐶𝑁𝑂𝑇 𝐻 ⊗ 𝐼 | ⟩00 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
2

1
0
1
0

=
| ⟩00 + | ⟩11

2

§ Bell state is maximally entangled. By measuring one of the two qubits one 
knows the value of the other qubit without a further measurement

24

0
0,2
0,4
0,6

00 01 10 11

IBM ideal IBM bogota (first run) IBM bogota (second run)



LibKet and generation of resource-optimal quantum circuits

programming tools

31



– The kwantum expression template Library
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quantum acceleration workflow
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C/C++
q = expr(…)

while (cond)
{
h = q.exec(…)
// classical compute
h.wait()
…
}

vendoryou



quantum acceleration workflow
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C/C++
q = expr(…)

while (cond)
{
h = q.exec(…)
// classical compute
h.wait()
…
}

vendoryou



quantum acceleration workflow

35

C/C++
q = expr(…)

while (cond)
{
h = q.exec(…)
// classical compute
h.wait()
…
}

vendoryou



different programming philosophies

standard quantum SDKs
§ apply gates to individual qubits

H q[0:2]
X q[0,2]
H q[2]
CCX q[0], q[1], q[2]
…

LibKet
§ ‘stream’ qubits through gates

…CCX(q[0],
q[1],
q[2](
H(q[2](
X(q[0,2](
H(q[0:2]())
))

))
))
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different programming philosophies

standard quantum SDKs
§ apply gates to individual qubits

H q[4,7,8]
X q[4,8]
H q[8]
CCX q[4], q[7], q[8]
…

LibKet
§ ‘stream’ qubits through gates

…CCX(q[0],
q[1],
q[2](
H(q[2](
X(q[0,2](
H(q[0:2](q[4,7,8]))
))

))
))

37

q[4]
…

q[7]
…

q[8]



filters

§ selective ‘views’ on the qubits

auto f0 = select<0,2,3>();

38

Q-device

q0 q1 q2 q3 q4



filters

§ selective ‘views’ on the qubits

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
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Q-device

q0 q1 q2 q3 q4



filters

§ selective ‘views’ on the qubits

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);

40

Q-device

q0 q1 q2 q3 q4

q2 q3tag #0



filters

§ selective ‘views’ on the qubits

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);

41

Q-device

q0 q1 q2 q3 q4

q2 q3tag #0



filters

§ selective ‘views’ on the qubits

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);

42

Q-device

q0 q1 q2 q3 q4

q2 q3tag #0

tag #1 q3



filters

§ selective ‘views’ on the qubits

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
auto f5 = gototag<0>(f4);

43

Q-device

q0 q1 q2 q3 q4

q2 q3tag #0

tag #1 q3



filters

§ selective ‘views’ on the qubits

auto f0 = select<0,2,3>();
auto f1 = range<1,2>(f0);
auto f2 = tag<0>(f1);
auto f3 = qubit<1>(f2);
auto f4 = tag<1>(f3);
auto f5 = gototag<0>(f4);
auto f6 = gototag<1>(f5);

44

Q-device

q0 q1 q2 q3 q4

q2 q3tag #0

tag #1 q3



gates

§ SIMD-like quantum operation on 
all qubits of the current filter chain

auto e0 = init();

45

q1

q0

q2

q3

q4



gates

§ SIMD-like quantum operation on 
all qubits of the current filter chain

auto e0 = init();
auto e1 = sel<0,2>(e0);

q1

q0

q2

q3

q4



gates

§ SIMD-like quantum operation on 
all qubits of the current filter chain

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);

q1

q0

q2

q3

q4

H

H



gates

§ SIMD-like quantum operation on 
all qubits of the current filter chain

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);

q1

q0

q2

q3

q4

H

H



gates

§ SIMD-like quantum operation on 
all qubits of the current filter chain

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
auto e4 = cnot(

sel<0,2>(),
sel<1,4>(e3)

);

49

q1

q0

q2

q3

q4

H

H

X

X



gates

§ SIMD-like quantum operation on 
all qubits of the current filter chain

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
auto e4 = cnot(

sel<0,2>(),
sel<1,4>(e3)

);
auto e5 = measure(all(e4));

50

q1

q0

q2

q3

q4

H

H

X

X

M

M

M

M

M



3-qubit Grover’s algorithm

auto oracle = [](auto expr) { 
return x(sel_<0>(x(h(sel_<2>(ccnot(sel_<0>(),

sel_<1>(),
sel_<2>(h(x(sel_<2>(x(sel_<0>(expr)))))))))))); };

auto diffusion = [](auto expr) { 
return h(x(all(h(sel_<2>(ccnot(sel_<0>(),

sel_<1>(),
sel_<2>(h(sel_<2>(x(h(all(expr)))))))))))); };

auto expr = measure(diffusion(oracle(h(init()))));
QDevice<backend, 3> device;
utils::json res = device(expr).eval(shots);
cout << device.get<QResultType::best>(res) << endl;
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3-qubit Grover’s algorithm

auto oracle = [](auto expr) { return
x(sel_<0>(x(h(sel_<2>(ccnot(sel_<0>(),

sel_<1>(),
sel_<2>(h(x(sel_<2>(x(sel_<0>(expr)))))))))))); };

auto diffusion = [](auto expr) { return
h(x(all(h(sel_<2>(ccnot(sel_<0>(),

sel_<1>(),
sel_<2>(h(sel_<2>(x(h(all(expr)))))))))))); };

auto expr = measure(diffusion(oracle(h(init()))));
QDevice<QDeviceType::ibmq_quito, 3> device;
utils::json res = device(expr).eval(shots);
cout << device.get<QResultType::best>(res) << endl;

52

§ IBM’s basis gates: CX, ID, RZ, SX, X
§ executable quantum circuit generated by IBM’s quantum compiler

depth is critical for performance



traditional quantum circuit compilation

§ gate substitution rules

𝐻 → 𝑅/ 𝜋 𝑅0 ⁄𝜋 2 , 𝐻 → 𝑅0 − ⁄𝜋 2 𝑅/ 𝜋 , …

§ cancelling of inverse gates

𝐶𝑍 𝐶𝑍% = 𝐼, 𝑅/ 𝜃 𝑅/ −𝜃 = 𝐼, …

§ aggregation using commutativity or fusion rules

𝐻𝑅1 𝜃 𝐻 = 𝑅/ 𝜃 , 𝜃 ∈ 𝜋,± ⁄𝜋 2 , 𝑅1 𝜃+ 𝑅1 𝜃! = 𝑅1 𝜃+ + 𝜃! , …

53



q0
q1
q2
q3

approximate computing

§ our aim is to generate a resource-efficient directly executable circuit 𝑈(𝜽)
that mimics the expectation-value behavior of the textbook circuit 𝑉
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approximate computing

§ our aim is to generate a resource-efficient directly executable circuit 𝑈(𝜽)
that mimics the expectation-value behavior of the textbook circuit 𝑉
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approximate computing

𝑈234 = argmin
5∈𝒰!

min
𝜽"

max
| ⟩; ∈<

𝐹 | ⟩𝜓 ; 𝑉, 𝑈 𝜽5 , 𝑠 → min

§ cost function

𝐹 | ⟩𝜓 ; 𝑉, 𝑈 𝜽5 =_
&

𝐴& =| ⟩; − 𝐴& 5(𝜽")| ⟩;

§ 𝐴& is an observable, e.g., Pauli-X, Y, Z gate
§ expectation value of state | ⟩𝜓 upon application of operator 𝑃

𝐴& @| ⟩; = 𝑃𝜓 % 𝐴& 𝑃𝜓

§ 𝒰A is the set of all admissible quantum circuits of size 𝑠
§ 𝑈 𝜽5 is one parametrized quantum circuit with 𝜽5 = 𝜃+, … , 𝜃B C
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selected results

algo #qubits rigetti ours ibm ours
2q qft 2 18 16 11% 12-42 11 8-73%
3q qft 5 118 92 22% 57-73 56 1-23%
ccnot 3 33 15 54% 18 10 44%

4q add 8 197 132 33% 116-131 74 36-43%
8q add 16 474 312 34% 272-299 174 36-42%

mc3x 4 90 76 15% 46-102 36 21-64%
mc4x 5 195 164 16% 94-150 76 23-49%

2q grover 2 15 8 46% 16-27 8 50-71%
bv 4 21 11 47% 22 11 50%

57
S. Adarsh, M. Möller: Resource Optimal Executable Quantum Circuit Generation Using Approximate Computing. To 
appear the Proceedings of IEEE International Conference on Quantum Computing and Engineering (QCE21), 2021.



selected results

Execution number
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S. Adarsh, M. Möller: Resource Optimal Executable Quantum Circuit Generation Using Approximate Computing. To 
appear the Proceedings of IEEE International Conference on Quantum Computing and Engineering (QCE21), 2021.



quantum linear solvers and optimization algorithms

applications

59



potential quantum applications for SciComp

§ HHL-type quantum linear solver

Find 𝑥%𝑀𝑥 s. t. 𝐴𝑥 = 𝑏

§ sparse matrices 𝑂(log 𝑁 𝜅!/𝜖) [Harrow, Hassidim, Lloyd 2009]
polylog(1/𝜖) [Childs, Kothari, Somma 2017]

§ dense matrices 𝑂( 𝑁 log 𝑁 𝜅!/𝜖) [Wossnig et al. 2018]

§ applications
§ linear differential equations [Berry 2010, Xin et al. 2018]
§ nonlinear differential equations [Leyton, Osborne 2008, Liu et al. 2021]
§ Poisson equation [Cao et al. 2013, Montanaro 2015]
§ principal component analysis [Lloyd et al. 2014]
§ data fitting [Wiebe et al. 2012]
§ machine learning [Lloyd et al. 2013, Adcock et al. 2015, Biamonte et al. 2017, Schuld et al. 

2018, Perdomo-Ortiz et al. 2018, …] 60

min
𝜽
𝑥"
#𝑀"𝑥"

s. t. 𝐴"𝑥" = 𝑏"



caveats

61

§ you don’t get the solution vector 𝑥
but a scalar value 𝑥%𝑀𝑥

§ circuits are impractical for near-
future quantum computers

§ Recent step-by-step HHL algorithm walk-
through by Morrell and Wong (08/2021):

“[…] due to the imperfection and noise in a 
real quantum computer (ibmq_santiago), the 
hardware execution of the same circuit (for a 
2x2 matrix) does not give satisfactory result”

arXiv:2108.09004

E. Cappanera: Variational quantum linear solver for finite element problems, Master Thesis TU Delft, 2021.



HHL simulation with Qiskit: 2x2 matrices, w/o noise

28 4. Experiments and Results

Experiments with the VQLS simulations use the same matrices as the HHL experiments, cf. Ap­
pendix D.

Experiments of size 2 × 2
The results of all 2 × 2 matrix tests can be found in Figure 4.10a. The runtime was mostly around 2.5
seconds with only two exceptions, 2.𝑗 and 2.𝑖 taking longer and one taking shorter, 2.𝑙. Fidelity results
can be seen in Figure 4.10b, the results show a near perfect fidelity for all matrices, with the exception
of 2.𝑙 which is very low.

(a) Runtimes for 2 × 2 matrices. (b) Fidelity for 2 × 2 matrices.

Figure 4.10: Experiments with 2 × 2 matrices, state vector simulations.

Experiments of size 4 × 4
In experiments with the 4×4matrices we have varied time results, as can be seen in the graph in Figure
4.11a. Timings where between 10 and 20 seconds for most tests but for the dense random matrices 4.𝑖
and 4.𝑗 the timing when up to 52 and 81 seconds respectively. The fidelity, as shown in Figure 4.11b,

(a) Runtimes for 4 × 4 matrices. (b) Fidelity for 4 × 4 matrices.

Figure 4.11: Experiments with 4 × 4 matrices, state vector simulations.

Experiments of size 8 × 8
The VQLS simulation can handle more complex 8×8matrices but as we mainly wanted to compare the
results to HHL it seemed redundant to test more matrices just for VQLS. The timing results are seen in
Figure 4.12a and the fidelity in Figure 4.12b. Timings are considerably longer than for the 4 × 4 case
with most runs being over 500 seconds long. The fidelity varies considerably but like in HHL 8.𝑎 and
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results to HHL it seemed redundant to test more matrices just for VQLS. The timing results are seen in
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HHL simulation with Qiskit: 2x2 matrices, with noise
30 4. Experiments and Results

(a) Runtimes for 2 × 2 matrices with noise. (b) Fidelity for 2 × 2 matrices with noise.

Figure 4.13: Experiments with 2 × 2 matrices, noisy simulations.

(a) Runtimes for 4 × 4 matrices with noise. (b) Fidelity for 4 × 4 matrices with noise.

Figure 4.14: Experiments with 4 × 4 matrices, noisy simulations.

runtime was around 600 seconds, while most cases where around 300 seconds. Fidelity was worse
still than in the smaller sizes though, as the highest value doesn’t reach 0.16, see Figure 4.15b. These
fidelity results are on such a small scale as well that they display no structure or are counter intuitive.
For example from 8.𝑓 to 8.ℎ there is an increase in fidelity, while the condition number increases from
10 to 1000, with sparsity unchanged.

Noisy Simulation of VQLS Analysis

The runtime of the VQLS noisy simulations showed results in the 4 × 4 to take the longest. This could
relate to the ansatz or it may be due to the high number of shots needed to converge. In general, the
fidelity results for all experiments was poor, with not even the identity matrix showing a fidelity of 1 in
any test. It is hard to improve these results by tuning parameters as unlike HHL, VQLS does not rely
on approximations like the QPE. We will look at parameter tuning in the next chapter.
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The runtime of the VQLS noisy simulations showed results in the 4 × 4 to take the longest. This could
relate to the ansatz or it may be due to the high number of shots needed to converge. In general, the
fidelity results for all experiments was poor, with not even the identity matrix showing a fidelity of 1 in
any test. It is hard to improve these results by tuning parameters as unlike HHL, VQLS does not rely
on approximations like the QPE. We will look at parameter tuning in the next chapter.
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HHL simulation with Qiskit: 4x4 matrices, w/o noise

28 4. Experiments and Results
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HHL simulation with Qiskit: 4x4 matrices, with noise

30 4. Experiments and Results

(a) Runtimes for 2 × 2 matrices with noise. (b) Fidelity for 2 × 2 matrices with noise.

Figure 4.13: Experiments with 2 × 2 matrices, noisy simulations.
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Figure 4.14: Experiments with 4 × 4 matrices, noisy simulations.

runtime was around 600 seconds, while most cases where around 300 seconds. Fidelity was worse
still than in the smaller sizes though, as the highest value doesn’t reach 0.16, see Figure 4.15b. These
fidelity results are on such a small scale as well that they display no structure or are counter intuitive.
For example from 8.𝑓 to 8.ℎ there is an increase in fidelity, while the condition number increases from
10 to 1000, with sparsity unchanged.
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relate to the ansatz or it may be due to the high number of shots needed to converge. In general, the
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any test. It is hard to improve these results by tuning parameters as unlike HHL, VQLS does not rely
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HHL simulation with Qiskit: 8x8 matrices, w/o noise
4.6. Noise Simulation of VQLS 29

8.𝑒 perform near perfect, but 8.𝑑, 8.𝑔, and 8.ℎ are near zero. Those last three matrices listed all have
a poor condition number, all though 8.𝑑 was not designed to be ill­conditioned it has 𝜅 = 18.4

(a) Runtimes for 8 × 8 matrices. (b) Fidelity for 8 × 8 matrices.

Figure 4.12: Experiments with 8 × 8 matrices, state vector simulations.

State Vector Simulation of VQLS Analysis
Shortly, the state vector simulations of VQLS were a success for smaller matrices. They show a much
leaner circuit compared to HHL but take a longer time to show results under these perfect conditions.
The fidelity is good in the smallest matrices but is not favorable in the subsequent tests. Because of
the poorer fidelity it is hard to draw a strong conclusion but there again seems to be a link between
sparsity and runtime and also a link between condition number and fidelity

4.6. Noise Simulation of VQLS
We need to change the procedure for the noisy experiment of VQLS. In particular in the cost function,
where the circuits are sampled. Using the same noise model as in HHL, detailed in Appendix C.1, we
ran multiple shots of the quantum simulation to get a clear result, using the average of those runs as
our real result. For our experiment we use 10.000 shots, this number was determined by experiment,
see Appendix E.1. This is a rather high number of shots but to reach convergence with the classical
optimizer it is necessary to get more accurate results of the quantum simulation [4]. Again the noisy
simulation presents the same circuit results as the state vector one as the circuit does not change, see
Table 4.2.

Experiments of size 2 × 2
On the whole, the noisy configuration runtime, see Figure 4.13a takes a similar time as its non­noisy
counterpart, see Figure 4.10a. Two outliers are the identity and the matrix 2.𝑗, for which the entries
were chosen with a random number generator. The fidelity, however is poor, see Figure 4.13b; with a
lone value at 0.7 and the rest somewhere below 0.4.

Experiments of size 4 × 4
The Figure 4.14a shows us the runtimes of the 4 × 4 experiments, in a noisy configuration of VQLS.
We see, that the average time is mostly steady around 300 seconds for each test matrix, however like
in the state vector simulation the 4.𝑖 and 4.𝑗 take considerably longer. The 4.𝑖 and 4.𝑗 are the dense
matrices and they two take a longer runtime then the rest combined. Fidelity, seen in Figure 4.14b, has
a steady downwards trend with each tested matrix and is nowhere good; maximum value is only 0.7
and the lowest under 0.1.

Experiments of size 8 × 8
Unusually, the runtime of these 8 × 8 experiments was around similar values to the 4 × 4 cases and
very similar to the state vector simulation of 8 × 8. We can see from Figure 4.15a that the maximum
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HHL simulation with Qiskit: 8x8 matrices, with noise
4.7. Additional Tests for HHL 31

(a) Runtimes for 8 × 8 matrices with noise. (b) Fidelity for 8 × 8 matrices with noise.

Figure 4.15: Experiments with 8 × 8 matrices, noisy simulations.

4.7. Additional Tests for HHL
The HHL algorithm has several variables to calibrate when running it. These variables include the
number of ancillae used in measurement and the expansion order of the expansion method. In the
following sections, we experiment with varying these two numbers, first the ancilla then the expansion
order. These additional tests were conducted using only the 4 × 4 matrices and perfect simulation
conditions.

Varying Ancilla
The number of ancillae determines the measurement accuracy of the final values. Increasing the num­
ber of ancillae is similar to increasing the number of bits in a float value. The general tests used 3
qubits as ancilla, this value was taken from previous experiments [4]. To further test the effects of the
ancilla on fidelity and runtime we performed the tests using 4, 5, and 6 ancillae in the HHL simulation.

Increasing the amount of ancilla naturally increases the circuit width used in the simulation. Fur­
thermore, the added qubit needs to fully connect to the rest of the circuit to work in measurement and
so these added ancilla qubits double the depth of the circuit in each step, see Table 4.3. This linear
growth in width and depth size increases the size of each circuit such that the simulations start to fail
in the most difficult cases. In the case of 5 ancilla, 4.𝑖 and 4.𝑗 cause a segmentation fault and when
using 6 ancilla 4.ℎ and 4.𝑔 fail in addition to 4.𝑖 and 4.𝑗. This simulation failure is representative of the
current capabilities and the limitations of HHL.

Ancillae 3 4 5 6
Qubits 8 9 10 11
Max Depth 104 208 402 802

Table 4.3: Circuit sizes in HHL state vector experiments with increased number of ancilla.

In Figure 4.16b we can see that there is not much to be gained from adding the extra ancilla for
fidelity in general. Only 4.𝑒 and 4.ℎ show growth in fidelity with an addition of ancilla. The case 4.𝑒 was
chosen as an example of an ill­conditioned matrix with 𝜅 = 100. It can be observed that this kind of an
ill­conditioned matrix benefits from the extra ancilla. But we can see from the case 4.𝑓 that the effects
of extra ancilla are not enough to bring up the fidelity there. The matrix 4.𝑓 is worse conditioned than
4.𝑒 with 𝜅 = 1000. So the case of an ill­conditioned matrix may benefit from the added ancilla but the
effect is quickly lost if the condition number is too large. The price in calculation time is also high. As
we see in Figure 4.16a, each added ancilla doubles the runtime. This is not surprising as we already
saw that the depth of the circuit doubles. The added time in the calculation for additional ancilla is not
rewarded with much greater fidelity. However, the results do show that a particular ill­conditioned case
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4.𝑒 with 𝜅 = 1000. So the case of an ill­conditioned matrix may benefit from the added ancilla but the
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potential near-future quantum applications in SciComp

§ hybrid quantum-classical algorithms
§ quantum approximate optimization algorithm (QAOA) [Farhi et al. 2014]
§ quantum alternating operator ansatz (QAOA) [Hadfield et al. 2017]
§ variational quantum eigensolver (VQE) [Peruzzo et al. 2014]
§ variational quantum linear solver (VQLS) for sparse matrices

[Bravo-Prieto et al. 2019 & Xu et al. 2019]
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QAOA workflow

(a)

(b)
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truss structure optimization
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3-truss structure3.1. A GENERAL INTRODUCTION TO THE TRUSS PROBLEMS 13

zero is 9.0·10°4m2, however only options 1.0·10°3m2, 1.1·10°3m2 and 1.2·10°3m2 for truss member
zero are given. The algorithm will then (most probably) choose the truss member with an area of
1.0 ·10°3m2 as the local minimum. In order to find the optimum 9.0 ·10°4m2 for truss member zero,
the areas have to get updated and iterated. The other truss members have to get minimized as well
until the global optimum is found, meaning that the residual º 0.

A8

A6

A5A3

A0

A2

A4 A7

A1N0 N1

N2

Figure 3.2: Three options per truss member for three-member truss structure.

If all options would be considered in this three-member truss structure there would be a total of
O (2(#tr usses · #opti ons)) = 29 = 512 many options. Feasible/valid solutions are solutions that only

choose one cross-sectional area per truss member (
opt°1P

j=0
q j = 1), where opt is the number of options

per truss member. When only the valid bit string states would be considered in this three-member
truss structure, it results in a total of O (#trusses#options) = 33 = 27 valid options, shown in Table 3.1.

As the number of trusses and options grow, the difficulty of optimizing the truss structure increases
exponentially in time or resources. That is where quantum comes into play. Quantum computers
can investigate all choices simultaneously, however noise requires to repeat the experiment with n
shots, leading to a distribution of counts.

The configuration values used for the two, three and four-member truss structures are shown in Ta-
ble 3.2. Initially the internal forces are assumed to be in tension. In this work it is assumed that the
material has equal maximum tensile and compressive stress, i.e. æc = æt = æ{c,t }. In the configura-
tion table it can be observed that there is a sign bit 1 or -1, where 1 indicates tension and -1 indicates
compression. The four-member truss structure was an example problem in a textbook that used En-
glish Engineering units and these units were converted to SI units. For this reason "odd" numbers
for the forces Fx and Fy can be observed in the configuration table for the four-member truss sys-
tem. Two classical ways of obtaining the areas for the 3-member truss that minimize the weight are
shown in Appendix D. The areas found by the reference solutions that minimize the weight for the
2-truss, 3-truss and 4-truss structures are shown in Table 3.3.

14 3. METHODOLOGY

Table 3.1: Valid bit string states for three-member truss system

Option q0 q1 q2 q3 q4 q5 q6 q7 q8

1 0 0 1 0 0 1 0 0 1
2 0 0 1 0 0 1 0 1 0
3 0 0 1 0 0 1 1 0 0
4 0 0 1 0 1 0 0 0 1
5 0 0 1 0 1 0 0 1 0
6 0 0 1 0 1 0 1 0 0
7 0 0 1 1 0 0 0 0 1
8 0 0 1 1 0 0 0 1 0
9 0 0 1 1 0 0 1 0 0

10 0 1 0 0 0 1 0 0 1
11 0 1 0 0 0 1 0 1 0
12 0 1 0 0 0 1 1 0 0
13 0 1 0 0 1 0 0 0 1
14 0 1 0 0 1 0 0 1 0
15 0 1 0 0 1 0 1 0 0
16 0 1 0 1 0 0 0 0 1
17 0 1 0 1 0 0 0 1 0
18 0 1 0 1 0 0 1 0 0
19 1 0 0 0 0 1 0 0 1
20 1 0 0 0 0 1 0 1 0
21 1 0 0 0 0 1 1 0 0
22 1 0 0 0 1 0 0 0 1
23 1 0 0 0 1 0 0 1 0
24 1 0 0 0 1 0 1 0 0
25 1 0 0 1 0 0 0 0 1
26 1 0 0 1 0 0 0 1 0
27 1 0 0 1 0 0 1 0 0

Table 3.2: Configuration values for the two, three and four-member truss structures, including material, nodal coordi-
nates, force and boundary conditions with dA = 100 ·10°6m2.

2-member truss structure 3-member truss structure 4-member truss structure
Item Coordinates Force BC Coordinates Force BC Coordinates Force BC

Nodes x[m] y[m] Fx[N] Fy[N] dx[m] dy[m] x[m] y[m] Fx[N] Fy[N] dx[m] dy[m] x[m] y[m] Fx[N] Fy[N] dx[m] dy[m]
N0 0 0 0 0 0 0 0 0 0 0
N1 1 -1 0 -70000 3 0 0 -2000 0 0 1.219 272.16
N2 0 -1 0 0 0 -1 0 0 0.914 1.219 181.44 314
N3 0.914 0 0 0

Item Connected Material Areas Connected Material Areas Connected Material Areas
Elements Start End æ{c,t }[Pa] sign A[m2] Start End æ{c,t }[Pa] sign A[m2] Start End æ{c,t }[Pa] sign A[m2]

E0 N0 N1 100 ·106 1 900 ·10°6 N0 N1 5 ·106 -1 510 ·10°6 N0 N1 5 ·106 -1 400 ·10°6

E1 N1 N2 100 ·106 -1 600 ·10°6 N0 N2 5 ·106 1 1500 ·10°6 N1 N2 5 ·106 -1 236.29 ·10°6

E2 N1 N2 5 ·106 1 260 ·10°6 N1 N3 5 ·106 1 260.48 ·10°6

E3 N2 N3 5 ·106 -1 62.851 ·10°6
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valid options invalid options

options: 2#4EFGGHG×#JEHJG = 512 485



preliminary results using Rigetti’s simulator

4.1. RESULTS OF TRUSS STRUCTURES IN QAOA FORMAT 29

4.1.2. RESULTS AND DISCUSSION OF THREE-MEMBER TRUSS STRUCTURE

In this subsection the simulation results of the three-member truss structure can be observed. After
trial-and-error it was found that the step parameter p should be three to find the minimum with a
high probability. It can be seen in Figure 4.3 that five out of ten simulations found the minimum that
the correct result is found (bit string: [0,0,1,1,0,0,0,0,1]) when simulating on the Aspen-9-qvm. Due
to the probabilistic nature of the quantum computers the minimum is not always found, since three
out of the ten simulations found the bit string: [0,0,1,0,0,1,0,0,1] and two out of the ten simulations
found the bit string: [0,0,1,0,1,0,0,0,1]. It is of no surprise that these other found bit strings resemble
values very close to the actual minimum.

Figure 4.3: QAOA results for the three-member truss structure, simulated on Rigetti’s most realistic quantum virtual
machine, named Aspen-9-qvm.

4.1.3. RESULTS AND DISCUSSION OF FOUR-MEMBER TRUSS STRUCTURE

In this subsection the simulation results for the four-member truss structure are presented and dis-
cussed. The four-member truss structure is only simulated on the 12q-qvm without noise with step
parameter p set to four. It was deemed impractical to run it on the Aspen-9-qvm, because it took
more than 5,000 seconds to construct and run the circuit just once with 1024 samples. Neverthe-
less, the algorithm proves to work on the Aspen-9-qvm for the two-member truss and three-member
truss structure, it is therefore assumed that it will also work for the four-member truss structure.

As can be seen from Figure 4.4 the probability of finding the minimum is five out of the ten runs.
What cannot be seen from the figure is that the difference between the sampled bit strings is not
large. Meaning that the found minimum is only barely found, for example the bit string [0,0,1,0,0,1,0,1,0,0,1,0]
is sampled 245 times and the bit string [0,0,1,0,0,1,0,0,1,0,0,1] is sampled 235 times out of 1024 sam-
ples. Simulating the circuit on the Aspen-9-qvm or simulating with noise will most likely not yield
the minimum. This is partly due to the increased feasible subspace, however the main contributing
factor to barely finding the minimum is, because the minimum cost value has a value close to the
other valid solutions. For this reason, it is harder for the algorithm to find the minimum. A solution
could be to distance the minimum from other valid solutions by adding extra Pauli terms to penalize
valid solutions, that are not the minimum.

30 4. RESULTS AND DISCUSSION

Figure 4.4: QAOA results for the four-member truss structure, simulated on the fully connected quantum virtual
machine, named 12q-qvm.

4.2. QUBO TO QAOA
In this section the (in)determinate two-member, three-member and four-member truss structures
from Wils [4] will be analyzed one-by-one in Subsection 4.2.1, Subsection 4.2.2 and Subsection 4.2.3
respectively. The truss structures treated in this section are completely different from the ones
treated in the previous section, for more details refer to Wils [4]. The QUBO results were used as
input in order to map it to QAOA format using the steps provided in Section 3.5. The two-member,
three-member and four-member truss structures are not simulated ten times as was done in Sec-
tion 4.1, because of time and simulation resource constraints. In addition to that, since previous
results in Section 4.1 have shown the viability of the chosen approach, the author of this report
believes that the use of one simulation result is justified, with the requirement that the found mini-
mum has a high probability.

Due to time and resource constraints, the four-member truss structure is simulated without noise
on the fully connected quantum virtual machines, named 12q-qvm. For more information on the
connectivity of qubits refer to Subsection 3.4.1.

4.2.1. RESULTS AND DISCUSSION OF TWO-MEMBER TRUSS STRUCTURE

In this subsection the results for the two-member truss structure are presented and discussed. The
results for the non-constraining mixer Hamiltonian are shown in Figure 4.5 and the results for the
constraining mixer Hamiltonian are shown in Figure 4.6. On the left-hand side of Figure 4.5 a legend
is displayed, wherein Ajagekar stands for the iterative method of Ajagekar et al. [56] used by Wils [4].
It is not an energy, because energies cannot be negative. It is rather the objective function used re-
quired to be able to run it on the Quantum Annealing computer of D-Wave. It can be observed from
Figure 4.5 that the QAOA cost and Ajagekar completely overlap, which means that the transforma-
tion was successful.

In Figure 4.5 the results are shown with a non-constraining mixer Hamiltonian as earlier described
in Section 3.5. The Aspen-9-qvm is a noiseless quantum virtual machine. The probabilities of the
valid solutions only add up to 23.6%. Due to the non-constraining mixer Hamiltonian, the full
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only 9 out of 64 options are valid and the exclusion criterion is sensitive to noise



summary

§ QC is not just for physicists and electrical engineers but should interest the 
entire CSE community as a potential future accelerator technology

§ building quantum computers is just the beginning, the time has come to 
develop practical algorithms and software for solving real-world problems

§ early experience with quantum-accelerated applications will hopefully guide 
QC vendors in the development of practically usable devices for end-users

Thank you for your attention and enjoy your dinner!
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