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Computational steering

What do you know about it?
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Computational steering – Dutch roots

computing is needed to execute simulations :and 
rendering at interactive speeds. High 
and low latency networks are needed to interactive-
ly handle the vast amount of data produced by HPC 
simulations. If interactive speeds cannot be ob-
tained, then most of the merits of computational 
steering will be lost. 

Computational steering is an attractive concept, 
but its implementation is cumbersome and time 
consuming. A researcher must cooperate with 
a specialist in user-interfaces and visualization to 
develop a tool for the analysis of the output of the 
simulation. When the tool is ready, after some weeks 
or months, chances are high that the interests of the 
researcher have shifted. Also, further analysis of the 
data will introduce new research questions, which 
induce modifications of the tool. The close cooper-
ation between researcher and the visualization 
specialist for an extended period is required. More 
appropriate would be to provide an environment in 
which researchers themselves can build interfaces 
and visualizations to the simulation. This would 
result in a more effective and efficient model- simu-
late-analysis cycle. 

The CSE is a software environment for computa-
tional steering [3]. The CSE provides a collection of 
methods, techinques, and tools that enable re-
searchers to apply computational steering. The for-
mat of this paper is as follows: First, a number of 
requirements, which we believe are fundamental for 
a steering environment, are given. We then present 
some key concepts of the CSE's architecture and the 
tools provided for the visualization of and interac-
tion with the data. Finally, two applications are 
discussed as an illustration of the use of the CSE. 

2. Requirements 

Consider Fig. 1, which depicts the data flow be-
tween a researcher and simulation via a CSE. 
A number of requirements for a steering environ-
ment can be given. First, the researcher enters new 
values for parameters, and views visualizations of 
the resulting data. Heooe, input widgets such as 
text-fields., sliders, buttons. as well as a variety ol 
visualization methods, such as graphs, text, graphics 
objects, etc. must be provided. Graphical objects 
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must be provided that allow for two-way communi-
cation: both input and output. It must be possible to 
select and drag visualization objects, thereby direc-
tly controlling parameters and state variables of the 
simulation. 

The simulation receives from the CSE new par-
ameter values, and returns newly calculated results 
to the CSE. We assume that the simulation can 
handle changes of parameters on the fly, and that it 
can provide meaningful intermediate results within 
a time-interval that is acceptable to the researcher. 

The process of achieving insight via simulation is 
an incremental one. The researcher must be able to 
create and refine the interlace to the simulation 
easily and incrementally. For all stages of the visual-
ization pipeline (from simulation to rendering) the 
cycle s[>eci.fication, implementation, application is 
continuously reiterated. 

The architecture of the CSE must be modular. 
There are two reasons for this: First. it must be 
possible to integrate existing tools, e.g. a special 
purpose package for grid-editing, in the CSE. Se-
cond, simulations usually execute on remote com-
pute servers. Modular architectures simplify embed-
ding simulations in the CSE. 

The final requirement concerns the underlying 
data model and the amount of data movement 
within the CSE. The type of data to be handled 
depends very much on the type of simulation, and 
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Figure 9. Diode laser simulation.

computes some fixed points in the phase space for a given
set of parameters. The user can interactively set the values
of selected parameters using sliders. The fixed points serve
as starting point of the simulation. These points are visual-
ized, and the scientist can directly select one of these points
to start the simulation. The computed trajectory is sent in-
crementally to the CAVE. The trajectory is visualized and
can be manipulated by the scientist. The simulation can be
stopped and re-started using a new starting fixed-point or dif-
ferent parameter values.
CAVEStudy’s benefits are many-fold in this case; it is eas-

ier to use than a previous approach (batch-processing and
off-line visualization); the study of the initial-condition sen-
sitivity of the laser is enhanced by the ability to modify the
parameters of the simulation interactively; since our system
does not require modifications of simulation code, we can
deal very easy with the changes of a code still revised fre-
quently; the interactive way in which physicists could test
hypotheses and investigate the behavior of the diode laser
helped them to gain a better insight in this complex system.

4.3. Interactive molecular dynamics

Our third application concerns the coupling of a molecular
dynamics (MD) simulation to a virtual reality system. Mole-
cular modeling tools are essential to design and study new
molecules. For example, when steering a molecular dynam-
ics simulation, the user can express external forces to help
the system to overcome energy barriers, or can help in the
search for likely geometric configurations in docking prob-
lems. Many studies focus on numerical simulations or visu-
alization tools, and some of them describe the advantages of
connecting molecular dynamics simulation to visualization.
For instance, NAMD [19], which includes state-of-the-art
serial and parallel algorithms, has been designed as a flex-
ible program, incorporating many options such as control

Figure 10. Interactive molecular dynamics.

integration methods, force field parameters, and restart ca-
pabilities. VMD [9] is a visualization environment for struc-
tural biology which has been widely used for plain visual-
ization, docking studies, structure refinement or trajectory
analysis. An important feature is that it is possible to cou-
ple a NAMD running simulation to VMD to study trajecto-
ries of molecules. Moreover, some local forces can be ap-
plied using either a 2D graphical interface or a 3D haptic
feedback tool [9]. In [13], the authors describe how they
link their molecular simulation to VMD. The user can ex-
press external forces to help the system to overcome energy
barriers between states. Another example is the molecular
docking simulation program described in [15]. A user in a
virtual reality environment can interact with a genetic algo-
rithm running on a parallel computer to help in the search
for likely geometric configurations.
VR allows the scientist to gain a deeper understanding of

the complex conformations in 3D. Moreover, modifying 3D
structures or expressing forces is intrinsically a 3D process,
for which the use of an immersive virtual environment is a
perfect match. As a feasibility study (and for later exper-
iments on interaction and measurement), we wrapped the
molecular dynamics NAMD [19] simulation and visualized
it in a VR environment.
Our current implementation allows a remote simulation

running on the DAS parallel cluster computer [2] to be vi-
sualized in the CAVE. The input parameters we selected are
the name of the molecule on which the simulation will be
applied, the number of time steps of the simulation, and the
temperature. It corresponds to the minimal set of parame-
ters among the large possibilities of NAMD. We did not
implement the interactive parameter selection yet, but pa-
rameters can be modified at starting time. As output of the
simulation, we use the PDB description files produced as in-
termediate result during the execution. These files, which
contain the position and velocity of all the atoms, are read
by the proxy process and sent continuously to the visualiza-
tion, showing the dynamics of the molecule. Several classic
molecule representations are available (wireframe, sphere,
backbone). An example is shown in figure 10.

Left: R. v. Liere, J.D. Mulder, and J.J. v. Wijk, CWI 1997. Right: L.Renambot, H.E. Bal, D. Germans, and H.J.W. Spoelder, VU 2001.
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Computational steering – the concept

The EPSN project by LaBRI (https://www.labri.fr/projet/epsn/) – 2007
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Computational steering – the early 2010s

Opening of the CAVE at HLRS High Performance Computing Center Stuttgart in 2012 (https://www.stuttgarter-zeitung.de/inhalt.forschung-in-stuttgart-ein-
wuerfel-fuer-die-virtuelle-zukunft.1272d909-f2f8-4a53-8ad4-2c1712ab8842.html)
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Computational steering – today

CAVE at HLRS High Performance Computing Center Stuttgart today (https://www.hlrs.de/solutions/systems/cave)
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Computational steering – today

EU-funded project VITV – 2018-2021 (https://www.b-tu.de/fg-medientechnik/forschung/virtuelles-triebwerk-v)
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Computational steering – the future

Siemens blog: Virtual Reality in Engineering - Are You Ready? – 7 July 2021 (https://blogs.sw.siemens.com/teamcenter/virtual-reality-in-engineering-are-you-
ready/)
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Computational steering – the future

Microsoft blog: The future of mobility is now: Five themes to watch at CES 2023 – 4 January 2023 (https://blogs.microsoft.com/blog/2023/01/04/the-
future-of-mobility-is-now-five-themes-to-watch-at-ces-2023/)
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Computational steering – the future

That is, combining Computer-Aided Design and
Computer-Aided Engineering Analysis to a
unified Design-through-Analysis workflow.
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Design-through-Analysis

What do you know about it?
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Design-through-Analysis – the inception

J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs, Wiley 2009
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Design-through-Analysis – further back in time to the 1970s

“The project described herein (which was completed early in 1975) is thought
to have been the first coordinated design through analysis of an entire

automobile, followed by construction and experimental verification.”

 EXPERIMENTAL AUTOMOBILE STRUCTURE 2 1 93

 * GRID POINT

 • ASET GRID POINT

 Fig. 14 - Beam elements on the CVS analytical
 model

 points in Fig. 14, while usually only one
 normal (to plate) displacement was kept on the
 plate grid points. This resulted in a total
 of 193 degrees of freedom for the symmetric
 case and 174 for the antisymmetric case (the
 difference is due to the grid points in the
 centerline which has one degree of freedom less
 in the ASET for the antisymmetric case) . All
 dynamic analyses were performed with the NASTRAN
 computer program using the Given* s eigenvalue
 extraction method (see Ref. 11 for more details).
 Table II gives some of the data for the dynamic
 models .

 Two different cases for the basic (body-
 in-white) structure have been analyzed; case 1
 refers to the standard modeling of plate
 elements, and case 2 to the models incorpo-
 rating the reduced membrane stiffness for some
 of the plate elements. The computed modes and
 frequencies are given in Table III. All struc-
 tural modes less than 75 Hz are included. It

 should be remembered, however, that the dynamic
 model was made to give good results for the

 major modes, and one would generally require a
 much more detailed model in order to obtain
 reasonable values for local modes. The fre-

 quencies given for all the local modes should
 only be considered as an indication that local
 flexibilities are low, and that panel vibration
 or local modes might occur in the location
 indicated at approximately the given frequency.

 Case 2 is considered the best model as it

 is based upon the technique successfully used
 in several earlier studies. It is evident

 (Table III) that a general reduction in fre-
 quencies was obtained by reducing the membrane
 stiffness in some of the plate elements,
 especially for the second beaming and torsion
 modes.

 Characteristics of the first beaming and
 torsion modes are:

 First Beaming Mode
 - very typical shape with the nodal

 points close to the suspension lines.
 - large curvature at the top of the A-

 pillar (looks almost like a hinge)

 TABLE II

 NASTRAN DATA FOR THE DYNAMIC
 ANALYSIS OF THE CVS VEHICLE

 Case: Case:
 Bas ^Structure Full Mass Structure

 Symmetric Symmetric

 Numerical Data:

 No. of grid points 940 1006

 Total dof* (GSET) 5640 6024

 MPC reduction (MSET) 306 463

 SPC reduction (SSET) 1316 1351
 OMIT reduction (0SET) 3825 4044

 Dynamic dof (ASET) 193 166

 Core requested 360K 500K

 *

 Degrees of freedom

This content downloaded from 138.96.48.184 on Mon, 24 Apr 2023 07:31:23 UTC
All use subject to https://about.jstor.org/terms

“[...] the potential value of design through analysis was demonstrated
by a significant reduction in structural weight of the project vehicle.”

J.A. Augustitus, M.M. Kamal, and L.J. Howell. Design through analysis of an experimental automobile structure. SAE Transactions, 86:2186-2198, 1977
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Computational steering: Interactive Design-through-Analysis

Vision: unified computational framework for rapid prototyping (design exploration phase)
and thorough analysis (design optimization phase) of engineering designs

Ingredients
• physics-informed machine learning for rapid prototyping
• isogeometric analysis for accurate analysis

Let’s see a live demo
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Let’s have a look under the hood
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The big picture

Front-ends

IgANet-frontend
by SURF by TU Vienna

WebSockets protocol for interactive Design-through-Analysis

Back-ends
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B-spline basis functions

Cox de Boor recursion formula

knot vector Ξ = [0, 1, 2, 3, 4]

b0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

bp
i (ξ) = ξ − ξi

ξi+p − ξi
bp−1

i (ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
bp−1

i+1 (ξ)

Many good properties: compact support [ξi, ξi+p+1), positive function values over
support interval, derivatives of B-splines are combinations of lower-order B-splines, ...
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Isogeometric Analysis
Paradigm: represent ‘everything’ in terms of tensor products of B-spline basis functions

Bi(ξ, η) := bp
i (ξ) · bq

k(η), i := (k − 1) · ni + i, 1 ≤ i ≤ ni, 1 ≤ k ≤ nk,

2.2. A short introduction on NURBS functions

A knot vector N ¼ n1; n2; . . . ; nnþpþ1
! "

is defined as a sequence of
knot value ni 2; i ¼ 1; . . . ;nþ p. An open knot, i.e, the first and the
last knots are repeated p + 1 times, is used. A B-spline basis
function forms C1 continuous inside a knot span and Cp#1 contin-
uous at a single knot. The B-spline basis functions are constructed
by the following recursion formula

Ni;pðnÞ ¼
n# ni

niþp # ni
Ni;p#1ðnÞ þ

niþpþ1 # n
niþpþ1 # niþ1

Niþ1;p#1ðnÞ

with p > 0 ð14Þ

with p = 0,

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

#
ð15Þ

Two-dimensional B-spline basis functions are defined by the
tensor product of basis functions in two parametric dimensions n
and g with two knot vectors N ¼ n1; n2 . . . ; nnþpþ1

$ %
and

H ¼ g1;g2 . . . ;gmþqþ1

n o
as

NAðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð16Þ

Fig. 1 illustrates the set of one-dimensional and two-dimen-
sional B-spline basis functions.

To model exactly curved geometries (e.g. circles, cylinders,
spheres, etc.), each control point A has additional value called an
individual weight fA. We denote Non-uniform Rational B-splines
(NURBS) functions which are expressed as

RA n;gð Þ ¼ NAfAPm&n
A NA n;gð ÞfA

ð17Þ

It is evident that the B-spline function is obtained when the
individual weight of the control points is constant.

2.3. Extended isogeometric finite elements

The idea of XFEM is to introduce physical functions with a priori
knowledge of the problem field to the approximation [14]. The
basic difference between XFEM and FEM is that the former involves
the solution of the additional parameters blended to the approxi-
mation by the partition of unity. Similar to the enrichment
functions used in XFEM, the XIGA velocity field of the cracked
solids can be expressed as

_uhðxÞ ¼
X

I2S
NI xð Þ _qI þ

X

J2Sc

NJ xð Þ H xð Þ # H xJ
& '& '

_aJ

þ
X

K2St

NK xð Þ
X4

a¼1

Fa xð Þ # Fa xKð Þð Þ _ba
K ð18Þ

Fig. 1. 1D and 2D B-spline basis functions.

Fig. 2. Illustration of enriched control points for a quadratic NURBS net.

H. Nguyen-Xuan et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 13–27 15

bp
i (ξ) bq

k(η)

Bi(ξ, η)

Many more good properties: partition of unity
n∑

i=1
Bi(ξ, η) ≡ 1, Cp−1 continuity, ...
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Isogeometric Analysis
Geometry: bijective mapping from the unit square to the physical domain Ωh ⊂ Rd

xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2 =: Ω̂

• the shape of Ωh is fully specified by the
set of control points xi ∈ Rd

• interior control points must be chosen
such that ‘grid lines’ do not fold as this
violates the bijectivity of xh : Ω̂ → Ωh

• refinement in h (knot insertion) and p
(order elevation) preserves the shape of
Ωh and can be used to generate finer
computational ‘grids’ for the analysis
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Isogeometric Analysis
Model problem: Poisson’s equation

−∆uh = fh in Ωh, uh = gh on ∂Ωh

with

(geometry) xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · xi ∀(ξ, η) ∈ [0, 1]2

(solution) uh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · ui ∀(ξ, η) ∈ [0, 1]2

(r.h.s vector) fh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · fi ∀(ξ, η) ∈ [0, 1]2

(boundary conditions) gh ◦ xh(ξ, η) =
n∑

i=1
Bi(ξ, η) · gi ∀(ξ, η) ∈ ∂[0, 1]2

20 / 32



Isogeometric Analysis
Abstract representation
Given xi (geometry), fi (r.h.s. vector), and gi (boundary conditions), computeu1

...
un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Any point of the solution can afterwards be obtained by a simple function evaluation

(ξ, η) ∈ [0, 1]2 7→ uh ◦ xh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un



Let us interpret the sets of B-spline coefficients {xi}, {fi}, and {gi} as an efficient
encoding of our PDE problem that is fed into our IgA machinery as input.
The output of our IgA machinery are the B-spline coefficients {ui} of the solution.
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Isogeometric Analysis + Physics-Informed Machine Learning
IgANet: replace computation

by physics-informed machine learning

u1
...

un

 = A−1


x1

...
xn

 ,

g1
...

gn


 · b


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn




Compute the solution from the trained neural network as follows

uh(ξ, η) = [B1(ξ, η), . . . , Bn(ξ, η)] ·

u1
...

un

 ,

u1
...

un

 = IgANet


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn



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IgANet architecture

x1

xn

f1

fn

g1

gn

σ

σ

σ

σ

σ

σ

σ

σ

σ

u1

un

loss = lossPDE + lossBDR

loss < ε end training

∂loss
∂(w, b) → update w, b

and continue training

ge
om

et
ry

r.h
.s.

ve
ct

or
bd

r.
co

nd
.

coords (ξ(k), η(k))N
k=1
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Loss function
Model problem: Poisson’s equation with Dirichlet boundary conditions

lossPDE = α

NΩ

NΩ∑
k=1

∣∣∣∆ [
uh ◦ xh

(
ξ(k), η(k)

)]
− fh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
lossBDR = β

NΓ

NΓ∑
k=1

∣∣∣uh ◦ xh

(
ξ(k), η(k)

)
− gh ◦ xh

(
ξ(k), η(k)

)∣∣∣2
Express derivatives with respect to physical space variables using the Jacobian J , the
Hessian H and the matrix of squared first derivatives Q (Schillinger et al. 2013):

∂2B
∂x2

∂2B
∂x∂y

∂2B
∂y2

 = Q−⊤




∂2B
∂ξ2

∂2B
∂ξ∂η

∂2B
∂η2

 − H⊤J−⊤

∂B
∂ξ

∂B
∂η



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Two-level training strategy

For [x1, . . . , xn] ∈ Sgeo, [f1, . . . , fn] ∈ Srhs, [g1, . . . , gn] ∈ Sbcond do

For a batch of randomly sampled (ξk, ηk) ∈ [0, 1]2 (or the Greville abscissae) do

Train IgANet


x1

...
xn

 ,

f1
...

fn

 ,

g1
...

gn

 ; (ξk, ηk)Nsamples
k=1

 7→

u1
...

un


EndFor

EndFor
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Computational costs
Working principle of PINNs

x 7→ u(x) := NN(x; f, g, G) = σL(WLσ(. . . (σ1(W1x + b1))) + bL)

• use AD engine (automated chain rule) to compute derivatives, e.g., ux = NNx

• use AD engine on top of AD tree (!!!) to compute gradients w.r.t. weights for training

Working principle of IgANets

[xi, fi, gi]i=1,...,n 7→ [ui]i=1,...,n := NN(xi, fi, gi, i = 1, . . . , n)

• use mathematics to compute derivatives, e.g., ∇xu = (
∑n

i=1 ∇ξBi(ξ)ui) J−t
G

• use AD to compute gradients w.r.t. weights for training, i.e. (illustrated in 1D)

∂(dr
ξu(ξ))

∂wk
=

n∑
i=1

∂(dr
ξbp

i ui)
∂wk

=
���������XXXXXXXXX

n∑
i=1

dr+1
ξ bp

i

∂ξ

∂wk
ui +

n∑
i=1

dr
ξbp

i

∂ui

∂wk
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Towards an ML-friendly B-spline evaluation

Major computational task (illustrated in 1D)

Given sampling point ξ ∈ [ξi, ξi+1) compute for r ≥ 0

dr
ξu(ξ) =

[
dr

ξbp
i−p(ξ), . . . , dr

ξbp
i (ξ)

]
· [ui−p, . . . , ui]︸ ︷︷ ︸

network’s output

Textbook derivatives

dr
ξbp

i (ξ) = (p − 1)

−dr−1
ξ bp−1

i+1 (ξ)
ξi+p − ξi+1

+
dr−1

ξ bp−1
i (ξ)

ξi+p−1 − ξi


with

bp
i (ξ) = ξ − ξi

ξi+p − ξi
bp−1

i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
bp−1

i+1 (ξ), b0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

27 / 32



An ML-friendly B-spline evaluation
Algorithm 2.22 from (Lyche and Morken 2011) with slight modifications

1 b = 1
2 For k = 1, . . . , p − r

1 t1 = (ξi−k+1, . . . , ξi)
2 t21 = (ξi+1, . . . , ξi+k) − t1
3 mask = (t21 < tol)
4 w = (ξ − t1−mask) ÷ (t21−mask)
5 b = [(1 − w) ⊙ b, 0] + [0, w ⊙ b]

3 For k = p − r + 1, . . . , p

1 t1 = (ξi−k+1, . . . , ξi)
2 t21 = (ξi+1, . . . , ξi+k) − t1
3 mask = (t21 < tol)
4 w = (1−mask) ÷ (t21−mask)
5 b = [−w ⊙ b, 0] + [0, w ⊙ b]

where ÷ and ⊙ denote the element-wise division and multiplication of vectors, respectively.
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Performance evaluation - bivariate B-splines
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Let’s move on to the front-end
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Thank you very much!
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