
A survey of quantum algorithms for PDEs

Matthias Möller

Delft University of Technology
Delft Institute of Applied Mathematics

Quantum algorithms for solving PDEs

2
Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.

PDE

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

linear system
𝐴𝑥 = 𝑏

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

di
sc

re
tiz

at
io

n

m
ea

su
re

m
en

t

QLSA

QML, QNPU, lattice Boltzmann, …

CVQC algorithms: QML, …

DVQC
CVQC

https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Quantum algorithms for solving PDEs

3
Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.

PDE

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

linear system
𝐴𝑥 = 𝑏

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

di
sc

re
tiz

at
io

n

m
ea

su
re

m
en

t

QLSA

QML, QNPU, lattice Boltzmann, …

CVQC algorithms: QML, …

https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Given: 𝑥̇ = 𝐴𝑥, 𝑥 𝑡, = 𝑥,

§ Von Neumann measurement [von Neumann 1932, Childs et al. 2002]

0 𝑖𝐴&
−𝑖𝐴 0

⇒ 𝐻 = 𝑖𝐴&⊗ | ⟩0 '⟨ |1 − 𝑖𝐴⊗ | ⟩1 '⟨ |0

§ State after Hamiltonian simulation [Leyton, Osborne 2008]

| ⟩Ψ = 𝑒#$!| ⟩𝜓 | ⟩0 ' =3
()%

* 𝑖𝐻𝑡 (

𝑘!
| ⟩𝜓 | ⟩0 ' = | ⟩𝜓 | ⟩0 ' + 𝑡𝐴| ⟩𝜓 8 ⟩1 ' −⋯

§ Post-selection on “1” after measurement on the ancillary qubit

§ Procedure from [HHL 2008] to correct for first-order truncation

§ Caveat: success probability !"𝑡
+ (roughly 16/𝑡+ ‘fresh’ states | ⟩𝜓 needed)

4

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

https://press.princeton.edu/books/hardcover/9780691178561/mathematical-foundations-of-quantum-mechanics
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.66.032314
https://arxiv.org/abs/0812.4423
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502

Given: 𝑥̇ = 𝐴𝑥, 𝑥 𝑡, = 𝑥,

§ Matrix decomposition 𝐴 = 𝐴$ + 𝐴,

§ Baker–Campbell–Hausdorff formula

𝑒#,! = 𝑒#,#! ⋅ 𝑒#,$! , if 𝐴$, 𝐴, = 0

§ Hamiltonian simulation of 𝐴$ and 𝐴, via unitary dilation of @𝑂 = 𝑒#,$!

@𝑂 1 − @𝑂+

1 − @𝑂+ − @𝑂
| ⟩𝜓 | ⟩0 = @𝑂| ⟩𝜓 | ⟩0 + 1 − @𝑂+| ⟩𝜓 | ⟩1

§ Black-Scholes equation [Gonzalez-Conde et al. 2021]

𝑓! = 𝑎𝑓 + 𝑏𝑓- − 𝑐𝑓-- = 𝑖𝑏 −𝑖𝜕- + 𝑎𝐼 + 𝑐 −𝑖𝜕- + 𝑓

§ Caveat: exponential scaling in 𝑡 if 𝐴$, 𝐴, ≠ 0 [Berry 2014]
5

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

https://arxiv.org/abs/2101.04023v3
https://iopscience.iop.org/article/10.1088/1751-8113/47/10/105301/meta

Given: 𝑥̇ = 𝐴𝑥, 𝑥 𝑡, = 𝑥,

§ Derivative of Schrödinger’s equation [Costa et al. 2019]

𝜓!! = −𝐻+𝜓

§ Hermitian matrix
𝐻 = 0 𝐵

𝐵& 0 ⇒ 𝐻+ = 𝐵𝐵& 0
0 𝐵&𝐵

§ Wave equation
𝜕!!𝑓 = −Δ𝑓 ≈ 𝐴𝑓 ⇒ Kind 𝐴 = 𝐵𝐵&

§ Example: graph Laplacian

𝐵./ = N
1 𝑒 = 𝑣,𝑤 , 𝑣 < 𝑤
−1 𝑒 = 𝑣,𝑤 , 𝑣 > 𝑤
0 otherwise

⇒ 𝐵./ =
1 −1 0 0
0 ⋱ ⋱ 0
0 0 1 −1

6

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.012323

Quantum algorithms for solving PDEs

7
Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.

PDE

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

linear system
𝐴𝑥 = 𝑏

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

di
sc

re
tiz

at
io

n

m
ea

su
re

m
en

t

QLSA

QML, QNPU, lattice Boltzmann, …

CVQC algorithms: QML, …

https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Hamiltonian simulation (approach #1)

§ Given: Hamiltonian 𝐻 (20×20 Hermitian on 𝑛 qubits), time 𝑡, and error 𝜖
§ Goal: find an algorithm to approximate 𝑈 such that 𝑈 − 𝑒#$! ≤ 𝜖

§ Decomposition into 𝑘-local Hamiltonians [Lloyd 1996]

𝐻 =3
ℓ)2

3
𝐻ℓ , 𝐻ℓ is 𝑘 − local

§ Suzuki-Trotter decomposition [Suzuki 1991]

𝑒"#$! ≈ d
ℓ)2

3
𝑒"#$ℓ

!
4
4

, 𝑟 ≫ 1

8

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

𝑒,
!
4𝑒5

!
4
4
= 𝑒 ,65 !62+ ,,5

!"
4 6𝒪

!&
4"

https://www.science.org/doi/10.1126/science.273.5278.1073
https://aip.scitation.org/doi/10.1063/1.529425

Hamiltonian simulation (approach #2)

§ Given: Hamiltonian 𝐻 (20×20 Hermitian on 𝑛 qubits), time 𝑡, and error 𝜖
§ Goal: find an algorithm to approximate 𝑈 such that 𝑈 − 𝑒#$! ≤ 𝜖

§ Truncated Taylor expansion

e#$! = 𝐼 − 𝑖𝐻𝑡 − 2
+𝐻

+𝑡+ + #
9𝐻

:𝑡: +⋯
§ Linear combination of unitary operators [Berry et al. 2015]

𝐻 =3
ℓ
𝛼ℓ𝐻ℓ ⇒ 𝐻0 =3

ℓ!,…,ℓ'
𝛼ℓ! …𝛼ℓ(𝐻ℓ! …𝐻ℓ'

9

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.090502

Hamiltonian simulation (complexity)

10

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

Gate complexity [1] Query complexity [2]-[5]

1st-order Trotter 𝒪 ⁄𝑡+ 𝜖 𝒪 𝑠:𝑡 ⁄𝑠𝑡 𝜖
(
+

Taylor expansion 𝒪
𝑡 log+ ⁄𝑡 𝜖
log log ⁄𝑡 𝜖 𝒪

𝑠+ 𝐻 <=> log ⁄𝑠+ 𝐻 <=> 𝜖
log log ⁄𝑠+ 𝐻 <=> 𝜖

Quantum walk 𝒪 ⁄𝑡 𝜖 𝒪 𝑠 𝐻 <=> ⁄𝑡 𝜖

Quantum signal
processing 𝒪 𝑡 + log ⁄1 𝜖 𝒪 𝑠𝑡 𝐻 <=> +

log ⁄1 𝜖
log log ⁄1 𝜖

[1] Childs 2017, [2] Kothari 2017, [3] Berry 2015, [4] Berry 2015, [5] Low 2017

https://www.pnas.org/content/115/38/9456
https://www.youtube.com/watch?v=PerdRJ-offU
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.090502
https://ieeexplore.ieee.org/document/7354428
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.010501

Leyton and Osborne 2008

§ First-order systems of the form

𝒙̇ 𝑡 =
𝑓2 𝒙
⋮

𝑓? 𝒙
, 𝑓@ 𝒙 =3

(,A)2

?
𝑎(A
@ 𝑥(𝑥A , 3

@)2

?
𝑥@

+ = 1

§ Example: Orszag-McLaughlin dynamical system

𝑥̇@ = 𝑥@62𝑥@6+ + 𝑥@"2𝑥@"+ − 2𝑥@62𝑥@"2, 𝑗 = 1, …𝑁

§ 𝑎#@ = 𝒪 1 and 𝐴 is 𝑠-sparse, i.e., each 𝑓@ involves at most 𝑠/2 monomials
and each variable 𝑥@ appears in at most 𝑠/2 polynomials 𝑓@

§ Lipschitz constant: 𝐹(𝒙 − 𝒚) ≤ 𝒪 1 ⋅ 𝒙 − 𝒚 in ball 𝒙 ≤ 1, 𝒚 ≤ 1
§ We assume that the initial state can be prepared efficiently

11

https://arxiv.org/abs/0812.4423

Leyton and Osborne 2008

§ Explicit Euler method

| ⟩𝜓′ = 𝑒#$B!| ⟩𝜓 | ⟩0 ⇒ | ⟩𝜓(𝑡 + Δ𝑡) = | ⟩𝜓(𝑡) + Δ𝑡𝐴| ⟩𝜓(𝑡)

§ Success probability of a single step !"Δ𝑡
+; 16/Δ𝑡+ ‘fresh’ | ⟩𝜓 needed

§ Temporal scaling 29
B!"

C
, spatial scaling 29

B!"
C
log𝑁 for 𝑚 steps

§ Hamiltonian simulation must be performed with error 𝛿 < 3𝒪 1 "C to
ensure that the 𝑚-th iterate is exponentially close to the desired state

12

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓 M

https://arxiv.org/abs/0812.4423

QuDiffEq

§ Quantum algorithms for linear and
nonlinear differential equations

§ Papers with Code

§ [Leyton, Osborne 2008]

§ [Berry et al. 2010]

§ [Xin et al. 2018]

13

𝑥̇2 = 𝑥+ − 3𝑥2+
𝑥̇+ = −𝑥++ − 𝑥2𝑥+

https://physics.paperswithcode.com/paper/a-quantum-algorithm-to-solve-nonlinear
https://physics.paperswithcode.com/paper/high-order-quantum-algorithm-for-solving
https://physics.paperswithcode.com/paper/a-quantum-algorithm-for-solving-linear

Gonzalez-Conde et al. 2022

4

numerical classical techniques if we can simulate the dynam-
ics of the system employing a polynomial number of gates
in terms of the number of qubits, incurring in a complexity
O(poly(2n)). On the other hand, by contrast, numerical meth-
ods incur into an exponential cost to simulate the dynamics of
the PDE on a 2n points grid, see Table I.

We consider an equispaced grid of the interval [�L, L],
thus, the position space is discretized into the values
x = � xmax + �x �x, with �x =

2xmax
Nx�1 and �x = 0, . . . , Nx � 1.

If we consider that the position x = �xmax is represented by
the state |�xmaxi = |0...0i, and the position x = xmax is repre-
sented by |xmaxi = |1...1i, the matrix form of this operator in
the x basis results

X̂x = xmax

0
BBBBBBBBBBBBBBBBBBB@

�1 0 . . . 0 0
0 �1 + �x . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 � �x 0
0 0 . . . 0 1

1
CCCCCCCCCCCCCCCCCCCA

. (8)

Let us now construct the momentum operator, p̂. By using the
second order of finite di↵erences, we approximate the deriva-
tive of a certain function as

df(x)
dx
⇡

f(x + �x) � f(x � �x)
2�x

. (9)

Consequently, imposing periodic boundary conditions, the
discrete momentum operator in the position basis is given by
the matrix

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

FIG. 2. Continuos line: convergence of the solution of Black-Scholes
put option pricing problem obtained with the finite di↵erences dis-
cretized operator P̂x for distinct number of qubits, n = 1 . . . 8 (ex-
cluding ancillary qubits and the one used to duplicate the initial con-
dition) and the analytical solution. Dashed line: discretization error
per point depending on the number of qubits, n = 1 . . . 9 (excluding
ancillary qubits and the one used to duplicate the initial condition).
Simulation parameters: S max = 135 u, K = 50 u, � = 0.2, r = 0.3,
T = 1 year.

P̂x =
�i
2�x

0
BBBBBBBBBBBBBBBBBBB@

0 1 0 . . . 0 �1
�1 0 1 . . . 0 0
...
...
...
. . .

...
...

0 0 . . . �1 0 1
1 0 . . . 0 �1 0

1
CCCCCCCCCCCCCCCCCCCA

. (10)

Thanks to the choice of periodic boundary conditions, the
momentum matrix P̂x belongs to circulant matrix class, and
therefore its diagonal form is obtained by using the discrete
Fourier transform unitary matrix, i.e.

P̂k = F̂Nx P̂xF̂†Nx
. (11)

This transformation can be e�ciently implemented in a quan-
tum computer [44]. Otherwise we can not ensure the e�cient
diagonalization of the momentum matrix, incurring into an
exponential cost in the general case. The analytical expres-
sion of the eigenvalues of P̂x is also known, and is described
by the equation

pk =
sin
⇣

2⇡k
Nx

⌘

�x
, k = 0 ... Nx � 1. (12)

This diagonal form obtained via the quantum Fourier trans-
form simplifies considerably the implementation of the
momentum operator, as all the terms of the decomposition of
the operator in the Pauli basis commute among them.

In Fig. 2, we illustrate the convergence of the solution
to Black-Scholes equation and its relative discretization er-
ror with respect to the analytical solution for di↵erent number
of qubits obtained by making use of the discrete operators X̂x
and P̂k.

V. QUANTUM CIRCUIT IMPLEMENTATION

In this section, we show the di↵erent components of the
circuit which simulates the price evolution for a put option
contract in a quantum computer; the procedure for a call op-
tion would be similar but initializing the process in the corre-
sponding pay-o↵ state. We depict a general overview of the
quantum circuit of n + 2 qubits in Fig. 3. In the following
sections we present a detailed explanation of every block of
the circuit.

A. Boundary Conditions and Initial state

As introduced in section II, the pricing problem of an Eu-
ropean put option is given by Black-Scholes PDE and the
boundary condition depending on the strike price, K, at matu-
rity time, ⌧ = 0,

Vp(⌧ = 0, S) = max{K � S , 0}. (13)

14

H. Success Probability

In this section we analyze the probability of recovering the
desired dynamics given by the expression

Ps =
D
Vp

��� Ô2(�t)
���Vp

E
=

D
Vp

��� F̂†e�2T (�
2

2 P̂2
k+rI)F̂

���Vp
E

=
1

Nx⇤

Nx�1X

k=0

" NmaxX

j=0

(K � e�xmax/2+ j�x)e2⇡ik j/Nx+

Nx�1X

j=N�1�Nx

(K � e�xmax/2+(Nx�1� j)�x)e2⇡ik j/Nx

!

 NmaxX

j0=0

(K � e�xmax/2+ j0�x)e�2⇡ik j0/Nx+

Nx�1X

j0=N�1�Nx

(K � e�xmax/2+(Nx�1� j0)�x)e�2⇡ik j/Nx

!
e�2T (�

2
2 P̂2

k+r)
#

(58)

where pk is given by Eq. (12). Considering that all the terms
are positive of the sum, the largest term corresponds to k = 0.
Then considering only this term, the success probability can
be lower bounded by the expression

Ps �
1

Nx⇤
e�2Tr

" NmaxX

j, j0=0

(K � e��xNx/4+ j�x)(K � e��xNx/4+ j0�x)+

Nx�1X

j, j0=N�1�Nx

(K � e��xNx/4+(Nx�1� j)�x)(K � e��xNx/4+(Nx�1� j0)�x)

Nmax,Nx�1X

j=0, j0=N�1�Nx

(K � e��xNx/4+ j�x)(K � e��xNx/4+(Nx�1� j0)�x)+

Nx�1,NmaxX

j=N�1�Nx, j0=0

(K � e��xNx/4+(Nx�1� j)�x)(K � e��xNx/4+ j0�x)
#

(59)

The four terms of this expression sum up to the same, then we
define

�0(Nx,K) =
NmaxX

j, j0=0

(K � e�xmax/2+ j�x)(K � e�xmax/2+ j0�x)

=

e��xNx/2

1 � e�x(1+Nx) + e�xNx/4(�1 + e�x K(1 + Nmax)

!2

(�1 + e�x)2

(60)

and finally

�(Nx,K) =
4�0

⇤N
.

I. Comparison to classical methods for solving PDEs

As a part of our study, we have also analyzed the perfor-
mance of our quantum algorithm compared to classical tech-
niques usually employed to solve Black Scholes PDE. In this
context, Crank-Nicolson arises as the standard finite di↵er-
ence method [58] used for numerically solving the heat equa-
tion. In contrast to our algorithm, this method discretizes time,
it is second-order method in time, what indeed supposes an
extra limitation in the accuracy of the solution. Relative error
of quantum algorithm and Crank-Nicolson solutions with re-
spect to analytical are shown in Fig. 11. As we can observe,
there is an asymptotic constant behaviour in Crank-Nicolson
associated with the limitation introduced by time discretiza-
tion.

Algorithm Complexity
Quantum Simulation O(poly(n))

Finite di↵erences (explicit) O(Tsteps2n)
Finite di↵erences (Crank-Nicolson) O(Tsteps2n)

Fast Fourier transform O((n + 1)2n)
Matrix exponentiation O(2n)

TABLE II. Algorithms and their costs [43]. We compare the costs
of di↵erent tasks when working with multivariate functions, from
the construction of the state, to the simulation of their evolution. ✏,
desired error bound; N, number of variables; n number of qubits per
variable for points in discretization Tsteps is the number of time steps

500 1000 1500 2000 2500 3000 3500 4000

10-5

10-4

10-3

10-2

10-1

FIG. 11. Comparison of the accuracy, computed with the L1-norm,
reached for Crank-Nicolson scheme and the quantum algorithm.
Crank-Nicolson shows better results when the number of discretiza-
tion points is low, but time discretization e↵ects limit this method
when the grid has over 1000 points and we can appreciate how this
technique gets stuck. In the opposite side, quantum algorithm im-
proves its accuracy continuously as we enlarge the grid size.

We also provide in Table. II the comparison with other clas-
sical methods for solving partial di↵erential equations, like the
fast Fourier transform or matrix exponentiation techniques

14

Precision comparable to classical methods with 10 qubits and 94 entangling
gates on fault-tolerant QC. Complexity 𝒪 poly 𝑛 . Success probability 0.6.

Black-Scholes equation for European put options

https://arxiv.org/abs/2101.04023

Suau et al. 2022

7

100 105 1010 1015 1020 1025 1030
0

100

200

300

Number of discretisation points Nd

Q
ub

it
nu

m
be

r

Solver arity
11 + 3 log2 x

FIG. 2. Plot of the number of logical qubits needed to run the wave equation solver for a time t = 1, a precision ✏ = 10�5

and a Trotter-Suzuki product-formula of order k = 1. The constants values 11 and 3 have been chosen arbitrarily to fit the
experimental data. The number of physical qubits needed will depend on their error rate as noted in [36]. Multiplying the
number of logical qubits by 3 to 4 orders of magnitude might be a good estimate of the actual number of physical qubits
required.

0 0.2 0.4 0.6 0.8 1

�0.2

0

0.2

x

y

Classical
Quantum

(a)Quantum versus classical solution. Solutions are not visually

distinguishable on the graph, see the associated absolute error.

0 0.2 0.4 0.6 0.8 1

0

1

2

·10�7

x

A
bs

ol
ut

e
er

ro
r

absolute error

(b)Absolute error between the solution obtained by a classical

finite-di↵erence solver and the solution computed with the

quantum solver.

FIG. 3. Comparison of the classical solver and the quantum solver. Both solvers solved the 1-D wave equation with Nd = 32
discretisation points and a physical time of t = 0.4. The classical solver uses finite-di↵erences with a very small time-step in
order to avoid as much as possible errors due to time-discretisation. The quantum solver was instructed to solve the wave
equation with a precision of at least ✏ = 10�3, used a Trotter-Suzuki order of k = 1. The solutions of the two solvers are
too close to be able to notice a di↵erence (they overlap on the graph), that is why a second graph plotting the absolute error
between the two solvers is included.

V. DISCUSSION

In this work, we focus on the practical cost of implementing a 1-dimensional quantum wave equation solver on a
quantum computer. We show that a quantum computer is able to solve partial di↵erential equations by constructing
and simulating the quantum circuits described. We also study the scaling of the solver with respect to several
parameters of interest and show that the theoretical asymptotic bounds are mostly verified.

In future works, one can study the possibilities of circuit optimisation. It would also be interesting to implement
Neumann boundary conditions instead of Dirichlet ones. A practical implementation including a non-constant prop-
agation speed c has also been realised during the writing of this paper. The results were encouraging but were not
judged mature enought to include them in the paper. Finally, future works might want to extend the wave equation
solver to 2 dimensions or more.

7

100 105 1010 1015 1020 1025 1030
0

100

200

300

Number of discretisation points Nd

Q
ub

it
nu

m
be

r

Solver arity
11 + 3 log2 x

FIG. 2. Plot of the number of logical qubits needed to run the wave equation solver for a time t = 1, a precision ✏ = 10�5

and a Trotter-Suzuki product-formula of order k = 1. The constants values 11 and 3 have been chosen arbitrarily to fit the
experimental data. The number of physical qubits needed will depend on their error rate as noted in [36]. Multiplying the
number of logical qubits by 3 to 4 orders of magnitude might be a good estimate of the actual number of physical qubits
required.

0 0.2 0.4 0.6 0.8 1

�0.2

0

0.2

x

y
Classical
Quantum

(a)Quantum versus classical solution. Solutions are not visually

distinguishable on the graph, see the associated absolute error.

0 0.2 0.4 0.6 0.8 1

0

1

2

·10�7

x

A
bs

ol
ut

e
er

ro
r

absolute error

(b)Absolute error between the solution obtained by a classical

finite-di↵erence solver and the solution computed with the

quantum solver.

FIG. 3. Comparison of the classical solver and the quantum solver. Both solvers solved the 1-D wave equation with Nd = 32
discretisation points and a physical time of t = 0.4. The classical solver uses finite-di↵erences with a very small time-step in
order to avoid as much as possible errors due to time-discretisation. The quantum solver was instructed to solve the wave
equation with a precision of at least ✏ = 10�3, used a Trotter-Suzuki order of k = 1. The solutions of the two solvers are
too close to be able to notice a di↵erence (they overlap on the graph), that is why a second graph plotting the absolute error
between the two solvers is included.

V. DISCUSSION

In this work, we focus on the practical cost of implementing a 1-dimensional quantum wave equation solver on a
quantum computer. We show that a quantum computer is able to solve partial di↵erential equations by constructing
and simulating the quantum circuits described. We also study the scaling of the solver with respect to several
parameters of interest and show that the theoretical asymptotic bounds are mostly verified.

In future works, one can study the possibilities of circuit optimisation. It would also be interesting to implement
Neumann boundary conditions instead of Dirichlet ones. A practical implementation including a non-constant prop-
agation speed c has also been realised during the writing of this paper. The results were encouraging but were not
judged mature enought to include them in the paper. Finally, future works might want to extend the wave equation
solver to 2 dimensions or more.

15

8

100 101 102 103 104 105 106 107 108 109
106

1011

1016

1021

Number of discretisation points Nd

N
um

be
ro

fg
at

es

Total
�N3/2

d
log2(Nd)2

(a)Number of quantum gates needed to solve the wave equation

described in eq. (1) versus discretisation size. The value of

� = 300 000 has been chosen arbitrarily to fit the experimental

data.

100 101 102 103 104 105 106 107 108 109
100

105

1010

1015

Number of discretisation points Nd

Es
tim

at
ed

ex
ec

ut
io

n
tim

e
us

in
g

IB
M

Q
M

elb
ou

rn
e

(s
)g

at
e

tim
e

Total
�N3/2

d
log2(Nd)2

(b)Estimated execution time of the wave equation solver on

IBM Q Melbourne hardware. Individual gate times have been

extracted from [5] and [6]. GF pulse time has been

approximated via arithmetic mean to 347ns, GD pulse time is

100ns and bu↵er time is 20ns. The value of � = 0.06 has been

chosen arbitrarily to fit the experimental data.

FIG. 4. Graphs generated with a Trotter-Suzuki product-formula order k = 1, a physical time t = 1 and a precision ✏ = 10�5.

ACKNOWLEDGMENTS

The authors would like to thank Reims University, the ROMEO HPC center, Total, the CCRT and Atos for their
support by giving us access to Atos quantum simulator.

SUPPLEMENTARY MATERIAL

The implementation of the quantum wave equation solver is available at https://gitlab.com/cerfacs/qaths.
The qprof tool is available at https://gitlab.com/qcomputing/qprof/qprof.

[1] 2015. Constructing Large Controlled Nots. https://algassert.com/circuits/2015/06/05/
Constructing-Large-Controlled-Nots.html. (2015). Accessed: 2020-03-27.

[2] 2019. 14-qubit backend: IBM Q team, ”IBM Q 16 Melbourne backend specifications V1.3.0” (2019). (2019). Retrieved
from https://quantum-computing.ibm.com.

[3] 2019. Hamiltonian simulation implementation in qiskit-aqua. https://github.com/Qiskit/qiskit-aqua/blob/master/
qiskit/aqua/operators/weighted_pauli_operator.py#L837. (2019). Accessed: 2020-03-27.

[4] 2019. IBM Quantum Computing. https://www.ibm.com/quantum-computing/. (2019). Accessed: 2020-03-27.
[5] 2019. Melbourne gate specification. https://github.com/Qiskit/ibmq-device-information/tree/master/backends/

melbourne/V1#gate-specification. (2019). Accessed: 2020-03-27.
[6] 2019. Melbourne hardware operation execution time. https://github.com/Qiskit/ibmq-device-information/blob/

master/backends/melbourne/V1/version_log.md#gate-specification. (2019). Accessed: 2020-03-27.
[7] 2019. Quantum algorithms for the simulation of Hamiltonian dynamics. https://github.com/njross/simcount. (2019).

Accessed: 2020-03-27.
[8] 2019. Quantum computing — Intel Newsroom. https://newsroom.intel.com/press-kits/quantum-computing/. (2019).

Accessed: 2020-03-27.
[9] 2019. Quantum Supremacy Using a Programmable Superconducting Processor. https://ai.googleblog.com/2019/10/

quantum-supremacy-using-programmable.html. (2019). Accessed: 2020-03-27.
[10] Graeme Robert Ahokas. 2004. Improved Algorithms for Approximate Quantum Fourier Transforms and Sparse Hamiltonian

Simulations. Master’s thesis. University of Calgary. https://doi.org/10.11575/PRISM/22839
[11] Juan Miguel Arrazola, Timjan Kalajdzievski, Christian Weedbrook, and Seth Lloyd. 2018. Quantum algorithm for non-

homogeneous linear partial di↵erential equations. (09 2018). arXiv:1809.02622v1 http://arxiv.org/abs/1809.02622v1
[12] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,

Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William
Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Gra↵,

8

100 101 102 103 104 105 106 107 108 109
106

1011

1016

1021

Number of discretisation points Nd

N
um

be
ro

fg
at

es

Total
�N3/2

d
log2(Nd)2

(a)Number of quantum gates needed to solve the wave equation

described in eq. (1) versus discretisation size. The value of

� = 300 000 has been chosen arbitrarily to fit the experimental

data.

100 101 102 103 104 105 106 107 108 109
100

105

1010

1015

Number of discretisation points Nd
Es

tim
at

ed
ex

ec
ut

io
n

tim
e

us
in

g
IB

M
Q

M
elb

ou
rn

e
(s

)g
at

e
tim

e

Total
�N3/2

d
log2(Nd)2

(b)Estimated execution time of the wave equation solver on

IBM Q Melbourne hardware. Individual gate times have been

extracted from [5] and [6]. GF pulse time has been

approximated via arithmetic mean to 347ns, GD pulse time is

100ns and bu↵er time is 20ns. The value of � = 0.06 has been

chosen arbitrarily to fit the experimental data.

FIG. 4. Graphs generated with a Trotter-Suzuki product-formula order k = 1, a physical time t = 1 and a precision ✏ = 10�5.

ACKNOWLEDGMENTS

The authors would like to thank Reims University, the ROMEO HPC center, Total, the CCRT and Atos for their
support by giving us access to Atos quantum simulator.

SUPPLEMENTARY MATERIAL

The implementation of the quantum wave equation solver is available at https://gitlab.com/cerfacs/qaths.
The qprof tool is available at https://gitlab.com/qcomputing/qprof/qprof.

[1] 2015. Constructing Large Controlled Nots. https://algassert.com/circuits/2015/06/05/
Constructing-Large-Controlled-Nots.html. (2015). Accessed: 2020-03-27.

[2] 2019. 14-qubit backend: IBM Q team, ”IBM Q 16 Melbourne backend specifications V1.3.0” (2019). (2019). Retrieved
from https://quantum-computing.ibm.com.

[3] 2019. Hamiltonian simulation implementation in qiskit-aqua. https://github.com/Qiskit/qiskit-aqua/blob/master/
qiskit/aqua/operators/weighted_pauli_operator.py#L837. (2019). Accessed: 2020-03-27.

[4] 2019. IBM Quantum Computing. https://www.ibm.com/quantum-computing/. (2019). Accessed: 2020-03-27.
[5] 2019. Melbourne gate specification. https://github.com/Qiskit/ibmq-device-information/tree/master/backends/

melbourne/V1#gate-specification. (2019). Accessed: 2020-03-27.
[6] 2019. Melbourne hardware operation execution time. https://github.com/Qiskit/ibmq-device-information/blob/

master/backends/melbourne/V1/version_log.md#gate-specification. (2019). Accessed: 2020-03-27.
[7] 2019. Quantum algorithms for the simulation of Hamiltonian dynamics. https://github.com/njross/simcount. (2019).

Accessed: 2020-03-27.
[8] 2019. Quantum computing — Intel Newsroom. https://newsroom.intel.com/press-kits/quantum-computing/. (2019).

Accessed: 2020-03-27.
[9] 2019. Quantum Supremacy Using a Programmable Superconducting Processor. https://ai.googleblog.com/2019/10/

quantum-supremacy-using-programmable.html. (2019). Accessed: 2020-03-27.
[10] Graeme Robert Ahokas. 2004. Improved Algorithms for Approximate Quantum Fourier Transforms and Sparse Hamiltonian

Simulations. Master’s thesis. University of Calgary. https://doi.org/10.11575/PRISM/22839
[11] Juan Miguel Arrazola, Timjan Kalajdzievski, Christian Weedbrook, and Seth Lloyd. 2018. Quantum algorithm for non-

homogeneous linear partial di↵erential equations. (09 2018). arXiv:1809.02622v1 http://arxiv.org/abs/1809.02622v1
[12] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,

Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William
Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Gra↵,

Wave equations

https://dl.acm.org/doi/10.1145/3430030

Quantum algorithms for solving PDEs

16
Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.

PDE

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

linear system
𝐴𝑥 = 𝑏

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

di
sc

re
tiz

at
io

n

m
ea

su
re

m
en

t

QLSA

QML, QNPU, lattice Boltzmann, …

CVQC algorithms: QML, …

https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Given: 𝑥̇ = 𝐴𝑥 + 𝑏, 𝑥 𝑡, = 𝑥,

§ Unroll Euler method in time

𝐼 0 0 0
− 𝐼 + Δ𝑡𝐴 𝐼 0 0

⋱ ⋱ ⋱ ⋱
0 0 − 𝐼 + Δ𝑡𝐴 𝐼

𝑥%
𝑥2
⋮
𝑥C

=

𝑥#0
Δ𝑡𝑏
⋮
Δ𝑡𝑏

§ Apply HHL-type algorithm to obtain the solution at all times

| ⟩𝑥 =3
@)%

C
8 |𝑡@ 8 |𝑥@

§ Application and analysis for the heat equation yields poor
scaling with precision [Linden et al. 2020] even with the
improved variant of the QLSA ‘solver’ [Berry et al. 2017]

17

linear system
𝐴𝑥 = 𝑏

𝒪 poly ⁄1 𝜖

https://arxiv.org/abs/2004.06516
https://link.springer.com/article/10.1007/s00220-017-3002-y

Solution: 𝑥 𝑡 = 𝑒}~𝑥, + 𝑒}~ − 𝐼 𝐴��𝑏

§ Truncated exponentials

𝑒D ≈3
@)%

(𝑧@

𝑗!
, 𝑒D − 1 𝑧"2 ≈3

@)2

(𝑧@"2

𝑗!

§ Linear system [Berry et al. 2017]

𝐶C,(,E Δ𝑡𝐴 | ⟩𝑥 = | ⟩0 | ⟩𝑥% + Δ𝑡3
@)%

C"2
| ⟩𝑗 𝑘 + 1 + 1 | ⟩𝑏

𝐼
−Δ𝑡𝐴 𝐼

− ⁄Δ𝑡𝐴 2 𝐼
− ⁄Δ𝑡𝐴 3 𝐼

−𝐼 −𝐼 −𝐼 −𝐼 𝐼
−Δ𝑡𝐴 𝐼

⁄−Δ𝑡𝐴 2 𝐼
⁄−Δ𝑡𝐴 3 𝐼

−𝐼 −𝐼 −𝐼 −𝐼 𝐼
−𝐼 𝐼

−𝐼 𝐼 !,#,!

,

| ⟩𝑥$
Δ𝑡| ⟩𝑏
0
0
0

Δ𝑡| ⟩𝑏
0
0
0
0
0

18

linear system
𝐴𝑥 = 𝑏

𝒪 poly log ⁄1 𝜖

https://link.springer.com/article/10.1007/s00220-017-3002-y

Given: 𝑥̇ = 𝐴 𝑡 𝑥 + 𝑏 𝑡 , 𝑥 𝑡, = 𝑥,

§ Chebyshev pseudo-spectral approximation

𝑥 𝑡 =3
()%

0
𝑐(𝑇(𝑡 ⇒ 𝑥̇ 𝑡A = 𝐴 𝑡A 𝑥 𝑡A + 𝑏 𝑡A , 𝑡A = cos

𝑙𝜋
𝑛

§ Rescaled differential equation (Childs and Liu 2020)

𝑥̇ 𝛾 𝑡 = −!
')!"!'
+ 𝐴 𝛾 𝑡 𝑥 𝛾 𝑡 + 𝑏 𝛾 𝑡 ,

where 𝛾: 𝑡0, 𝑡062 ↦ −1,1 is defined as 𝛾: 𝑡 ↦ 1 − " *+*'

')!+'

§ Combined with the 𝐶C,(,E-approach from [Berry et al. 2017] this extends
their work to ODEs with time-dependent coefficient matrices and vectors

19

linear system
𝐴𝑥 = 𝑏

𝒪 poly log ⁄1 𝜖

https://link.springer.com/article/10.1007/s00220-020-03699-z
https://link.springer.com/article/10.1007/s00220-017-3002-y

Quantum algorithms for solving PDEs

20
Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.

PDE

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

linear system
𝐴𝑥 = 𝑏

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

di
sc

re
tiz

at
io

n

m
ea

su
re

m
en

t

QLSA

QML, QNPU, lattice Boltzmann, …

CVQC algorithms: QML, …

https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Quantum linear ‘solver’ algorithm

§ Problem: 𝑎 = 𝑥& 𝑀 𝑥 𝑠. 𝑡. 𝐴| ⟩𝑥 = | ⟩𝑏

§ Original HHL algorithm [Harrow et al. 2008]

§ Improved versions of HHL

§ VTAA [Ambainis 2010]

§ AQC [Subasi et al. 2019]

§ AQC [An and Lin 2019]

§ QLSA w/o phase estimation [Childs et al. 2017]

§ Dense matrices [Wossnig et al. 2018]

21

QLSA

𝒪 𝑠 𝜅𝑁 log 1/𝜖

𝒪 𝑠+𝜅 log: 𝜅 log 𝑁 /𝜖:

𝒪 poly log 1/𝜖

𝒪 𝜅+ log 𝜅 /𝜖

𝒪 𝜅 poly log 𝜅/𝜖

𝒪 𝑠+𝜅+ log 𝑁 /𝜖

𝒪 𝜅+ 𝑁poly log 𝑁 /𝜖

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/1010.4458
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.060504
https://arxiv.org/abs/1909.05500
https://doi.org/10.1137%2F16m1087072
https://doi.org/10.1103%2FPhysRevLett.120.050502

State preparation: | ⟩𝜓���~ = 𝑈����| ⟩0

§ General states cannot be prepared efficiently, not even approximated

𝑁 grid points ⇒ 𝑛 = log𝑁 qubits ⇒ 𝑈E4.E = 𝒪 𝑁

uniformly controlled rotations [Mottonen et al. 2004] using 𝒪 20 gates

§ Certain states of the form | ⟩𝜓 = ∑# 𝑝# | ⟩𝑖 can be prepared efficiently, e.g.,
using quantum GANs [Zoufal et al. 2019] using 𝒪 poly 𝑛 gates

§ Reducing time complexity by adding ancillary qubits
§ Low-depth approach: 𝒪 𝑛+ using 𝒪 20+ ancillae [Zhang et al. 2021]
§ 𝑠-sparse states: Θ log 𝑛𝑠 using 𝒪 𝑛𝑠 log 𝑠 ancillae [Zhang et al. 2022]

22

https://arxiv.org/abs/quant-ph/0407010
https://dx.doi.org/10.1038/s41534-019-0223-2
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.043200
https://inspirehep.net/literature/2020777

Does any of this work in practice?

§ QLSA for 𝐴𝑥 = 𝑏

§ HW-realization for 2×2 matrix [Cai et al. 2013], [Barz et al. 2013], [Pan
et al. 2013], and 8×8 matrix [Wen et al. 2018]

§ 2×2, 4×4, and 8×8 on IBM, Rigetti, IonQ [Cornelissen et al. 2021]

§ Other authors report that “due to imperfection and noise in a real
quantum computer [ibmq_santiago], the hardware execution of the
same circuit does not give satisfactory results” [Morrell and Wong 2021]

§ Okay, so no chance for solving ODEs / transient PDEs with QC in near term

§ How about solving Poisson’s equation discretized by FDM / FEM?

23

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.230501
https://www.nature.com/articles/srep06115
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.022313
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.012320
https://arxiv.org/abs/2104.10698
https://arxiv.org/abs/2108.09004

𝒪 𝑠+𝜅+ log 𝑁 /𝜖𝒪 poly log 1/𝜖versus

§ General state preparation is exponentially expensive, i.e., 𝒪 𝑁
§ Polynomials/functions with local support can be prepared efficiently

§ 𝜅 = 𝒪 𝑁 ⁄G + in standard FEM ⇒ no exponential speedup
§ Quantum-SPAI precondioner, i.e. 𝑃𝐴𝑥 = 𝑃𝑏 [Clader et al. 2013]

§ 𝒪 𝑠+ queries to 𝑃𝐴-oracle; 𝒪 𝑠: runtime
§ 𝜅 = 𝒪 1 or 𝜅 = 𝒪 log𝑁

§ 𝑠 = ?

§ ⁄1 𝜖 = 𝒪 𝑁 in most discretization schemes ⇒ no exponential speedup

24

𝒪 𝑠 𝜅𝑁 log 1/𝜖

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.250504

No exponential speedup for elliptic problems for fixed 𝑑

algorithm w/o preconditioner optimal preconditioner

Conjugate Gradients �𝒪
𝑥 +

𝜖

G62
+

�𝒪
𝑥 +

𝜖

G
+

Childs et al. 2017 �𝒪
𝑥 2 𝑥 +

+

𝜖:
�𝒪

𝑥 2

𝜖

25

[Montanaro, Pallister 2016]:

§ State preparation + q-SPAI preconditioner + PA-oracle in 𝒪 log 1/𝜖

§ To distinguish between two 𝜖-close states requires 𝒪 1/𝜖 queries

�𝒪 ℎ 𝑛 = 𝒪 ℎ 𝑛 log(𝑛

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.032324

Quantum algorithms for solving PDEs

26
Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.

PDE

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

linear system
𝐴𝑥 = 𝑏

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

di
sc

re
tiz

at
io

n

m
ea

su
re

m
en

t

QLSA

QML, QNPU, lattice Boltzmann, …

CVQC algorithms: QML, …

https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Quantum algorithms for solving PDEs

27
Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.

PDE

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

linear system
𝐴𝑥 = 𝑏

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

di
sc

re
tiz

at
io

n

m
ea

su
re

m
en

t

V-QLSA

QML, QNPU, lattice Boltzmann, …

CVQC algorithms: QML, …

https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf

Variational quantum algorithms [Cerezo et al. 2020]

28

| ⟩𝜓 Θ = 𝑉 Θ | ⟩0 𝐶 Θ = 𝜓 Θ 𝐻 𝜓 Θ

Classical optimizer Θ = min
H
𝐶 Θ

https://www.nature.com/articles/s42254-021-00348-9

Variational quantum linear solver [Bravo-Prieto et al. 2020]

§ Efficient(!) decomposition into unitaries + efficient(!) state preparation

𝐴 =3
(
𝛼(𝐴(, | ⟩𝑏 = 𝐵| ⟩0

§ Cost function

�
| ⟩Φ ⊥ | ⟩𝑏 ⇒ 𝐶 Θ large
| ⟩Φ ∥ | ⟩𝑏 ⇒ 𝐶 Θ small

| ⟩Φ = 𝐴| ⟩𝜓 Θ

§ Ground-state Hamiltonian
𝐻 = 𝐴& 𝕀 − | ⟩𝑏 ⟨ |𝑏 𝐴

§ Cost function
𝐶 Θ = 𝜓 Θ 𝐻 𝜓 Θ = Φ Φ − Φ 𝑏 𝑏 Φ

29

https://arxiv.org/abs/1909.05820

Variational quantum linear solver [Bravo-Prieto et al. 2020]

§ Efficient(!) decomposition into unitaries + efficient(!) state preparation

𝐴 =3
(
𝛼(𝐴(, | ⟩𝑏 = 𝐵| ⟩0

§ Cost function

�
| ⟩Φ ⊥ | ⟩𝑏 ⇒ 𝐶 Θ large
| ⟩Φ ∥ | ⟩𝑏 ⇒ 𝐶 Θ small

| ⟩Φ = 𝐴| ⟩𝜓 Θ

§ Ground-state Hamiltonian
𝐻 = 𝐴& 𝕀 − | ⟩𝑏 ⟨ |𝑏 𝐴

§ Normalized cost function

¤𝐶 Θ = 1 −
Φ 𝑏 +

Φ Φ
30

https://arxiv.org/abs/1909.05820

Variational quantum linear solver [Bravo-Prieto et al. 2020]

§ Towards an implementable cost function

Φ Φ =3
(,A
𝑐(∗𝑐A 0 𝑉& Θ 𝐴(

&𝐴A𝑉 Θ 0

Φ 𝑏 =3
(,A
𝑐(∗𝑐A 0 𝐵&𝐴A𝑉 Θ 0 0 𝐵&𝐴(𝑉 Θ 0

§ [Liu et al. 2021]:
§ Decomposition of the 𝑑-dimensional

Poisson matrix (FDM) into 𝒪 log𝑁
terms consisting of identities and
½ spin operators | ⟩1 ⟨ |0 and | ⟩0 ⟨ |1

§ Difficulties to convergence the
classical optimizer for 50-100 qubits

§ Fully connected measurement circuits 31

https://arxiv.org/abs/1909.05820
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.022418

Quantum algorithms for solving PDEs

32
Inspired by A. Pesah’s report “Quantum Algorithms for Solving Partial Differential Equations” 2020.

PDE

Schrödinger’s equation
𝜓! = −𝑖𝐻𝜓

linear system
𝐴𝑥 = 𝑏

Hamiltonian simulation
| ⟩𝜓 = 𝑒"#$!| ⟩𝜓%

di
sc

re
tiz

at
io

n

m
ea

su
re

m
en

t

QLSA

QML, QNPU, lattice Boltzmann, …

CVQC algorithms: QML, …

[Lubasch et al. 2020]

[Budinsk 2021], [Stijl 2020]

[Srivastava,
Sundararaghavan 2019]

[Knudsen, Mendl 2021]

https://artix41.github.io/assets/pdf/case-study-quantum-algorithms-pde.pdf
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.010301
https://arxiv.org/abs/2103.03804
https://www.intechopen.com/chapters/74384
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.052355
https://arxiv.org/abs/2012.12220

Physics-informed QNN [Kyriienko et al. 2021]

...

...

...

...

...

......

...

...

...

...

...

...

! (xi)

| 0

| 0

| 0

| 0

| 0

| 0

Uφ U!

quantum feature
map circuit

variational quantum
circuit

measure

(xi)

= Σ " ℓ ℓℓ C (xi)

(a)

......

| 0 U!

(b)

Uφ,1(xi)#

......

| 0 U!Uφ,2(xi)#

...

...

| 0 U!

......

| 0 U!

...

...

Uφ,2(xi)$

... ...

d! /dx|x=xi

$
Uφ,1(xi)

derivative quantum circuits ... measure

33

https://doi.org/10.1103/PhysRevA.103.052416

BACKUP

34

Different quantum computing principles

§ Discrete-variable quantum computing (DVQC): eigenstates of a discrete
variable form the computational basis of a finite-dimensional Hilbert space

| ⟩𝜓 =3
#)%

+'"2
𝑐#| ⟩𝑏# , 3

#)%

+'"2
𝑐# + = 1, 𝑏# 𝑏@ = 𝛿#@

§ Continuous-variable quantum computing (CVQC): eigenstates of a
continuous variable form the basis of an infinite-dimensional Hilbert space

| ⟩𝜓 = ¦
"*

*
𝑐(𝑥)| ⟩𝑥 𝑑𝑥 , 𝑥′ 𝑥 = 𝛿 𝑥J − 𝑥

35

DVQC: Gate-based universal quantum computers

§ Mathematical model

| ⟩𝜓KL! = 𝑈C ⋅ … ⋅ 𝑈2| ⟩𝜓%

§ Hardware realizations with ~100
superconducting qubits, e.g., by
IBM, Google, Rigetti, Intel, …

36

preparation

algorith
m

measurement

DVQC: Quantum annealing

§ Mathematical model

| ⟩𝜓% = arg min
| ⟩O

𝜓 𝐻 𝜓

§ Path of Hamiltonians for 𝑡 ∈ [0, 𝑇]

𝐻 𝑡 = 1 − 𝑓 𝑡 𝐻P + 𝑓 𝑡 𝐻'

with easy-to-compute ground state
| ⟩𝜓% for the initial Hamiltonian 𝐻P

§ Ground-state evolution

𝐻 𝑡 | ⟩𝜓 𝑡 = −𝑖
𝑑
𝑑𝑡
| ⟩𝜓(𝑡)

37

t

E

E0

E1

Δ 𝑡 = 𝐸%(𝑡) − 𝐸2(𝑡)

Summary and recommendations

§ ODEs / transient PDEs (long term)
§ ‘smart’ time integrators that reduce the condition number (QLSA)

§ Steady-state PDEs (near to mid term)
§ ‘smart’ discretization that reduce the condition number (QLSA)
§ problems that admit efficient matrix decompositions (V-QLSA)

§ Service to QC
§ improve VQAs using classical CSE techniques

38

