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Summary. A slope limiting approach to the design of recovery based a posteriori
error indicators for P; finite element discretizations is presented. The smoothed gra-
dient field is recovered at edge midpoints by means of limited averaging of adjacent
slope values. As an alternative, the constant gradient values may act as upper and
lower bounds to be imposed on edge gradients resulting from traditional reconstruc-
tion techniques such as averaging projection or discrete patch recovery schemes.
In either case, the difference between consistent and reconstructed gradient values
measured in the Lo-norm provides a usable indicator for grid adaptivity.

1 Introduction

In a series of recent publications (c.f. [3], [4] and the references therein) an
algebraic framework for the construction of high-resolution schemes for con-
vection dominated partial differential equations was developed. The algebraic
fluz correction (AFC) paradigm renders a high-order discretization local ex-
tremum diminishing (LED) by applying discrete (anti-)diffusion in a nonlinear
conservative fashion. The antidiffusive fluxes are limited node-by-node either
by a symmetric FCT limiter or by its upwind-biased counterpart of TVD type.

The adaptive blending of high- and low-order methods prevents us from
using error estimators that require an a priori knowledge of the order of
approximation such as those based on Richardson extrapolation. Gradient
recovery techniques [8] seem to be a promising alternative, but their use in
error estimation requires that the true solutions be sufficiently smooth.

This paper focuses on hyperbolic problems featuring shocks and disconti-
nuities so that traditional recovery procedures may fail to be reliable. In what
follows, limited averaging of consistent slopes is used to compute improved
gradient values at midpoints of edges. As an alternative, classical recovery
procedures are employed to predict provisional gradient values at edge mid-
points to be corrected by means of a slope limiter. The upper and lower bounds
to be imposed are given by the constant slopes in two adjacent triangles.
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2 A posteriori error indication

As a model problem, consider the weak form of a generic PDE Lu = f
/ w[lu— f]ldx=0 (1)
¢
where the solution is approximated by means of finite elements

R UL =Y uip;. (2)
i

In this article, we shall concentrate on the numerical error resulting from the
approzimation of spatial derivatives and devise an a posteriori indicator for
the vector-valued gradient error e = Vu — Vuy. In the sequel, the consistent
gradient Vuy, = 3, u;Vp; will be referred to as low-order gradient.

The aim of recovery based error estimators, introduced by Zienkiewicz and
Zhu in [8], is to replace the unknown exact value Vu by a smoothed gradient
field Vuy, so as to obtain a good approximation to the true error

e%é:@uh—Vuh. (3)

In general, pointwise error estimates are difficult to obtain, so integral mea-
sures are typically employed in the finite element framework. Let {2, denote a
partition of the domain into a set of non-overlapping elements (2. so that the
Lo-norm represents a usable measure for the error both globally and locally

1el2, =S el Nelldya = /Q &%é dx. )
e

e

We only consider linear (P;) finite elements for which the consistent gradient
Vuy, is piecewise constant on each triangle. Hence, the improved slopes should
be at least piecewise linear so as to provide a better approximation to the
exact gradient. It suffices to specify slope values at all midpoints of edges, i.e.,
Xij = %(xi + x;), to obtain a smoothed quantity Vuy, that varies linearly
in {2, and is allowed to exhibit jumps across interelement boundaries. This
approach can be seen as determining the nodal values for a non-conforming
approximation of Vup by means of linear Crouzeix-Raviart finite elements for
which the local degrees of freedom are located on edge midpoints. For bilinear
finite elements used on quadrilateral meshes, the gradient approximation can
be based on the nonconforming Rannacher Turek element.
Let (4) be integrated via the second order accurate quadrature rule

2 -
[ ereax=Edsnare, e = Guy - v, (5)
2. 3 %
where |(2,| stands for the element area and all quantities are evaluated at the

midpoints of surrounding edges indicated by subscript 7j. It remains to devise
a procedure for constructing an improved gradient value Vu;; for edge ij.
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3 Limited gradient averaging

Our first approach to obtaining a smoothed edge gradient is largely inspired
by slope limiting techniques employed in the context of high-resolution finite
volume schemes and later carried over to discontinuous Galerkin finite element
methods. For simplicity, let us illustrate the basic ideas for a one-dimensional
finite volume discretization. The task is to define a suitable slope value u;
on the jth interval I; = (z;_1/2,7;41/2) s0 as to recover a piecewise linear

approximate solution from the mean value ;:
up(z) = ;4 uj(x — x ), Ve ;. (6)

In the simplest case, one-sided or centered slopes can be utilized to obtain
first- and second-order accurate schemes which lead to rather diffusive pro-
files and are quite likely to produce nonphysical oscillations in the vicinity
of steep fronts and discontinuities, respectively. For a numerical scheme to
be nonoscillatory, it should possess certain properties [3], e.g., be monotone,
positivity preserving, total variation diminishing or satisfy the LED condition.

To this end, Jameson [2] introduced a family of limited average operators
L(a,b) which are characterized by the following properties:

Pl. L(a,b) = L(b,a).

P2. L(ca,cb) = cL(a,b).
P3. L(a,a) = a.

P4. L(a,b) =0 if ab < 0.

While conditions P1-P3 are natural properties of an average, P4 is to be
enforced by means of a limiter function. It has been demonstrated [2] that a
variety of standard TVD limiters can be written in such form. Let the modified
sign function be given by S(a,b) = 3(sign(a) + sign(b)) which equals zero for
ab < 0 and returns the common sign of a and b otherwise. Then the most
widely used two parameter limiters for TVD schemes can be written as:

1. minmod: L(a,b) = S(a,b) min{|al, |b|}
2. maxmod: L(a,b) = S(a,b) max{|al|, |b]}
3. MC: L(a,b) = S(a,b) min {|a+ b|,2|al,2/b|}

4. superbee: L(a,b) = S(a,b) max{min{2|al, |b|}, min{|a|, 2|b|} }

Finally, the limited counterpart of u; in (6) can be computed as follows

(B ) o

3
Tj—1 —Tj Tj41 — Ty

Let us return to our original task that requires the reconstruction of solution
gradients at edge midpoints. This is where the benefits of an edge based
formulation come into play. Except at the boundary, exactly two elements
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are adjacent to edge ij such that an improved gradient can be determined
efficiently from the constant slopes to the left and to the right as follows:

@uij = E(Vu;g, VUZ_J) (8)
For all limiter functions £ presented above, the recovered gradient value equals
zero if Vu;erui_j < 0 and satisfies the following inequality otherwise

Vu?]“-in < @uij < Vu?j“-ax, where Vusn = E?;{{Vu:;, Vu;j} (9)
If the upper and lower bounds have different signs, this indicates that the
approximate solution attains a local extremum across the edge. Hence, prop-
erty P4 of limited average operators acts as a discrete analog to the necessary
condition in the continuous case which requires the derivative to be zero.

Clearly, the recovered gradient (8) depends on the choice of the limiter
function to some extent. In the authors’ experience, MC seems to be a safe
choice as it tries to select the standard average whenever possible without
violating the natural bounds provided by the low-order slopes.

4 Limited gradient reconstruction

As an alternative to the limited averaging approach, traditional recovery pro-
cedures can be used to predict provisional gradient values at edge midpoints
which are corrected by edgewise slope limiting so as to satisfy the geometric
constraints defined in (9). Since the advent of recovery based schemes [§], a
family of averaging projection schemes has been proposed in the literature to
construct a smoothed gradient from the finite element solution as follows

@uh = Z@Uj(bj, (10)
J
where the coefficients @uj are obtained by solving the discrete problem

/ qﬁi(@uh — Vup)dx = 0. (11)
2

Note that the element shape functions used to construct the basis functions
¢; may by different from those used in the finite element approximation (2).
A detailed analysis by Ainsworth et. al. [1] reveals that the corresponding
polynomial degrees should satisfy deg¢ > degy whereby the original choice
¢ = ¢ proposed in [8] ‘is not only effective, but also the most economical’
[1] one. The substitution of equation (10) into (11) yields a linear algebraic
system for each component of the smoothed gradient

Mc@uh = Cu. (12)
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The consistent mass matrix M¢c = {m;;} and the matrix of discretized spatial
derivatives C = {c;; } are assembled from the following integral terms

mij =/ Pip; dx, Cij :/ i Vj dx. (13)
2 2

For a fixed mesh, the coefficients m;; and c;; remain unchanged throughout

the simulation and, consequently, need to be evaluated just once at the be-

ginning of the simulation and each time the grid has been modified. In case

¢ = ¢, the coefficients defined in (13) coincide with the matrix entries of the

finite element approximation and, hence, are available at no additional costs.
An edge-by-edge assembly of the right-hand side is also feasible

)i =Y cij(uy —u) (14)

J#i

since C features the zero row sum property > ;Cij =0 as long as the sum
of basis functions equals one. The solution to system (12) can be computed
iteratively by successive approximation preconditioned by the lumped mass
matrix My, = diag{m;}, where m; = Zj m;, as follows:

Vul™ Y = Tul™ + M7Cu - MeVu{™), m=0,1,2,.... (15)

If mass lumping is applied directly to equation (12), the values of the projected
gradient can be determined at each node from the explicit formula

@ui = — Z C” i . (16)

g

From the nodal values obtained either from (12) or (16), provisional slopes
at edge midpoints can be interpolated according to equation (10). For linear
finite elements this corresponds to taking the mean values for each edge ij, i.e.,
Vun(xi5) = (Vul—i—VuJ) It follows from (10) and (11) that it is also feasible
to project the low-order gradient Vuy, into the space of non-conforming (bi-)
linear finite element by letting ¢; € Py or Q, respectively, so as to obtain its
smoothed counterpart directly at edge midpoints.

Over the years, a more accurate patch recovery technique (SPR) was intro-
duced [9] which relies on the superconvergence property of the finite element
solution at some exceptional, yet a priori known, points. Let the smoothed
gradient be represented in terms of a polynomial expansion of the form

Vuy, = p(x)a (17)

where the row vector p(x) contains all monomials of degree k at most. Since
each vertex, say 4, is surrounded by a patch of elements sharing this node,
the vector of coefficients a can be computed from a discrete least square fit to
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the set S; of sampling points x; [9]. As a consequence, the multicomponent
quantity a can be determined by solving the linear system

Mya=Tf, (18)

where the local matrix M, and the right-hand side vector f are given by

M, = ZPT(Xj)p(Xj)ﬂ f= ZPT(Xj)vuh(Xj)' (19)

JES;: JES:

For linear elements, p(x) = [1,z,y] and the low-order gradient is sampled at
the centroids of triangle in the patch. In this case the lumped Ls-projection
yields almost the same results on uniform grids but only patch recovery retains
its superconvergence property if the grid becomes increasingly distorted.
Regardless of which procedure is employed to predict the high-order gradi-
ent values, it may fail if the solution exhibits jumps or the gradient is too steep.
This can be attributed to the fact that the averaging process extends over an
unsettled number of surrounding element gradients which may strongly vary
in magnitude and even possess different signs. Thus, it is very difficult the find
admissible bounds to be imposed on such nodal gradients. The transition to
an edge based formulation makes it possible to correct the provisional values
according to the constraints (9), set up by the low-order slopes, such that

Vit < Vug < V™. (20)

It is also advisable to enforce the sign-preserving property (P4) of limited
average operators so as to mimic the necessary condition of a local extremum
attained across edge ij in the discrete context. Let s;; := S(Vu3™, Vuji®™),
then the corrected slope values @u;‘j can be computed as follows:

@ufj = 5ij InaX{Vu?;in,min{@uij, Vi b} (21)
The generality of this predictor-corrector edgewise limited recovery (ELR) ap-
proach, enables us to use arbitrary reconstruction techniques in the prediction
step, e.g., polynomial preserving recovery (PPR) [6] schemes or some recent
‘meshless’ variants which have been presented by Zhang et. al. [7].

5 Adaptation strategy

In adaptive solution procedures for steady state simulations of hyperbolic
flows, one typically starts with a moderately coarse grid on which an initial
solution can be computed efficiently. Nevertheless, the mesh needs to be fine
enough in order to capture all essential flow features in the solution and to
enable the error indicator to detect ‘imperfect’ zones. Next, the grid is locally
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refined or coarsened according to some adaptation parameter and the whole
process is repeated until (ideally) the global relative percentage error

llellz,
= —— < 1ol 22
" alls =™ )
is below the prescribed tolerance 7,1. Replacing the unknown exact quantities
by their approximate values and assuming that the relative error is distributed
equally between cells the gradient error for each element 2. should not exceed

R 1/2
: IVunll3, + 116113
ellzae) < ol Lo | (23)

where |(2;,| represents the number of employed elements. Depending on the
ratio of estimated and tolerated error, cells are flagged for refinement or coars-
ening. For a detailed presentation of the grid adaptation procedure including
some grid improvement techniques the interested reader is referred to [5].

6 Numerical examples

Let us illustrate the performance of the new algorithm by considering a su-
personic flow which enters a converging channel at M., = 2. The bottom wall
is sloped at 5° which gives rise to the formation of multiple shock reflections.
The initial mesh consist of 60 x 16 quadrilaterals each of which is divided into
two triangles. After three sweeps of local mesh refinement (.. = 1%) and
coarsening (ners = 0.1%) governed by the MC-limited averaging error indica-
tor, the zone of highest grid point concentration confines itself more and more
to the vicinity of the shock as depicted in Figure 1. Algebraic flux correction
of TVD type [4] was employed to compute the solution, making use of the
moderately diffusive CDS-limiter applied to the characteristic variables.

The density distribution for the finest grid (15,664 elements) demonstrates
the precise separation into five zones of uniform flow. The crisp resolution
of the reflected shock wave can also be observed by considering the density
‘cascade’ drawn along the straight line y = 0.6 for all four grid levels.

7 Conclusions

Slope limiting techniques provide a valuable tool for the construction of high-
resolution gradient recovery procedures. Improved slopes can be directly com-
puted at edge midpoints as a limited average of adjacent low-order gradients.
Moreover, the consistent slope values serve as natural upper and lower bounds
to be imposed on any edge gradient. In addition, traditional (nodal) recovery
procedures can be used to predict the high-order gradient which is corrected
according to geometric constraints by invoking a slope limiter edge-by-edge.
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Fig. 1. 5° converging channel at Mo, = 2
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