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Overview

§ Design-Through-Analysis

§ Overview of Spline technologies

§ DTA for twin-screw compressor

§ Implementation aspects

§ Conclusions
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DESIGN-THROUGH-ANALYSIS
Motivation
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Example: Airfoil design
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Design-through-analysis cycle
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ANSYS Calculations 

Using several tutorials and Whe pUofeVVoU¶V inVWUXcWion, one of Whe VWXdenWV conducted analysis of 
Whe NACA 2412¶V aeUod\namicV on ANSYS¶V FlXid FloZ (FlXenW) VolYeU. RaWheU Whan UoWaWing 
Whe Zind YelociW\¶V angle of aWWack, a foUmXla ZaV deUiYed Wo UoWaWe Whe baVe cooUdinaWeV of Whe 
NACA 2412 by a certain angle ϴ. This method ensured the most consistent mesh across all 
angleV WhaW ZeUe WeVWed. AfWeU impoUWing Whe aiUfoil¶V UoWaWed cooUdinaWeV, a meVh ZaV geneUaWed 
that would strategically measure the aerodynamics of the airfoil at key regions. Across all angle 
measurements, three mesh qualities² course, refined, and fine² were tested to determine which 
degree of mesh quality produced the most accurate result. After generating the mesh, Fluent 
simulations with a constant wind velocity V� = 30 m/s were run until convergence or 150000 
iterations. The numerical coefficients of lift and drag were recorded alongside images of the 
velocity vectors (Figure 3) and pressure contours (Figure 4). The wind velocity produced the low 
Re\nold¶V NXmbeU of Re = 426,248 for all three mesh qualities across ten angles of attack 
between 0 to 16 degrees, resulting in thirty full simulations.  

 

  Figure 3: Velocity Vectors (ϴ = 0°)           Figure 4: Pressure Contours (ϴ = 0°) 

In addition, the angle of attack ϴ = 10° was specifically tested across 5 levels of increasing mesh 
quality. The summary of the tests is displayed in Figure 5 below. ThiV gUaph¶V X YalXeV of 1, 2, 
and 3 correspond to the coarse, refined, and fine mesh qualities, respectively, which all 
simulations were run with. Only the 10° angle of attack was tested at the mesh qualities 4 and 5, 
deemed ultra-fine e[WUemel\ fine, Wo inYeVWigaWe hoZ ANSYS¶V UeVXlWV YaU\ aV meVh TXaliW\ 
increases.  

 

Figure 8: Coefficient of Lift vs. Angle of Attack 

Assessment 

The honors students acquired new knowledge and skills by creating equipment and testing 
procedures to provide learning opportunities for future engineering students. Instead of learning 
information from separate classes where practical applications are often rare, the students were 
given a hands-on project that required knowledge previously unknown to them. With their 
professor¶s instructions and examples, the students gradually and effectively developed the 
necessary knowledge for implementing their research. This new knowledge includes deeper 
understanding of SOLIDWORKS, ANSYS, MATLAB, and machining techniques, giving the 
students real-world skills that will be used in their future engineering endeavors. 

A particular example of the dynamic learning environment created by this project may be seen in 
the expansion of the students¶ knowledge of SOLIDWORKS. The honors students had already 
learned the basics of the CAD program through a required course, but they did not have all of the 
knowledge they needed to design the airfoil and the multi-manometer. The nature of creating 
these two models produced several difficulties that the university¶s course did not cover. For 
example, the students searched for several days for a method to input the exact coordinates of the 
holes along the airfoil¶s surface. Through trial and error tests, along with the guidance of the 
professor, the team was able to find a solution that provided the desired result in the 
SOLIDWORKS model. This gradual and experimental form of learning vastly expanded the 
students¶ knowledge of SOLIDWORKS, giving them confidence to complete the rest of the 
challenges in the project¶s design process. Additionally, the knowledge gained from the 
experimental nature of this learning process was more effectively retained than in a common 
classroom setting.  
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DTA: 1. Design 𝐷 𝒑

§ Design parameters

𝒑 = 𝑝!, … , 𝑝!"

§ Admissible design space

𝒮 = 𝑝!#$%, 𝑝!#&' ×⋯× 𝑝!"#$%, 𝑝!"#&'
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• 4th control point distribution: 
 

 
Figure 6 

The B-spline curve is defined by 14 
control points with different degrees 
of freedom. 
 
In order to increase the accuracy at 
the leading edge, two control points 
are used to define this region. These 
points are free to move in both x 
and y directions. 
 
The distribution is refined at the 
leading and trailing edges. 
 
Number of design variables = 14 

 
 
 

2.2.1.  Geometrical flexibility 
 
A simple test is performed with MATLAB to test the flexibility of the distributions described 
above. In principle, any physically realistic shape should be achievable to allow design from 
an initial arbitrary shape. Hence, the aim of the test is to try reproduce different existing 
airfoil profiles using a given distribution and evaluate the maximal geometrical difference 
between the two profiles.  
 
The geometrical difference between the two curves is evaluated vertically at 100 different 
points not equally spaced along the chord length. Indeed the density of evaluation points is 
higher at the leading and trailing edges. The test is directed by the MATLAB function 
lsqnonlin developed to solve nonlinear least-squares (nonlinear data-fitting) problems. The 
input parameters are the coordinates of the control points (according to their degrees of 
freedom) and the output is the vector of geometrical differences computed at each evaluation 
point. The function minimizes the difference between the two curves by gradually moving the 
control points (see figure below). 

 
Figure 7: Test of the validation of the control point distribution 

Mauclère, Automatic 2D Airfoil Generation, Evaluation and Optimisation using MATLAB and XFOIL, Master thesis, 2009



DTA: 2. Simulation

§ Mathematical model

ℳ 𝑈;𝐷 = 0

§ Solution for one particular design 
and one particular angle of attach

𝑈 = 𝑈(𝐷 𝒑 ; 𝐴𝑜𝐴)
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Linné FLOW Centre and SeRC, KTH, Sweden 



DTA: 3. Analysis

§ Cost functional

𝒞(𝑈;𝐷)
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Lift

Drag



Example: Operation conditions
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Design-through-analysis

1. Find a set of admissible design parameters 𝒑 and generate the design 𝐷(𝒑)
2. Compute solutions 𝑈(𝐷 𝒑 ; 𝐴𝑜𝐴) to the mathematical model ℳ 𝑈,𝐷 𝒑
3. Evaluate the cost functional 𝒞 𝑈, 𝐷(𝒑) for all solutions/operating conditions
4. Vary the design parameters 𝒑 to optimize the cost functional 𝒞 𝑈, 𝐷(𝒑) for 

a wide range of operating conditions and repeat the DTA cycle at step 1
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SPLINE TECHNOLOGIES
Introduction to

12



Basis functions: #𝐵3 𝜉 𝑖 = 1,… ,𝑁
B-spline basis functions
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Linear ‘tent’ basis functions Quadratic B-spline basis functions



Curves: 𝑪 𝜉 = ∑3456 𝒄3 #𝐵3 𝜉 ∶ 0,1 → ℝ7

14

Linear ‘tent’ basis functions Quadratic B-spline basis functions

C0 continuity C1 continuity



Surfaces: 𝑺 𝜉, 𝜂 = ∑3,845
6,9 𝒄3,8 #𝐵3 𝜉 #𝐵8 𝜂 ∶ 0,1 × 0,1 → ℝ7
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Bilinear basis functions Biquadratic B-spline basis functions



Matrix structure for single-patch domain
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Biquadratic B-spline basis functions



Matrix structure for multi-patch domain
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Isogeometric Analysis in a nutshell
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Physical domain ΩParametric domain "Ω!

Bijective
geometry
mapping

Bijective
geometry
mapping

:
(

…𝑑𝒙:
)(!

… det 𝐽* 𝑑𝝃

Parametric domain "Ω"



Isogeometric Analysis in a nutshell
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Physical domain ΩParametric domain "Ω!

Parametric domain "Ω"

𝜉∗, 0

𝜉∗, 1

𝑥∗, 𝑦∗
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Advanced spline technologies: THB splines

Figure 15: L-shape: The marking parameters –, the Bézier meshes and the sparsity patterns of the sti�ness
matrices after L refinement steps for all (a)-(d) refinement strategies. The safe refinement strategies
result in well graded meshes, the greedy refinement strategies in more unstructured meshes. Again,
the greedy THB-spline refinement creates the sti�ness matrix with the highest density and interaction.

15
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Hennig et al. Adaptive mesh refinement strategies in Isogeometric Analysis – A computational comparison, arXiv:1605.00825



Application of THB splines
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Figure 2: Blade design using volumetric spline maps. The Figure shows two rows of a low pressure
turbine (LPT) and an example of an air-passage volume, which is highlighted in blue.

• the parametric length functional

Ql(s) =

ZZ

⌦̂
k@usk2 + k@vsk2du dv,

• the orthogonality functional

Qo(s) =

ZZ

⌦̂
k@uskk@vskdu dv,

• the Winslow functional
Qw(s) =

ZZ

⌦̂

trgp
detg

du dv,

where g is the first fundamental form of the template map s.
The meaning of these quality measures are explained in [11, 12].

For computational purposes, the variational template mapping problem is discretized. The discrete
version of the objective function (8) then is minimized by applying an iterative procedure.

3.4 Application to design space exploration of blades

3.4.1 Design process

The spline maps solving the template mapping problem will be used as deformation fields in order to set
up a stepwise construction of a volumetric representation of the air-passage of an engine. Figure 2 shows
two rows of a low pressure turbine (LPT) and an example of an air-passage volume, which is highlighted
in blue.

D2.4 MOTOR-678727 Page 12

(a) (b)

Figure 4: Blade examples: High (a) and low aspect ratio (b) blades.

Figure 5: Trivariate B-spline and THB-spline basis for defining the flow passage.
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TWIN-SCREW COMPRESSORS
Design-Through-Analysis for
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Long-term vision

§ Develop a computer code for the efficient geometry modelling, simulation
and optimization of rotary twin-screw compressors and expanders

Source: Chair of Fluidics, TU Dortmund University, DE



A challenging industrial application
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Geometry modelling
§ Counter-rotating helical rotors
§ Narrow clearances (<0.4mm)
§ Complex deforming fluid domain

Multi-physics simulation
§ Compressible high-speed flow
§ Thermal expansion of solids
§ Extension: injection of oil, …



Co-design of geometry model and simulation pipeline

Co-design principles
§ No topology changes (casing-to-rotor)
§ Exploit block structure of matrices
§ Keep design simple and extendible
§ Support heterogeneous hardware

25

Multi-patch topology Multi-block matrix Multi-device computer



GEOMETRY MODELLING
Design-Through-Analysis for twin-screw compressors

26



Test cases
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#1

#2

#3#3



Test case #1: rotor-casing passage
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Test case #2: separator with CUSP points
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Test case #3: rotating twin rotors
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Test case #4: rotating twin screws
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ISOGEOMETRIC FLOW SOLVER
Design-Through-Analysis for twin-screw compressors
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Compressible Euler equations

𝜕
𝜕𝑡

D

𝜌
𝜌𝒖
𝜌𝐸

+,
-"
⋮

-#$%

+ ∇ ⋅
𝜌𝒖

𝜌𝒖⊗ 𝒖 + 𝑝ℐ
(𝜌𝐸 + 𝑝)𝒖

= 0

𝑭 + ,
0"" ⋯ 0"#
⋮ ⋱ ⋮

0#$%
" ⋯ 0#$%

#

§ Equation of state for an ideal gas (isentropic index 𝛾 = 1.4 for dry air) 

𝑝 𝜌, 𝑒 = 𝛾 − 1 𝜌𝑒, 𝜌𝑒 = 𝜌𝐸 − 0.5𝜌 𝒖 "

§ Flux-Jacobian matrix 𝑨 𝑈 = 3𝑭 +
3+

, homogeneity property 𝑭 𝜆𝑈 = 𝜆𝑭 𝑈
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Variational formulation

§ Find solution 𝑈(⋅, 𝑡) at fixed time 𝑡 such that for all test functions 𝑊

:
(
𝑊𝜕4𝑈 − ∇𝑊 ⋅ 𝑭 𝑈 d𝐱 + :

5
𝑊𝐺 𝑈,𝑈∗ ds = 0

§ Boundary fluxes

𝐺 𝑈, 𝑈∗ =
0, 𝑝𝒏, 0 7 at solid walls

0.5 𝑭 𝑈 + 𝑭 𝑈∗ ⋅ 𝒏
−0.5 𝑨 Roe 𝑈, 𝑈∗ ⋅ 𝒏

otherwise
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Discretization

§ Find solution 𝑈8(⋅, 𝑡) at fixed time 𝑡 such that for all test functions 𝑊8

:
(
𝑊8𝜕4𝑈8 − ∇𝑊8 ⋅ 𝑭8 𝑈 d𝐱 + :

5
𝑊8𝐺8 𝑈,𝑈∗ ds = 0

§ Fletcher’s group approximation (CMAME ‘83) 

𝑈8 𝐱, 𝑡 =d
9,!

:

𝐵9 𝐱 𝑈9 𝑡 , 𝐵9 = f𝐵9 ∘ 𝒙;!

𝑭8 𝑈 𝐱, 𝑡 = d
9,!

:

𝐵9 𝐱 𝑭9(𝑡) , 𝑭9 = 𝑭(𝑈9)
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Semi-discrete formulation

𝑀
⋱

𝑀

�̇�!
⋮

�̇�<="
−

𝑓!! ⋯ 𝑓!<
⋮ ⋱ ⋮

𝑓<="! ⋯ 𝑓<="<

𝐶!
⋮
𝐶<

+
𝑔!! ⋯ 𝑔!<
⋮ ⋱ ⋮

𝑔<="! ⋯ 𝑔<="<

𝑆!
⋮
𝑆<

= 0

§ Constant coefficient matrices

𝑀 = :
(
𝐵$𝐵9d𝐱

$,9,!

:

, 𝐶* = :
(
𝜕* (𝐵$) 𝐵9d𝐱

$,9,!

:

, 𝑆* = :
(
𝐵$𝐵9𝒏ds

$,9,!

:

are pre-assembled using Gauss quadrature and stored to efficiently
form the divergence term as SpMV-operation when it is required

36



From the programmer’s perspective

𝑀 �̇�! ⋯ �̇�<=" − 𝐶! ⋯𝐶<
𝑓!! ⋯ 𝑓!<="
⋮ ⋱ ⋮
𝑓<! ⋯ 𝑓<<="

+ 𝑆! ⋯𝑆<
𝑔!! ⋯ 𝑔!<="
⋮ ⋱ ⋮
𝑔<! ⋯ 𝑔<<="

= 0
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*=

1 x d block vector
of sparse matrices

d x d+2 block matrix
of function expressions

1 x d+2 block vector
of dense vectors



FDBB: Fluid dynamics building blocks

Low-level API
§ Unified function wrappers to the 

core functionality of established 
HPC linear algebra libraries, e.g. 
ArrayFire, Blaze, Eigen, VexCL

§ Compile-time block linear algebra 
backend with full support for
§ Dense vectors
§ Sparse matrices
§ Function expressions

Example
vex::vector<double>         x,y;
vex::sparse::matrix<double> Cx,Cy;

BlockMatrix<…,1,2> Mat(Cx,Cy);

auto Expr = make_BlockExpr<2,1>(cos(x)+y,
sin(x)-y );

BlockRowVector<…,1> Vec = Mat * Expr;

Loops are unrolled at compile time
and fused in a single compute kernel

38



FDBB: Fluid dynamics building blocks

High-level API
§ C++ expression templates for

§ Variables & Riemann invariants
§ Fluxes with ’generic’ pressure
§ Equations of state

Example
using eos = EOS::idealGas<double,

ratio<7,2>,
ratio<5,2>>;

// 1x4 dim conservative state vector
using var = Variables<eos,2,Conservative>;
auto U = create<vex::vector<double>,4>(N);

// 2x4 dim inviscid flux tensor
using flx = Fluxes<var>;
auto F = flx::inviscid(U);

// Explicit solution update
U += dt * Mat * F

39

+
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p(⍴,e)

𝜌𝒖⊗ 𝒖 + 𝑝ℐ



Auto-generation of device-optimized CFD kernels

double rhs_6_sum = 0;
{
for(size_t j = 0; j < rhs_6_ell_width; ++j)
{
int nnz_idx = idx + j * rhs_6_ell_pitch;
int c = rhs_6_ell_col[nnz_idx];
if (c != (int)(-1))
{
int idx = c;
rhs_6_sum += rhs_6_ell_val[nnz_idx] * ( ( ( prm_tag_2_1[idx] * prm_tag_2_1[idx] ) / 

prm_tag_0_1[idx] ) + ( rhs_6_x_4 * ( prm_tag_0_1[idx] * ( ( prm_tag_3_1[idx] / prm_tag_0_1[idx] ) - ( 
( 5.0000000000000000e-01 ) * ( ( ( prm_tag_1_1[idx] * prm_tag_1_1[idx] ) + ( prm_tag_2_1[idx] * 
prm_tag_2_1[idx] ) ) / ( prm_tag_0_1[idx] * prm_tag_0_1[idx] ) ) ) ) ) ) );

} else break;
}
if (rhs_6_csr_ptr)
… 40

+

*

/

u2 u1

u2

p(⍴,e)

𝜌𝒖⊗ 𝒖 + 𝑝ℐ



Heterogeneous HPC support

CPU CUDA OpenCL Intel MIC FPGA
ArrayFire X X X
Armadillo (X)

Blaze X
Eigen X
MTL4 (X)

uBLAS (X)
VexCL1 X X X (X) (X2)

ViennaCL X X X

41

1 source code is generated and JIT-compiled; 2 Maxeler DFEs



Example: Computational performance

§ Intel 2xE5-2670 @2.6 GHz
§ IBM Power8NVL @4.02 GHz
§ IBM + NVIDIA GP100GL

42
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Test case #1: Inviscid compressible flow, p3r: 𝑝stu = 2: 1
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𝜌 = 1
𝑝 = 2
𝑣! = 0

𝑝 = 1



Conclusions

Hardware-oriented Numerics with IGA: co-design of geometry and simulation
§ IGA package G+Smo: https://github.com/gismo/gismo
§ Open-source FDBB: https://gitlab.com/mmoelle1/FDBB

Ongoing and future work
§ Extension to turbulent flows and ALE formulation for rotating geometries
§ Automatic compute resource scheduling and dynamic load balancing
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