
▪

QPack: An application-oriented
benchmark for NISQ computers

TQCI seminar, 11 May 2023 Thales TRT – Palaiseau
Matthias Möller, Zaid Al-Ars, Koen Mesman, Huub Donkers

About

Matthias Möller

Associate Professor of Numerical Analysis
Department of Applied Mathematics

Zaid Al-Ars

Associate Professor at the Computer Engineering Lab
Department of Quantum & Computer Engineering

Koen Mesmann

PhD candidate – QAIMS lab

Huub Donkers

former MSc student – QCE

About

Vision

QPUs as special-purpose hardware accelerators in
future high-performance computing systems

Research

NISQ & FTQ algorithms, high-level quantum
programming SDKs, quantum benchmarks

QPack benchmark

Motivation

Variety of quantum benchmarks but lack of an accepted standard, e.g., "QLINPACK"

Goal

Unbiased, vendor- and qubit-technology-neutral benchmark for NISQ computers

Design criteria

▪ Hardware agnostic implementation (write-once-run-anywhere)

▪ Variety of application-oriented scalable test cases

▪ Multiple metrics – single score

LibKet

abstraction layer: filters, gates, and device-specific features

embedded Python engine
At

os
 Q

LM

C
irq

Io
nQ

IB
M

-Q

C++ engine

Q
uE

ST

Q
X

building block layer: quantum primitives, NISQ algorithms

one-API high-level quantum programming SDKs for C, C++, and Python

R
ig

et
ti

O
pe

nQ
L

Möller, M. and Schalkers, M. (2020): LibKet – A Cross-Platform Programming Framework for
Quantum-Accelerated Scientific Computing. ICCS 2020. Lecture Notes in Computer Science

YO
U

R
S?

YO
U

R
S?

application developer

algorithm developer

"we"

LibKet – by example

#include <LibKet.hpp>

using namespace LibKet;
using namespace LibKet::circuits;

auto expr = measure(qft(init()));

try {
QDevice<QDeviceType::qi_26_simulator, 6> qpu; qpu(expr);
auto result = qpu.eval(1024);

QInfo << result << std::endl;
QInfo << "job ID : " << qpu.get<QResultType::id>(result) << std::endl;
QInfo << "best : " << qpu.get<QResultType::best>(result) << std::endl;
QInfo << "histogram : " << qpu.get<QResultType::histogram>(result) << std::endl;

} catch(const std::exception &e) {
QWarn << e.what() << std::endl;

}

LibKet – by example

#include <LibKet.hpp>

using namespace LibKet;
using namespace LibKet::circuits;

auto expr = measure(qft(init()));

try {
QDevice<QDeviceType::qi_26_simulator, 6> qpu; qpu(expr);
auto result = qpu.eval(1024);

QInfo << result << std::endl;
QInfo << "job ID : " << qpu.get<QResultType::id>(result) << std::endl;
QInfo << "best : " << qpu.get<QResultType::best>(result) << std::endl;
QInfo << "histogram : " << qpu.get<QResultType::histogram>(result) << std::endl;

} catch(const std::exception &e) {
QWarn << e.what() << std::endl;

}

Create generic quantum expression

LibKet – by example

#include <LibKet.hpp>

using namespace LibKet;
using namespace LibKet::circuits;

auto expr = measure(qft(init()));

try {
QDevice<QDeviceType::qi_26_simulator, 6> qpu; qpu(expr);
auto result = qpu.eval(1024);

QInfo << result << std::endl;
QInfo << "job ID : " << qpu.get<QResultType::id>(result) << std::endl;
QInfo << "best : " << qpu.get<QResultType::best>(result) << std::endl;
QInfo << "histogram : " << qpu.get<QResultType::histogram>(result) << std::endl;

} catch(const std::exception &e) {
QWarn << e.what() << std::endl;

}

Create 6-qubit device on
the 26-qubit QI simulator

and upload the expression

LibKet – by example

#include <LibKet.hpp>

using namespace LibKet;
using namespace LibKet::circuits;

auto expr = measure(qft(init()));

try {
QDevice<QDeviceType::qi_26_simulator, 6> qpu; qpu(expr);
auto result = qpu.eval(1024);

QInfo << result << std::endl;
QInfo << "job ID : " << qpu.get<QResultType::id>(result) << std::endl;
QInfo << "best : " << qpu.get<QResultType::best>(result) << std::endl;
QInfo << "histogram : " << qpu.get<QResultType::histogram>(result) << std::endl;

} catch(const std::exception &e) {
QWarn << e.what() << std::endl;

}

Evaluate quantum expression with 1024 shots

LibKet – by example

Views

auto expr = all(qft(sel<0,3,4,6>(…)));

Switch to another device

QDevice<QDeviceType::ibmq_seattle, 433> qpu;

Non-blocking execution

auto job = qpu.execute_async(1024);

while (!job->query()) {
// do something else

}

auto result = job->get();

Manual coding

QProgram prog;

prog.rx (3.141, {0,1,2});
prog.h ({0,1,2});
prog.h (3);
prog.rx (3.141, {3,4,5});
prog.cnot ({3,4,5}, {6,7,8});
prog.measure ({0,1,2,3,4,5,6,7,8});

qpu(prog.to_string());

Advanced features

▪ CUDA-like streams

▪ JIT-compilation of quantum expressions

▪ Rule-based optimization

QPack : application-oriented scalable test cases

Quantum Approximate Optimization Algorithm (QAOA)

▪ Max-cut problem (MCP)

▪ Dominating set problem (DSP)

▪ Travelling salesperson problem (TSP)

▪ Maximum independent set problem (MIS)

Variational Quantum Eigensolver (VQE)

▪ Random diagonal Hamiltonian (RH)

▪ Transverse Ising chain (IC)

Mesman, K., Al-Ars, Z., and Möller, M. (2022): QPack – Quantum Approximate Optimization
Algorithms as universal benchmark for quantum computers. arXiv: 2103.17193

QPack : application-oriented scalable test cases

Quantum Approximate Optimization Algorithm (QAOA)

▪ Max-cut problem (MCP)

▪ Dominating set problem (DSP)

▪ Travelling salesperson problem (TSP)

▪ Maximum independent set problem (MIS)

Variational Quantum Eigensolver (VQE)

▪ Random diagonal Hamiltonian (RH)

▪ Transverse Ising chain (IC)

B. Benchmark outline
The QPack benchmark determines the performance of

quantum computers by collecting and evaluating quantum
execution data when executing various VQAs. These VQAs
are one of the first viable real-use applications in the NISQ-era
of quantum computing [40] and have therefore been chosen
as applications to run in this benchmark. Figure 17 shows an
overview of the QPack benchmarking process.

Select unit
under test

Set
problem P

Set initial
problem
size N

Execute and
measure VQAN = N + 1

N = Nmax Pi = Pi+1

Pi = Plast

Compute
benchmark

score

No

No

yes

yes

Fig. 17: Benchmark process overview

The benchmark starts by selecting a quantum device
to be evaluated. Multiple devices can be selected for
sequential performance evaluation, but this overview will
just focus on the evaluation of a single quantum computer.
After device selection, a problem from the problem set
P can be selected. In the current implementation of
QPack, P 2 {MCP, DSP, MIS, TSP, RH, IC} as described
in Appendix B. This set contains four QAOA problems
(MaxCut, Dominating Set, Maximum Independent Set and
Traveling Salesperson problems) and 2 VQE problems
(Random diagonal Hamiltonian and Ising Chain model)
respectively. There is no preferred order, so a problem set can
be selected freely. However, in order to get the best and most
varied comparison, QPack attempts to complete all problems
for as large a problem size as possible.

For the selected problem, the initial problem size is set.
Problem size can differ by the number of qubits used for
a given problem, hence a selection of problem sizes should
be carefully considered. For example, the MaxCut’s problem
scales qubits linearly with the problem size (problem size
5 needs 5 qubits), while the Traveling Salesperson Problem
scales quadratic (problem size 4 requires 16 qubits). For this
reason, each problem has its own range of problem sizes.

When the problem and problem size is set, the VQA can
be run on the quantum computer under test. This entails
the optimization of the parameterized quantum circuit by a
classical optimizer (COBYLA [26] is used in this version of
QPack). Once the optimizer has found the optimal minimal
value, the VQA execution is finished and the measurement
results are saved for use later. This step is repeated 10 times,
such that measurements are taken in multitude. Specific
details on what measurement data is being collected are
elaborated in Section III.

After VQA execution is finished, QPack checks if the
maximum problem size has been evaluated. If not, the
problem size is incremented and the VQA is measured for
this new problem size. When all problem in the range have
finished, QPack checks if all problems have been evaluated.
If not, the next problem is set up and the VQA evaluation
is repeated for this new problem. When all problems have
finished, QPack evaluates all measured data and computes
the benchmark score.

APPENDIX D
QAOA COST FUNCTIONS AND MIXERS

A. MaxCut Problem

a) Encoding: The nodes can be encoded in a single
bitstring x = x1x2...xV for V nodes. If a node is in the first
distinct set, its bit will be 0 and if it is in the other set, its
bit will be 1. The QAOA will therefore require V qubits to
encode the solution space of the MaxCut problem.

b) Initial State: Since all possible permutations of bit-
string x form valid potential solutions to the MaxCut problem,
the initial state can be initialized to be an equal superposition
of all states. Hence, the initial state |si is:

|si =
Y

i2V

|+ii (23)

c) Cost Hamiltonian: The cost function will be the
number of cuts a bitstring can make. So for an edge set {u, v}
of size E. The cost Hamiltonian is

HC =
X

{u,v}

1

2
(1� �

z
u�

z
v) (24)

Since the global phase term can be ignored, the cost
Hamiltonian simplifies to

HC =
X

{u,v}

�
z
u�

z
v (25)

and the cost unitary is

UC(�) = e
�i�HC =

Y

{u,v}

e
�i��z

u�
z
v (26)

15

Donkers, H., Mesman, K., Al-Ars, Z. and Möller, M. (2022): QPack Scores – Quantitative
Performance Metrics for Application-oriented Quantum Computer Benchmarking. arXiv: 2205.12142

QPack: multiple metrics

(a) Quantum job time data (b) VQA error data

Fig. 1: Quantum execution data from the simulation of the
MaxCut benchmark on the Rigetti QVM (orange), Qiskit Aer
(blue) and QuEST (green) simulators. (a): Average quantum
job duration for a VQA run. (b): Relative error between
the quantum computer’s expectation value and the baseline
expectation value.

merit”, which allows for a clear distinction between different
quantum computers, i.e., a quantum computer with a higher
score is better than a quantum computer with a lower score.
Nevertheless, scores should not become too abstract as to not
properly reflect characteristics of a quantum computer. For
instance, a quantum computer may be very fast but inaccurate,
while another quantum computer has high accuracy but takes
a long time to execute. Which one is then considered better?
Other factors like scalability, maximum number of qubits, or
serviceability also play a role in defining quantum computer
performance.

With this in mind, a number of criteria for benchmark scores
are defined in the design of QPack:

• Benchmark score reflects application-level performance
of a quantum computer (simulators and hardware imple-
mentations)

• Benchmark score is a composite of measurement data of
multiple quantum applications

• Benchmark score is a single number (but may be split up
into sub-scores)

• Benchmark score is proportional to performance, i.e., a
higher score means higher performance

• Benchmark score are scalable, i.e., score has no upper
limit

• Benchmark score does not become too abstract from the
data it is based on

• Sub-scores should be balanced, such that one sub-score
does not become dominant in the overall score

IV. BENCHMARK SCORES

Using the aforementioned criteria, the actual bench-
mark scores can now be defined. Taking inspiration from
BAPCo [27], [28], an overall benchmark score can be de-
composed into multiple sub-scores. These sub-scores and the
connection between their quantum execution data (Table I) can
be seen in Figure 2. The overall score is divided into four

sub-categories: runtime, accuracy, scalability and capacity.
Runtime will evaluate the time the quantum computer needs
to execute a given circuit. Accuracy reflects the ability of the
VQA to find the optimal solution. Scalability evaluates the
ability of the quantum computer to execute larger quantum
circuit sizes. The capacity sub-score will reflect the number of
qubits of a quantum computer for which the classical optimizer
is able to find an optimal value below a predefined threshold.

Overall Score

Runtime

Job durations

Depth

Shots

Accuracy

Expectation value

Expectation value baseline

Scalability

Job durations

Problem size

Capacity

Expectation value

Baseline Expectation value

Threshold value

Problem size

Fig. 2: Benchmark score decomposition. Each sub-score (bold)
is connected to its relevant quantum execution data

For the benchmark sub-scores, a distinction will be made
between pure scores S

pure and mapped scores S
mapped. The

pure scores are the values to which the measured data is
transformed to a quantitative score metric. The mapped scores
then take these pure scores and map them to be proportional
to performance and be balanced against the other sub-scores.

A. Runtime

Perhaps the most straightforward metric to use is the time
it takes to execute a quantum circuit. After all, quantum
computing promises improved runtime of classical computers.
For the runtime score, it is assumed that quantum computers
can execute gates in parallel where possible. Then, to get a fair
runtime score for different depths and shots, a score can be
defined as the number of gates per second a quantum computer
is able to execute. The number of gates G for executing a
single circuit depends on the circuit depth and the number of
shots:

GP,N = DP,NSP,N (1)

where DP,N and SP,N are the depth and number of shots for
a given VQA problem P and problem size N , respectively.
Here, DP,N is the depth of the untranspiled circuit, that is,
the hardware-agnostic implementation of QPack using the full
set of software-visible gates. To ensure fair evaluation, this
depth is the same for every quantum computer. This depth
here is defined as the length of the critical path of the QPack
untranspiled circuit. Transpiling the circuit in an efficient
manner to fit to the qubit topology and its basis gate set is

4

Donkers, H., Mesman, K., Al-Ars, Z. and Möller, M. (2022): QPack Scores – Quantitative
Performance Metrics for Application-oriented Quantum Computer Benchmarking. arXiv: 2205.12142

(a) Quantum job time data (b) VQA error data

Fig. 1: Quantum execution data from the simulation of the
MaxCut benchmark on the Rigetti QVM (orange), Qiskit Aer
(blue) and QuEST (green) simulators. (a): Average quantum
job duration for a VQA run. (b): Relative error between
the quantum computer’s expectation value and the baseline
expectation value.

merit”, which allows for a clear distinction between different
quantum computers, i.e., a quantum computer with a higher
score is better than a quantum computer with a lower score.
Nevertheless, scores should not become too abstract as to not
properly reflect characteristics of a quantum computer. For
instance, a quantum computer may be very fast but inaccurate,
while another quantum computer has high accuracy but takes
a long time to execute. Which one is then considered better?
Other factors like scalability, maximum number of qubits, or
serviceability also play a role in defining quantum computer
performance.

With this in mind, a number of criteria for benchmark scores
are defined in the design of QPack:

• Benchmark score reflects application-level performance
of a quantum computer (simulators and hardware imple-
mentations)

• Benchmark score is a composite of measurement data of
multiple quantum applications

• Benchmark score is a single number (but may be split up
into sub-scores)

• Benchmark score is proportional to performance, i.e., a
higher score means higher performance

• Benchmark score are scalable, i.e., score has no upper
limit

• Benchmark score does not become too abstract from the
data it is based on

• Sub-scores should be balanced, such that one sub-score
does not become dominant in the overall score

IV. BENCHMARK SCORES

Using the aforementioned criteria, the actual bench-
mark scores can now be defined. Taking inspiration from
BAPCo [27], [28], an overall benchmark score can be de-
composed into multiple sub-scores. These sub-scores and the
connection between their quantum execution data (Table I) can
be seen in Figure 2. The overall score is divided into four

sub-categories: runtime, accuracy, scalability and capacity.
Runtime will evaluate the time the quantum computer needs
to execute a given circuit. Accuracy reflects the ability of the
VQA to find the optimal solution. Scalability evaluates the
ability of the quantum computer to execute larger quantum
circuit sizes. The capacity sub-score will reflect the number of
qubits of a quantum computer for which the classical optimizer
is able to find an optimal value below a predefined threshold.

Overall Score

Runtime

Job durations

Depth

Shots

Accuracy

Expectation value

Expectation value baseline

Scalability

Job durations

Problem size

Capacity

Expectation value

Baseline Expectation value

Threshold value

Problem size

Fig. 2: Benchmark score decomposition. Each sub-score (bold)
is connected to its relevant quantum execution data

For the benchmark sub-scores, a distinction will be made
between pure scores S

pure and mapped scores S
mapped. The

pure scores are the values to which the measured data is
transformed to a quantitative score metric. The mapped scores
then take these pure scores and map them to be proportional
to performance and be balanced against the other sub-scores.

A. Runtime

Perhaps the most straightforward metric to use is the time
it takes to execute a quantum circuit. After all, quantum
computing promises improved runtime of classical computers.
For the runtime score, it is assumed that quantum computers
can execute gates in parallel where possible. Then, to get a fair
runtime score for different depths and shots, a score can be
defined as the number of gates per second a quantum computer
is able to execute. The number of gates G for executing a
single circuit depends on the circuit depth and the number of
shots:

GP,N = DP,NSP,N (1)

where DP,N and SP,N are the depth and number of shots for
a given VQA problem P and problem size N , respectively.
Here, DP,N is the depth of the untranspiled circuit, that is,
the hardware-agnostic implementation of QPack using the full
set of software-visible gates. To ensure fair evaluation, this
depth is the same for every quantum computer. This depth
here is defined as the length of the critical path of the QPack
untranspiled circuit. Transpiling the circuit in an efficient
manner to fit to the qubit topology and its basis gate set is

4

QPack: multiple metrics

Capacity
▪ maximal number of qubits for which QPU achieves

prescribed relative error relative to QuEST simulator

Scalability
▪ power law fitting T! = (problem size)"

Accuracy
▪ average relative error between expectation value of

ideal simulator (QuEST) and QPU under testing

Runtime
▪ average #gates per second over all problem sizes

Donkers, H., Mesman, K., Al-Ars, Z. and Möller, M. (2022): QPack Scores – Quantitative
Performance Metrics for Application-oriented Quantum Computer Benchmarking. arXiv: 2205.12142

QPack: single score

Donkers, H., Mesman, K., Al-Ars, Z. and Möller, M. (2022): QPack Scores – Quantitative
Performance Metrics for Application-oriented Quantum Computer Benchmarking. arXiv: 2205.12142

𝑆 = !
" #!"#$%&'$#()*+*,%+%$- #*))"!*)-$#)*.*)%$-

QPack: preliminary result on remote simulators

Donkers, H., Mesman, K., Al-Ars, Z. and Möller, M. (2022): QPack Scores – Quantitative
Performance Metrics for Application-oriented Quantum Computer Benchmarking. arXiv: 2205.12142

QPack: preliminary result on hardware QPU

Donkers, H., Mesman, K., Al-Ars, Z. and Möller, M. (2022): QPack Scores – Quantitative
Performance Metrics for Application-oriented Quantum Computer Benchmarking. arXiv: 2205.12142

Summary and outlook

▪ QPack is an application-oriented scalable benchmark for NISQ computers

▪ Extension of test suite and benchmarking of other QPUs is ongoing (support & access is welcome!)

References
▪ Möller, M. and Schalkers, M. (2020): LibKet – A Cross-Platform Programming

Framework for Quantum-Accelerated Scientific Computing. ICCS 2020.
Lecture Notes in Computer Science

▪ Mesman, K., Al-Ars, Z., and Möller, M. (2022): QPack – Quantum
Approximate Optimization Algorithms as universal benchmark for quantum
computers. arXiv: 2103.17193

▪ Donkers, H., Mesman, K., Al-Ars, Z. and Möller, M. (2022): QPack Scores –
Quantitative Performance Metrics for Application-oriented Quantum Computer
Benchmarking. arXiv: 2205.12142

Thank you!

