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Abstract Isogeometric Analysis (IgA) can be considered as the natural extension
of the Finite Element Method (FEM) to high-order B-spline basis functions. The
development of efficient solvers for discretizations arising in IgA is a challenging
task, asmost (standard) iterative solvers have a detoriating performance for increasing
values of the approximation order p of the basis functions. Recently, p-multigrid
methods have been developed as an alternative solution strategy. With p-multigrid
methods, a multigrid hierarchy is constructed based on the approximation order p
instead of the mesh width h (i.e. h-multigrid). The coarse grid correction is then
obtained at level p = 1, where B-spline basis functions coincide with standard
Lagrangian P1 basis functions, enabling the use of well known solution strategies
developed for the Finite Element Method to solve the residual equation. Different
projection schemes can be adopted to go from the high-order level to level p = 1. In
this paper, we compare a direct projection to level p = 1 with a projection between
each level 1 ≤ k ≤ p in terms of iteration numbers and CPU times. Numerical
results, including a spectral analysis, show that a direct projection leads to the most
efficient method for both single patch and multipatch geometries.

1 Introduction
Isogeometric Analysis (IgA) [1] can be considered as a natural extension of the Finite
ElementMethod (FEM) to high-order B-spline basis functions. The use of these basis
functions enables a highly accurate representation of the geometry. Furthermore,
the higher continuity of the basis functions leads to a higher accuracy per degree of
freedomcompared to FEM[2]. Solving linear systems of equations for discretizations
arising in IgA remains, however, a challenging task. The condition number of the
system matrices increase exponentially with the approximation order p of the basis
functions [3]. Therefore, (standard) iterative methods detoriate for higher values of
p which has led to the development of efficient solvers for IgA [4, 5].
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Multigrid methods [6, 7] are considered among the most efficient solution
techniques for elliptic problems. Within h-multigrid methods, a hierarchy is
constructed based on different mesh widths h. At the coarsest level, a correction
is obtained by solving the residual equation, which is used to update the fine
grid solution. At each level of the multigrid hierarchy, a basic iteration scheme
is applied, also known as the smoother. The combination of coarse grid correction
and smoothing leads to a highly efficient iterative solver, where the CPU time needed
for convergence grows linearly with the number of degrees of freedom. In the context
of Isogeometric Analysis, h-multigrid methods have been developed with enhanced
smoothers to obtained convergence rates independent of both the mesh width h and
approximation order p [8, 9].

As an alternative solution strategy, p-multigrid methods can be adopted. In
contrast to h-multigrid methods, a multigrid hierarchy is constructed based on
different values of p. As a result, the residual equation is solved at level p = 1, where
B-spline basis functions coincide with Lagrangian P1 basis functions, allowing the
use of established solution techniques for standard FEM. Equiped with a smoother
that is based on an Incomplete LU factorization [10], the resulting p-multigrid
method shows convergence rates independent of both h and p [11]. Compared to
h-multigrid methods, the coarse grid correction is obtained at p = 1. As a result, the
overall assembly costs are lower for higher values of p due to a significant reduction
of the number of non zero entries. For a detailed comparison with h-multigrid
methods, the authors refer to [11].

In recent papers by the authors, a p-multigrid hierarchy has been constructed for
all levels k, where 1 ≤ k ≤ p. However, the scheme could be adopted in which the
residual at level p is directly projected to the coarse level (p = 1). In this paper, we
compare both schemes in terms of spectral properties, iteration numbers and CPU
times for both a single patch and multipatch geometry. This paper is organized as
follows: Section 2 describes the considered model problem and IgA discretization.
The p-multigrid method, together with the different projection schemes studied in
this paper, are described in detail in Section 3. Numerical results for the considered
benchmark problems, including a spectral analysis, iteration numbers and CPU times
are presented in Section 4. Finally, conclusions are drawn in Section 5.

2 Model problem and IgA discretization
As a model problem, we consider the convection-diffusion-reaction (CDR) equation
on a connected, Lipschitz domain Ω ⊂ R2. Defining V = H1

0 (Ω) as the Sobolev
space H1(Ω) with functions that vanish on ∂Ω, the variational form of the CDR-
equation becomes: Find u ∈ V such that

a(u, v) = ( f , v) ∀v ∈ V, (1)

where
a(u, v) =

∫
Ω

(D∇u) · ∇v + (v · ∇u)v + Ruv dΩ and ( f , v) =
∫
Ω

f v dΩ. (2)
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Here, D denotes the diffusion tensor, v a divergence-free velocity field and R a
reaction term. Furthermore, we have f ∈ L2(Ω) and u = 0 on the boundary ∂Ω. The
physical domain Ω is then parameterized by a geometry map

F : Ω̂→ Ω, F(ξ) = x. (3)

The geometry map F describes an invertible mapping connecting the parameter
domain Ω̂ = (0,1)2 with the physical domain Ω. In case Ω cannot be described by
a single geometry map, the domain is divided into a collection of non-overlapping
subdomainsΩ(d), where 1 ≤ d ≤ D. A family of geometry maps F(d) is then defined
to parameterize each subdomain separately and we refer toΩ as a multipatch domain
consisting of D patches.

In this paper, the tensor product of univariate B-spline functions of order p is used
for the spatial discretization. Univariate B-spline basis functions are defined on the
one-dimensional parameter domain Ω̂ = (0,1) and are uniquely determined by a knot
vector Ξ = {ξ1, ξ2, . . . , ξN+p, ξN+p+1}, consisting of a sequence of non-decreasing
knots ξi ∈ Ω̂ with, in this paper, constant knot span size or mesh width h. Here, N
denotes the number of basis functions of order p defined by this knot vector. B-spline
basis functions are defined recursively by theCox deBoor formula [12]. The resulting
B-spline basis functions φi

h,p
are non-zero on the interval [ξi, ξi+p+1) and possess the

partition of unity property. In this paper, an open knot vector is considered, implying
that the first and last knots are repeated p + 1 times. As a consequence, the basis
functions considered are globally Cp−1 continuous and interpolatory only at the two
end points; see also Figure 1.
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Fig. 1: Univariate linear (left) and quadratic (right) B-spline basis functions based
on the knot vectors Ξ1 = {0,0, 1

3 ,
2
3 ,1,1} and Ξ2 = {0,0,0, 1

3 ,
2
3 ,1,1,1}, respectively.

The solution u of Equation (1) is then approximated by a linear combination of
bivariate B-spline basis functions:

u(ξ) ≈ uh,p(ξ) =
Ndof∑
i=1

ciΦi
h,p(ξ), (4)

whereΦi
h,p
(ξ) = φi1

h,p
(ξ1)φ

i2
h,p
(ξ2) and Ndof denotes the number of bivariate B-spline

functions, where Ndof = N2. DefiningVh,p as the span of all bivariate B-spline basis
functions, the Galerkin formulation of (1) becomes: Find uh,p ∈ Vh,p such that

a(uh,p, vh,p) = ( f , vh,p) ∀vh,p ∈ Vh,p . (5)
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Equation (5) can be written as a linear system resulting from this discretization with
B-spline basis functions of approximation order p and mesh width h. For a more
detailed description of the spatial discretization in IgA, the authors refer to [1].

3 p-multigrid method
To solve Equation (5) efficiently, a p-multigrid method is adopted. Starting from
Vh,1, a sequence of spaces Vh,1, . . . ,Vh,p is obtained by applying refinement in p.
As Cp−1 continuous basis functions are considered on all levels of the multigrid
hierarchy, these spaces are not nested.

Starting from an initial guess u(0)
h,p

, a single step of the two-grid correction scheme
for the p-multigrid method consists of the following steps [13]:

u(0)
h,p
= u(0)

h,p
+ Sh,p

(
fh,p − Ah,pu(0)

h,p

)
, (6)

rh,p−1 = I
p−1
p

(
fh,p − Ah,pu(0)

h,p

)
. (7)

eh,p−1 =
(
Ah,p−1

)−1 rh,p−1, (8)

u(0)
h,p
= u(0)

h,p
+ I

p
p−1

(
eh,p−1

)
, (9)

u(1)
h,p
= u(0)

h,p
+ Sh,p

(
fh,p − Ah,pu(0)

h,p

)
, (10)

Here, Sh,p denotes a single smoothing step applied to the high-order problem, while
I

p−1
p and Ip

p−1 denote the restriction and prolongation operator, respectively. The
coarse grid operator Ah,p−1 is obtained by rediscretizing Equation (1).

Recursive application of this scheme on Equation (8) until level p = 1 is reached,
results in a V-cycle. As the coarsest problem in p-multigrid can become large
for small values of h, a single V-cycle of a standard h-multigrid method (with
canonical prolongation, weighted restriction and a single smoothing step) is adopted
to approximately solve the coarse grid problem in our p-multigrid scheme.

In this paper, we also consider a direct projection from the high-order level to
level p = 1. Both considered multigrid schemes, referred to as an indirect and direct
projection scheme, are shown in Figure 2.

The operators to project between different p-levels are based on an L2 projection
and have been used extensively in the literature [14, 15, 16]. The prolongation and
restriction operator are defined, respectively, as follows:

I
p
p−1(vp−1) = (Mp)

−1Pp
p−1 vp−1 I

p−1
p (vp) = (Mp−1)

−1Pp−1
p vp, (11)

with the mass matrix Mp and transfer matrix Pp
p−1 given by:

(Mp)(i, j) :=
∫
Ω

Φ
i
h,pΦ

j
h,p

dΩ, (Pp
p−1)(i, j) :=

∫
Ω

Φ
i
h,pΦ

j
h,p−1 dΩ. (12)

The choice of the prolongation and restriction operator leads to a non-symmetric
multigrid method. Choosing the prolongation and restriction operator as the
transpose of eachotherwould restore symmetry.Numerical experiments, not presented
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Fig. 2: Illustration of both an indirect (left) and direct (right) projection scheme
within p-multigrid.

in this paper, show, however, that this leads to a less robust p-multigrid method. To
prevent the explicit solution of a linear system of equations for each projection step,
the consistent mass matrix Mp in both transfer operators is replaced by its lumped
counterpart ML

p by applying row-sum lumping, i.e. (ML
p )(i,i) =

∑Ndof
j=1 (Mp)(i, j). Note

that in IgA the mass matrix can easily be lumped due to the non-negativity of the
B-spline basis functions. It was shown in [11] that the use of a lumped mass matrix
in Equation (13) hardly influences the convergence behaviour or accuracy of the
resulting p-multigrid methods. Note that, alternatively, the mass matrix could be
inverted efficiently by exploiting the tensor product structure, see [18].

Since the use of standard smoothers (i.e. Gauss-Seidel) within p-multigrid leads
to convergence rates which detoriate for higher values of p [13], we adopt a smoother
based on an ILUT factorization. This factorization is determined completely by a
tolerance τ and fillfactor m, which are chosen such that the number of nonzeros is
approximately the same as for the orignal operator Ah,p . We applied this smoother
succesfully within p-multigrid methods to solve linear systems arising in IgA [11].

4 Numerical results
To assess the quality of both projection schemes, two benchmarks are considered.
For the first benchmark, the model problem (1) is considered with coefficients:

D =
[

1.2 −0.7
−0.4 0.9

]
, v =

[
0.4
−0.2

]
, R = 0.3. (13)

Here, Ω is chosen to be the unit square, i.e. Ω = [0,1]2, described by a single
patch. The second benchmark is Poisson’s equation (D is the identity matrix) on an
L-shaped domain (Ω = {[−1,1] × [−1,1]}\{[0,1] × [0,1]}), consisting of 4 patches.
The resulting linear systems are then solved with the proposed p-multigrid methods.
At level p = 1, coarsening in h is applied until h = 2−3, corresponding to 81 degrees
of freedom.

To investigate the interplay between smoothing and the coarse grid correction,
the error reduction factors when applying a single smoothing step (only on the finest
level) or coarse grid correction (without smoothing) have been determined for both
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projection schemes. This analysis has been performed before in literature, in the
context of h-multigrid methods [17]. Figure 3 (left) denotes the error reduction
factors of the generalized eigenvectors vj ( j = 1, . . . Ndof) of the operator Ah,p for
p = 4 and h = 2−5. For both a direct and indirect projection, the smoother and coarse
grid correction are complementary to eachother, where the smoother is effective for
the high-frequency components and the coarse grid correction for the low frequency
components. Remarkably, the coarse grid correction with a direct projection is not
only more efficient in terms of less computational work, but also leads to lower
reduction factors. Note that, no smoothing is applied here on the coarser levels.
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Fig. 3: Error reduction in vj (left) and the spectrum of the iteration matrix (right) for
the first benchmark obtained with both projection schemes

(
p = 4, h = 2−5) .

To further analyze the performance of both projection schemes, the asymptotic
convergence rate of the resulting p-multigrid methods has been determined. For any
multigrid method, the asymptotic convergence rate is given by the spectral radius
ρ of the iteration matrix describing the effect of a single V-cycle. The spectra of
the iteration matrices for both projection schemes are shown in Figure 3 (right). For
comparison, a circle with radius 0.025 has been added to the plot. Visually, both
spectra are almost identical, which is also confirmed by the obtained spectral radia:
ρ1 = 0.02032 and ρ2 = 0.02035 for a direct and indirect projection, respectively,
implying an equally efficient p-multigrid method for both configurations.

Table 1 shows the number of iterations needed to achieve convergence for both
benchmarks, respectively. For all numerical experiments, the initial guess u(0)

h,p
is

chosen randomly, where each entry is sampled from a uniform distribution on the
interval [−1,1]. The p-multigrid iteration is considered converged when the initial
residual has decreased with a factor of 108. Note that for both projection schemes
and benchmarks, the number of iterations is robust in both the mesh width h and the
approximation order p and similar for all configurations. For the first benchmark,
with p = 4 and h = 2−5, the same number of iterations is needed, as expected
from our spectral analysis. Note that for the multipatch geometry, more iterations are
required to achieve convergence. This behaviour for p-multigrid methods has been
observed and analyzed in literature by the authors, see [20].
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Table 1: Number of iterations needed to achieve convergence for both benchmarks
when applying a direct or indirect projection for different values of h and p.

p = 2 p = 3 p = 4 p = 5
Direct Indirect Direct Indirect Direct Indirect Direct Indirect

h = 2−5 5 5 4 4 3 3 3 3
h = 2−6 5 5 4 4 4 3 4 4
h = 2−7 5 5 4 4 4 4 4 4
h = 2−8 5 5 4 4 4 4 4 4

(a) CDR-equation on the unit square
h = 2−5 6 6 6 5 5 5 5 4
h = 2−6 7 7 6 5 5 5 5 4
h = 2−7 7 7 6 6 6 5 6 4
h = 2−8 8 8 6 6 7 6 6 5

(b) Poisson’s equation on an L-shaped domain

To compare the computational costs of both approaches, CPU timings have been
determined for the first benchmark. A serial implementation in the C++ library
G+Smo is considered on an Intel(R) Core(TM) i7-8650 CPU (1.90GHz). Table
2 shows the measured set-up and solver times (in seconds). Although for both
projection schemes, the set-up and solver time scales linearly with the number of
degrees of freedom, the CPU times obtained with a direct projection scheme are
significantly lower. Furthermore, the relative difference increases for higher values
of p, as the number of levels in the p-multigrid hierarchy grows when adopting an
indirect projection scheme: for p = 5 a reduction of the set-up and solving times of
around 50% is achieved.

Table 2: CPU timings (secs) for the first benchmark for different values of h and p.
p = 2 p = 3 p = 4 p = 5

Direct Indirect Direct Indirect Direct Indirect Direct Indirect
h = 2−5 0.2 0.2 0.3 0.4 0.5 0.9 0.9 1.8
h = 2−6 0.6 0.6 1.1 1.6 2.1 3.6 3.7 7.5
h = 2−7 2.5 2.5 4.6 6.4 8.5 14.9 16.7 35.2
h = 2−8 10.0 9.9 18.7 26.2 36.1 65.7 66.4 142.9

(a) Set-up times
h = 2−5 0.004 0.004 0.004 0.005 0.004 0.007 0.005 0.01
h = 2−6 0.01 0.01 0.01 0.02 0.02 0.03 0.02 0.05
h = 2−7 0.04 0.04 0.05 0.07 0.07 0.1 0.1 0.2
h = 2−8 0.2 0.2 0.2 0.3 0.3 0.5 0.4 0.8

(b) Solving times

5 Conclusions
Recently, the use of p-multigrid methods has become more popular in solving
linear systems of equations arising in Isogeometric Analysis. In this paper, various
schemes to set up the p-multigrid hierarchy have been compared. In particular, a
direct projection to level p = 1 has been compared with constructing a hierarchy for
each order 1 ≤ k ≤ p. Numerical results, presented for the CDR-equation on the
unit square and Poisson’s equation on an L-shaped multipatch domain, show that in
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terms of iteration numbers both projection schemes lead to (almost) identical results.
This is also confirmed by the performed spectral analysis. However, CPU timings
show that a direct projection scheme leads to the most efficient solution strategy,
reducing the set-up and solving times up to a factor of 2 for higher values of p.
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