Multiwavelets and outlier detection for troubled-cell indication

Thea Vuik Delft University of Technology

Collaboration with Jennifer Ryan, University of East Anglia

ICOSAHOM 2016 June 28, 2016

Motivation

Flow around Space Shuttle

Shock wave

Shock tube

http://www.wikiwand.com http://projectthunderstruck.org http://akagi.nuae.nagoya-u.ac.jp

Motivation: hyperbolic PDEs

 $\mathsf{Discontinuities} \to \mathsf{spurious} \ \mathsf{oscillations!}$

Remove wiggles by:

- Limiting
- Filtering
- Adding artificial viscosity

Motivation

Limiters:

- Advantage: approximation no longer oscillatory
- Disadvantage: limits smooth extrema, too diffusive

Troubled-cell indicator: detects discontinuous regions

Multiwavelet troubled-cell indicator & outlier detection

Outline

Discontinuous Galerkin method & multiresolution analysis

2 Relation multiwavelets and DG

3 Multiwavelet troubled-cell indicator

4 Outlier detection for parameter choice

Г

Outline

Discontinuous Galerkin method & multiresolution analysis

2 Relation multiwavelets and DG

3 Multiwavelet troubled-cell indicator

Outlier detection for parameter choice

Discontinuous Galerkin method

- Discretize in space: 2ⁿ elements
- Approximation space: $V_h = \{f \in \mathbb{P}^k(I_j), j = 0, \dots, 2^n 1\}$
- Basis of scaled Legendre polynomials $\{\phi_0, \phi_1, \dots, \phi_k\}$

- Local Lax-Friedrichs flux
- Time integration: 3rd-order SSPRK method

Multiresolution idea

(Alpert, SIAM J. Math. Anal. 1993)

Scaling functions

- Basis multiresolution space: start from level 0
- Orthonormal Legendre polynomials ϕ_0, \ldots, ϕ_k
- Basis functions higher levels: dilation and translation

(Archibald et al., Appl. Num. Math. 2011)

Multiwavelets

Multiwavelet space W_m^{k+1} : Orthogonal complement of V_m^{k+1} in V_{m+1}^{k+1} :

$$V_m^{k+1} \oplus W_m^{k+1} = V_{m+1}^{k+1}, \quad W_m^{k+1} \perp V_m^{k+1}, \quad W_m^{k+1} \subset V_{m+1}^{k+1}$$

 V_n^{k+1} can be split into n+1 orthogonal subspaces:

$$V_{n}^{k+1} = V_{n-1}^{k+1} \oplus W_{n-1}^{k+1} = V_{n-2}^{k+1} \oplus W_{n-2}^{k+1} \oplus W_{n-1}^{k+1} \\ = V_{0}^{k+1} \oplus W_{0}^{k+1} \oplus W_{1}^{k+1} \oplus \dots \oplus W_{n-1}^{k+1}$$

(Alpert, SIAM J. Math. Anal. 1993)

Multiwavelets, k = 2

Multiwavelets on higher levels

Multiwavelets on higher levels: dilation and translation

$$\psi_{\ell j}^{m}(x) = \sqrt{\frac{2}{\Delta x^{m}}} \psi_{\ell} \left(\frac{2}{\Delta x^{m}} (x - x_{j}^{m}) \right),$$

 Δx^m is mesh width on level m $\ell = 0, \dots, k, \ j = 0, \dots, 2^m - 1$

Outline

2 Relation multiwavelets and DG

3 Multiwavelet troubled-cell indicator

Outlier detection for parameter choice

Multiwavelets and DG

 V_n^{k+1} (multiresolution scheme) equals V_h (DG scheme)!

$$V_h = V_n^{k+1} = V_0^{k+1} \oplus W_0^{k+1} \oplus W_1^{k+1} \oplus \cdots \oplus W_{n-1}^{k+1}$$

This means that:

Coefficients efficiently computed by decomposition method

Sine, k = 3, n = 4

Projection on DG basis, multiwavelet decomposition

TUDelft

Square wave, k = 3, n = 4

Projection on DG basis, multiwavelet decomposition

TUDelft

Applications multiwavelets and DG

• Multiwavelet DG method

(Archibald, Fann, and Shelton, APNUM 2011)

- Thresholding: cancelation property for decay rate (Gerhard and Müller, CAM 2014)
- Sparse-grid representation

(Wang, Tang, Guo, and Cheng, JCP 2016)

Jumps in DG approximations

Coefficient $d_{\ell j}^{n-1}$: measures jump in (derivatives) approximation $u_h^{(m)}$: *m*th derivative of u_h

$$d_{\ell j}^{n-1} = \sum_{m=0}^{k} c_{m\ell}^{n} \left(u_{h}^{(m)}(x_{2j+1/2}^{+}) - u_{h}^{(m)}(x_{2j+1/2}^{-}) \right)$$

(Vuik and Ryan, Proc. ICOSAHOM 2014)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

2 Relation multiwavelets and DG

3 Multiwavelet troubled-cell indicator

Outlier detection for parameter choice

Multiwavelet troubled-cell indicator

Detect an element as being troubled if

$$|d_{kj}^{n-1}| > C \cdot \max\{|d_{kj}^{n-1}|, j = 0, \dots, 2^n - 1\}$$

C prescribes strictness of indicator:

- C = 0: all elements are detected
- *C* = 1: no elements are detected

(Vuik and Ryan, JCP 2014)

Overview troubled-cell indicators

- Multiwavelet troubled-cell indicator: d_{ki}^{n-1}
- KXRCF indicator: jump across inflow edges

$$\hat{\mathcal{I}}_{j} = rac{\left|\int_{\partial I_{j}^{-}}(u_{h}|_{I_{j}} - u_{h}|_{I_{n_{j}}})ds
ight|}{h^{rac{k+1}{2}}|\partial I_{j}^{-}|||u_{h}|_{I_{j}}||}$$

• Minmod-based TVB indicator:

where \bar{u}_j is the average.

(Krivodonova et al., APNUM 2004) (Cockburn and Shu, Math. Comp. 1989)

Parameter choice

$$|d_{kj}^{n-1}| > \boldsymbol{C} \cdot \max\{|d_{kj}^{n-1}|\}, \quad \hat{\mathcal{I}}_j > 1, \quad |\tilde{u}_j|, |\tilde{\tilde{u}}_j| > \boldsymbol{M} \Delta x^2$$

23

Troubled-cell indication methods rely on parameters

How should we choose the parameters?

Outline

4 Outlier detection for parameter choice

Indication vector

- Troubled-cell indication vector: $\mathbf{d} = (d_0, \dots, d_N)^{\top}$
- Detect sudden changes compared to neighboring values
- No problem-dependent parameters

Outlier-detection algorithm

- Sort **d** to obtain $\mathbf{d}^s = (d_0^s, d_1^s, \dots, d_N^s)$
- **2** Compute quartiles Q_1 , Q_2 , Q_3 of **d**
- Oetect outliers outside interval

$[Q_1 - 3(Q_3 - Q_1), Q_3 + 3(Q_3 - Q_1)]$

Normal distribution: 0.0002% identified as outlier

(Tukey, 1977)

Boxplot

- 25th and 75th percentiles: $Q_1=-1, \quad Q_3=1$
- Lower bound: $Q_1 - 3(Q_3 - Q_1) = -7$
- Upper bound: $Q_3 + 3(Q_3 - Q_1) = 7$

▲□▶▲舂▶▲差▶▲差▶ 差 めの(

Local information

- Divide global vector in locals
- Apply boxplot approach for each local vector
- Ignore 'outliers' near split boundaries
- Local vectors: size 16

(Vuik and Ryan, SISC 2016)

Outline

2 Relation multiwavelets and DG

3 Multiwavelet troubled-cell indicator

Outlier detection for parameter choice

Sod's shock tube

Sod, k = 2

(Vuik and Ryan, SISC 2016)

Sine-entropy wave

<□> <団> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Sine-entropy wave, k = 2

TUDelft

Two dimensions: rectangular mesh (tensor)

TUDelft

- Scaling functions: $\phi_{\ell_x}(x)\phi_{\ell_y}(y)$
- Multiwavelets:
 - α mode: $\phi_{\ell_x}(x)\psi_{\ell_y}(y)$
 - β mode: $\psi_{\ell_x}(x)\phi_{\ell_y}(y)$
 - γ mode: $\psi_{\ell_x}(x)\psi_{\ell_y}(y)$

|□▶◀@▶◀콜▶◀콜▶ 콜 ∽੧<

Double Mach reflection

http://projectthunderstruck.org

http://www.math.sciences.univ-nantes.fr

<□ → < @ → < 茎 → < 茎 → 茎 → のへ() 35

Double Mach reflection: contour plots

Double Mach reflection: troubled cells

Conclusion and future research

- Exact relation DG approximation and multiwavelet coefficients
- Multiwavelet coefficients for troubled-cell indication
- Originally: problem-dependent parameter
- Outlier-detection technique using boxplots
- Problem-dependent parameters no longer needed!

(Vuik and Ryan, JCP 2014, ICOSAHOM 2014, SISC 2016)

- Non-uniform Cartesian meshes
- Triangular meshes

Two dimensions: triangular mesh

- No tensor product, but genuinely two dimensional!
- Multiwavelets: theory of Yu et al. (1997)
 - Based on Alpert's algorithm
 - Efficient coefficient computation still possible
 - Relation with DG coefficients

