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Abstract Isogeometric Analysis can be considered as the natural extension of
the Finite Element Method (FEM) to higher-order spline based discretizations
simplifying the treatment of complex geometries with curved boundaries. Finding a
solution of the resulting linear systems of equations efficiently remains, however, a
challenging task. Recently, p-multigrid methods have been considered [26], in which
amultigrid hierarchy is constructed based on different approximation orders p instead
of mesh widths h as it would be the case in classical h-multigrid schemes [13]. The
use of an Incomplete LU-factorization as a smoother within the p-multigrid method
has shown to lead to convergence rates independent of both h and p for single patch
geometries [27]. In this paper, the focus lies on the application of the aforementioned
p-multigrid method on multipatch geometries having a C0-continuous coupling
between the patches. The use of ILUT as a smoother within p-multigrid methods
leads to convergence rates that are essentially independent of h and p, but depend
mildly on the number of patches.

1 Introduction

Isogeometric Analysis (IgA) [15] can be considered as the natural extension of
the Finite Element Method (FEM) to higher-order spline based discretizations
simplifying the treatment of complex geometries with curved boundaries. However,
solving the resulting linear systems arising in IgA efficiently is considered a
challenging task, especially for higher-order discretizations. The exponential increase
of the condition numbers of the mass and stiffness matrices with the approximation
order p, make the use of (standard) iterative solvers inefficient. The wider support of
the basis functions and, consequently, increasing bandwidth of the matrices for larger
values of p make the use of direct solvers on the other hand also not straightforward.
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The use of established solution techniques from FEM in IgA has been an active field
of research. For example, h-multigrid methods have been investigated, as they are
considered among the most efficient solvers in Finite Element Methods for elliptic
problems. The use of standard smoothers like (damped) Jacobi orGauss-Seidel leads,
however, to convergence rates which deteriorate drastically for increasing values of p
[10], caused by very small eigenvalues associated with high-frequency eigenvectors
[8]. Non-classical smoothers have been developed to solve this problem leading to
(geometric) multigrid methods which are robust in both h and p [13, 20].
An alternative solution strategy are p-multigrid methods. In contrast to h-multigrid
methods, where each level of the constructed hierarchy is obtained by refining the
mesh, in p-multigrid methods each level represents a different approximation order.
p-Multigrid methods are widely used within the Discontinuous Galerkin framework
[9, 17, 18, 21], where p = 0 is used on the coarsest hierarchy level.
Some research has been performed for continuous Galerkin methods [12] as well,
where the coarse grid correction was obtained at level p = 1. Throughout this
paper, the coarse grid is also obtained at level p = 1. Here, B-spline basis functions
coincide with piecewise-linear (p = 1) Lagrange basis functions, enabling the use
of well known solution techniques for standard FEM.
Recently, the authors developed an efficient p-multigridmethod for IgAdiscretizations
that makes use of an Incomplete LU factorization based on a dual treshold strategy
(ILUT) [22] as a smoother. This approach was shown to result in a p-multigrid
method with essentially h- and p-independent convergence rates [27] in contrast to
the use of Gauss-Seidel as a smoother.
In this paper, the focus lies on the extension of p-multigrid based methods on
multipatch geometries, giving rise to (reduced) C0-continuity between individual
patches. The spectral properties of the p-multigrid method are analysed and
numerical results are presented for different two-dimensional benchmarks. The use
of ILUT as a smoother leads to a p-multigrid method that shows essentially h- and p-
independent convergence rates on multipatch geometries. Furthermore, the number
of iterations needed to achieve convergence depends only mildly on the number of
patches.
This paper is organised as follows. The model problem and spatial discretization are
briefly considered in Section 2. Section 3 presents the p-multigrid method together
with the adopted ILUT smoother in more detail. In Section 4, a spectral analysis
is performed and discussed. Numerical results for the considered benchmarks are
presented in Section 5. Conclusions are finally drawn in Section 6.

2 Model Problem

As a model problem to describe the spatial discetisation, Poisson’s equation is
considered:

−∆u = f , on Ω, (1)
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where Ω ⊂ R2 is a connected, Lipschitz domain, f ∈ L2(Ω) and u = 0 on the
boundary ∂Ω. LetV = H1

0 (Ω) denote the subspace of the Sobolev space H1(Ω) that
contains all functions that vanish on the boundary ∂Ω. By multiplying both sides of
(1) with an arbitrary test function v ∈ V and applying integration by parts in the left
side, the following variational form of (1) is obtained:

Find u ∈ V such that

a(∇u,∇v) = ( f , v) ∀v ∈ V, (2)

where

a(u, v) =
∫
Ω

∇u · ∇v dΩ and ( f , v) =
∫
Ω

f v dΩ. (3)

A bijective geometry function F is then defined to parameterize the physical domain
Ω:

F : Ω0 → Ω, F(ξ) = x, (4)

where ξ = (ξ, η) and x = (x, y) denote the coordinates in the parametric and physical
domain, respectively. The geometry function F describes an invertible mapping
connecting the parameter domain Ω0 ⊂ R

2 with the physical domain Ω. In case Ω
cannot be described by a single geometry function, the physical domain is divided
in a collection of non-overlapping subdomains Ω(k) such that

Ω =

K⋃
k=1
Ω
(k). (5)

A geometry function F(k) is then defined to parameterize each subdomain Ω(k):

F(k) : Ω0 → Ω
(k), F(k)(ξ) = x. (6)

We refer to Ω as a multipatch geometry consisting of K patches. Throughout this
paper, the tensor product of one-dimensional B-spline basis functions φix ,p(ξ) and
φiy ,q(η) of order p and q, respectively, with maximum continuity are adopted for the
spatial discetisation:

Φi,p(ξ) := φix ,p(ξ)φiy ,q(η), i = (ix, iy), p = (p,q). (7)

Here, i and p are multi indices, with ix = 1, . . . ,nx and iy = 1, . . . ,ny denoting the
one-dimensional basis functions in the x and y-dimension, respectively. Furthermore,
i = ixnx+iyny assigns a unique index to each pair of one-dimensional basis functions,
where i = 1, . . . Ndof . The spline space Vh,p can then be written, using the inverse
of the geometry mapping F−1 as pull-back operator, as follows:

Vh,p := span
{
Φi,p ◦ F−1}

i=1,...,Ndof
. (8)
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Here, Ndof denotes the number of degrees of freedom, or equivalently, the number
of tensor-product basis functions. The Galerkin formulation of (2) becomes:

Find uh,p ∈ Vh,p such that

a(∇uh,p,∇vh,p) = ( f , vh,p) ∀vh,p ∈ Vh,p, (9)

or, equivalently:

Ah,puh,p = fh,p . (10)

Here, Ah,p denotes the stiffness matrix resulting from the discretization of the left-
hand side with the tensor-product of B-spline basis functions of order p and knot
span size h. To assess the quality of the p-multigrid method throughout this paper,
the following benchmarks are considered:

Benchmark 1. Here, Poisson’s equation is considered on the unit square, i.e.
Ω = [0,1]2. The right-hand side is chosen such that the exact solution u is given by:

u(x, y) = sin(πx)sin(πy).

Benchmark 2. Let Ω be the quarter annulus with an inner and outer radius of 1 and
2, respectively. Again, Poisson’s equation is considered, where the exact solution u
is given by

u(x, y) = −(x2 + y2 − 1)(x2 + y2 − 4)xy2,

Benchmark 3. Let Ω = {[−1,1] × [−1,1]}\{[0,1] × [0,1]} be an L-shaped domain.
As with the other benchmarks, Poisson’s equation is considered, where the exact
solution u is given by

u(x, y) =


3
√

x2 + y2sin
(

2atan2(y,x)−π
3

)
if y > 0

3
√

x2 + y2sin
(

2atan2(y,x)+3π
3

)
if y < 0

,

where atan2 is the 2-argument arctangent function. The right-hand side is chosen
according to the exact solution. For the first two benchmarks, homogeneous Dirichlet
boundary conditions are applied on the entire boundary ∂Ω, while for the third
benchmark inhomogeneous Dirichlet boundary conditions are applied. Note that the
geometry of each benchmark can be described by a single patch. The multipatch
geometries considered throughout this paper are obtained by splitting the single
patch uniformly in both directions.

3 p-Multigrid method

Multigrid methods solve linear systems of equations by defining a hierarchy of
discretizations. At each level of the hierarchy, a basic iterative method, like Gauss-
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Seidel or (damped) Jacobi, is then applied as a smoother. On the coarsest level, a
correction is determined by solving the residual equation.With p-multigrid methods,
a sequence of spaces Vh,1, . . . ,Vh,p is obtained by applying refinement in p. The
coarse grid correction is then determined at level p = 1. Since basis functions with
maximal continuity are considered, the spaces in the hierarchy are not nested. For
p-multigrid, the two-grid correction scheme consists of the following steps [26, 27]:

1. Apply a fixed number ν1 of presmoothing steps to update the initial guess u(0)
h,p

:

u(0,m)
h,p

= u(0,m−1)
h,p

+ Sh,p

(
fh,p − Ah,pu(0,m−1)

h,p

)
, m = 1, . . . , ν1. (11)

Here, S is a smoothing operator applied to the high-order problem.
2. Project the residual at level p ontoVh,p−1 using the restriction operator Ip−1

p :

rh,p−1 = I
p−1
p

(
fh,p − Ah,pu(0,ν1)

h,p

)
. (12)

3. Determine the coarse grid error, by solving the residual equation at level p − 1:

Ah,p−1eh,p−1 = rh,p−1. (13)

4. Use the prolongation operator Ip
p−1 to project the error eh,p−1 onto the spaceVh,p

and update u(0,ν1)
h,p

:

u(0,ν1)
h,p

:= u(0,ν1)
h,p

+ I
p
p−1

(
eh,p−1

)
. (14)

5. Apply ν2 postsmoothing steps to obtain u(0,ν1+ν2)
h,p

=: u(1)
h,p

:

u(0,ν1+m)
h,p

= u(0,ν1+m−1)
h,p

+ Sh,p

(
fh,p − Ah,pu(0,ν1+m−1)

h,p

)
, m = 1, . . . , ν2. (15)

The residual equation can be solved recursively by applying the same two-grid
correction scheme until level p = 1, which results in a V-cycle. Different cycle types
can be applied, however, as shown in Figure 1.
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k = 1

Restrict
Restrict
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te
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te

Fig. 1 Description of a V-cycle and W-cycle.
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Prolongation and restriction

The prolongation and restriction operators transfer both coarse grid corrections and
residuals between different levels of the hierarchy. The prolongation and restriction
operator adopted in this paper are based on the L2 projection [4, 5, 24]. The
prolongation operator Ik

k−1 : Vh,k−1 → Vh,k can be derived from the following
variational form

(Ik
k−1(uh,k−1), vh,k) = (uh,k−1, vh,k) ∀uh,k−1 ∈ Vk−1, ∀vh,k ∈ Vk (16)

and is therefore given by

Ik
k−1(vk−1) = (Mk)

−1Pk
k−1 vk−1, (17)

where the mass matrix Mk and the transfer matrix Pk
k−1 are defined, respectively, as

follows:

(Mk)(i, j) :=
∫
Ω

Φi,kΦj,k dΩ, (Pk
k−1)(i, j) :=

∫
Ω

Φi,kΦj,k−1 dΩ. (18)

The restriction operator Ik−1
k

: Vh,k →Vh,k−1 is given by the Hilbert adjoint of the
prolongation operator and defined by

Ik−1
k (vk) = (Mk−1)

−1Pk−1
k vk . (19)

The explicit solution of a linear system of equations for each projection step is
prevented by replacing the consistent mass matrix M in both transfer operators by
its lumped counterpart ML . Here, ML is obtained by applying row-sum lumping:

ML
(i,i) =

Ndof∑
j=1

M(i, j). (20)

Smoother

In this paper, an Incomplete LU factorization with a dual treshold strategy (ILUT)
[22] is adopted as a smoother. The ILUT factorization is completely determined
by a tolerance τ and fillfactor f . All matrix entries in the factorization smaller (in
absolute value) than the tolerance multiplied by the average magnitude of all entries
in the current row are dropped. Furthermore, only the average number of non-zeros
in each row of the original operator Ah,p multiplied with the fillfactor are kept in
each row.
Throughout this paper, a fillfactor of 1 is adopted and the dropping tolerance τ equals
10−12. As a consequence, the number of non-zero entries of the factorization is similar
to the number of non-zeros of the original operator. An efficient implementation of
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an ILUT factorization is available in the Eigen library [11] based on [23]. Once the
factorization is obtained, a single smoothing step is applied as follows:

e(n)
h,p
= (Lh,pUh,p)

−1(fh,p − Ah,pu(n)
h,p
), (21)

u(n+1)
h,p

= u(n)
h,p
+ e(n)

h,p
. (22)

Coarse grid operator

The system operator Ah,p is needed at each level of the hierarchy to apply the
smoothing steps or solve the residual equation at level p = 1. The operators at
the coarser levels can be obtained by rediscretizing the bilinear form in (9) with
lower-order spline basis functions or by applying a Galerkin projection:

AG
h,k−1 = I

k−1
k Ah,k I

k
k−1. (23)

Since the condition number of the resulting coarse grid operator Ah,1 is significantly
lower when using rediscretizing [27], this approach is adopted throughout the rest
of this paper.

4 Spectral Analysis

To investigate the performance of the p-multigrid method on multipatch geometries,
the spectrum of the iteration matrix is determined. The iteration matrix describes the
effect of a single multigrid cycle on uh,p and can be used to obtain the asymptotic
convergence rate of the p-multigridmethod. For all benchmarks introduced in Section
2, results are presented considering a different number of patches.
The asymptotic convergence rate of a multigrid method is determined by the spectral
radius of the corresponding iteration matrix. This matrix can be obtained explicitly
by considering −∆u = 0 with homogeneous Dirichtlet boundary conditions. By
applying a single iteration of the p-multigrid method using the ith unit vector as
initial guess, one obtains the ith column of the iteration matrix [28].
The spectra obtained for the first two benchmarks are shown in Figure 2 for a different
number of patches. The multipatch geometries are obtained by splitting the single
patch uniformly in both directions, leading to 4 or 16 patches with a C0-continuous
coupling at the interfaces. For the single patch, all eigenvalues of the iteration matrix
are clustered around the origin. For the multipatch geometries, some eigenvalues
are slightly further from the origin. Table 1, showing the spectral radius of the
iteration matrix for different values of h and p for the first benchmark, confirms
this observation. The spectral radii are larger for all numerical experiments when
the number of patches is increased, but still relatively low. Furthermore, since the
spectral radii remain almost constant for higher values of p, the p-multigrid method
is expected to show (essentially) p-independent convergence rates.
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Table 1 Spectral radius ρ for the first benchmark for different values of h and p for a different
number of patches.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 0.012 0.130 0.200 h = 2−4 0.003 0.064 0.156 h = 2−4 0.004 0.012 0.083
h = 2−5 0.021 0.129 0.177 h = 2−5 0.013 0.132 0.214 h = 2−5 0.014 0.091 0.168
h = 2−6 0.021 0.131 0.133 h = 2−6 0.015 0.143 0.187 h = 2−6 0.031 0.140 0.223

The obtained spectral radii for the second benchmark for different values of h and
p can be found in Table 2. Again, the multipatch geometries consist of 4 and 16
patches. For all configurations, the spectral radius for a single patch geometry is
lower compared to the spectral radius obtained for the multipatch geometries. As
a consequence, the p-multigrid is expected to show slower convergence behaviour
for multipatch geometries. On the other hand, the asymptotic convergence rates
for the multipatch geometries are almost independent of p and still relatively low.
For a single configuration the resulting p-multigrid method is instable, which is
reflected by a spectral radius larger then 1. The obtained spectral radii for the third
benchmark are presented in Table 3. As with the other benchmarks, the spectral radii
remain almost constant for higher values of p, implying (essentially) p-independent
convergence rates.

Table 2 Spectral radius ρ for the second benchmark for different values of h and p for a different
number of patches.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 0.014 0.049 0.141 h = 2−4 0.003 0.013 0.073 h = 2−4 0.003 0.007 1.312
h = 2−5 0.039 0.093 0.155 h = 2−5 0.020 0.073 0.155 h = 2−5 0.029 0.035 0.090
h = 2−6 0.057 0.103 0.116 h = 2−6 0.024 0.124 0.169 h = 2−6 0.023 0.114 0.174

Table 3 Spectral radius ρ for the third benchmark for different values of h and p for a different
number of patches.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 0.004 0.038 0.080 h = 2−4 0.001 0.002 0.013 h = 2−4 2.6 · 10−5 6.5 · 10−5 0.003
h = 2−5 0.012 0.082 0.129 h = 2−5 0.007 0.035 0.080 h = 2−5 0.002 0.005 0.020
h = 2−6 0.016 0.089 0.127 h = 2−6 0.010 0.091 0.159 h = 2−6 0.005 0.059 0.118
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Fig. 2 Spectra of the iteration matrix (with p = 3 and h = 2−5) for the first (left) and second (right)
benchmark for a different number of patches.
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5 Numerical Results

The proposed p-multigrid method is applied in this Section as a stand-alone solver
and as a preconditioner within a Biconjugate gradient stabilized (BiCGSTAB)
method. Results are obtained using different numbers of patches. Furthermore,
results are compared when using ILUT as a solver. Finally, different coarsening
strategies (i.e. coarsening in h, p or both) are compared with respect to the number
of iterations and computational time.
The initial guess u(0)

h,p
is chosen randomly for all experiments, where each entry is

sampled from a uniform distribution on the interval [−1,1] using the same seed. The
method is considered to be converged if

| |r(n)
h,p
| |

| |r(0)
h,p
| |
< 10−8, (24)

where r(n)
h,p

denotes the residual after iteration n. The solution of the residual equation
is obtained at level p = 1 by means of a Conjugate Gradient solver with a relatively
high tolerance (ε = 10−4). The same number of pre- and postsmoothing steps are
applied for all experiments (ν = ν1 = ν2) and boundary conditions are imposed
using Nitsche’s method [19].
The number of V-cycles needed to reach convergence for different values of h and
p for a different number of patches for the first benchmark are shown in Table
4. Here, the number of smoothing steps at each level equals 2. Results have been
obtained considering 1, 4 and 16 patches, where the multipatch is based on splitting
a single patch uniformly in both directions. In general, the p-multigrid method shows
convergence rates which are essentially independent of both h and p. However, an
increase of the number of patches leads to an increase in the number of V-cycles
needed to achieve convergence. Note that this increase is relatively low, especially
for smaller values of h.

Table 4 Number of V-cycles needed for achieving convergence for the first benchmark with p-
multigrid, ν = 2.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 3 5 7 h = 2−4 2 3 5 h = 2−4 2 2 4
h = 2−5 3 6 7 h = 2−5 3 5 7 h = 2−5 2 4 5
h = 2−6 3 5 6 h = 2−6 3 6 7 h = 2−6 3 5 7
h = 2−7 3 5 5 h = 2−7 3 5 5 h = 2−7 2 5 6

Table 5 shows the number of V-cycles needed when the number of smoothing steps
is doubled. Hence, ν = 4 for all numerical experiments. Doubling the number of
smoothing steps at each level, slightly decreases the number of V-cycles. However,
since the number of V-cycles is already relatively low, the reduction is limited.
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Table 5 Number of V-cycles needed for reaching convergence for the first benchmark with p-
multigrid, ν = 4.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 2 4 5 h = 2−4 1 2 3 h = 2−4 1 2 2
h = 2−5 3 5 6 h = 2−5 2 4 5 h = 2−5 2 3 3
h = 2−6 2 5 6 h = 2−6 2 5 6 h = 2−6 2 4 5
h = 2−7 2 4 4 h = 2−7 2 4 5 h = 2−7 2 4 5

The number of V-cycles needed to achieve convergence for the second benchmark
are presented in Table 6. Compared to the first benchmark, convergence is obtained
in the same or even a lower number of V-cycles. Furthermore, only a small increase
of the number of V-cycles needed is observed when the number of patches increases.
For one configuration, however, the p-multigrid method diverges, as expected based
on the spectral analysis; see Table 2.

Table 6 Number of V-cycles needed to achieve convergence for the second benchmark with p-
multigrid, ν = 2.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 2 3 5 h = 2−4 2 2 3 h = 2−4 1 2 −

h = 2−5 3 4 5 h = 2−5 2 3 4 h = 2−5 2 2 3
h = 2−6 3 4 5 h = 2−6 2 4 5 h = 2−6 2 4 5
h = 2−7 3 4 4 h = 2−7 2 4 5 h = 2−7 2 4 5

Table 7 presents the number of V-cycles needed to achieve convergence for the third
benchmark. Again, convergence is reached in a relatively low number of V-cycles.
Furthermore, no instabilities are observed for the considered configurations. The
increase in the number of V-cycles needed to reach convergence when the number
of patches is increased is only mild.

Table 7 Number of V-cycles needed to achieve convergence for the third benchmark with p-
multigrid, ν = 2.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 3 4 5 h = 2−4 2 2 3 h = 2−4 2 2 3
h = 2−5 3 5 6 h = 2−5 2 4 5 h = 2−5 2 3 3
h = 2−6 3 4 5 h = 2−6 2 5 6 h = 2−6 2 4 5
h = 2−7 3 4 5 h = 2−7 2 4 5 h = 2−7 2 4 5

Alternatively, the p-multigrid method is applied as a preconditioner within a
Biconjugate gradient stabilized (BiCGSTAB) method. At the preconditioning phase
of every iteration of the BiCGSTAB method, a single V-cycle is applied. Again, a
tolerance of ε = 10−8 is adopted as a stopping criterium for the BiCGSTAB solver.
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Results obtained for the first benchmark are presented in Table 8. Compared to the
use of p-multigrid as a stand-alone solver, the number of iterations needed on a single
patch geometry is smaller for all configurations. In case of a multipatch geometry,
however, the number of iterations needed reduces even more when a BiCGSTAB
method is adopted. Hence, the difference in BiCGSTAB iterations for single patch
and multipatch geometries becomes even smaller.

Table 8 Number of iterations needed to reach convergence for the first benchmark with
preconditioned BiCGSTAB, ν = 2.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 2 2 2 h = 2−4 1 2 2 h = 2−4 1 1 2
h = 2−5 2 2 3 h = 2−5 1 2 2 h = 2−5 1 2 2
h = 2−6 2 2 3 h = 2−6 2 2 3 h = 2−6 1 2 2
h = 2−7 2 2 2 h = 2−7 1 2 2 h = 2−7 1 2 2

For the second and third benchmark, results are presented in Table 9 and 10,
respectively. For the single patch geometry, the number of iterations with the
BiCGSTAB method is again smaller compared to the number of V-cycles for the
p-multigrid method for almost all configurations. A slightly larger reduction in the
number of iterations can be observed for some numerical experiments in case of a
multipatch geometry. Note that BiCGSTAB restores stability for the setting in which
the p-multigrid algorithm separately is unstable; see Table 2.

Table 9 Number of iterations needed for reaching convergence for the second benchmark with
preconditioned BiCGSTAB, ν = 2.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 1 2 2 h = 2−4 1 1 2 h = 2−4 1 1 3
h = 2−5 2 2 2 h = 2−5 1 1 2 h = 2−5 1 1 2
h = 2−6 2 2 2 h = 2−6 1 2 2 h = 2−6 1 2 2
h = 2−7 2 2 2 h = 2−7 1 2 2 h = 2−7 1 2 2

Table 10 Number of iterations needed for reaching convergence for the third benchmark with
preconditioned BiCGSTAB, ν = 2.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 1 2 2 h = 2−4 1 1 2 h = 2−4 1 1 1
h = 2−5 2 2 3 h = 2−5 1 2 2 h = 2−5 1 1 2
h = 2−6 2 2 3 h = 2−6 1 2 3 h = 2−6 1 2 2
h = 2−7 2 2 2 h = 2−7 1 2 2 h = 2−7 1 2 2
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As discussed in Section 3, different cycle types can be adopted. The use of aW-cycle
instead of the V-cycle leads to the same number of cycles needed for all numerical
experiments. Considering the higher computational costs for a single W-cycle, a
V-cycle is adopted throughout the rest of this paper.

ILUT as a solver

The obtained results are compared to using ILUT as a stand-alone solver. In this way,
the effectiveness of the coarse grid correction within the p-multigrid method can be
investigated. Table 11 shows the number of iterations needed to achieve convergence
with ILUT as a solver. For all numerical experiments, the number of iterations needed
with ILUT is significantly higher compared to the number of V-cycles needed with
p-multigrid (see Table 4 for comparison). Furthermore, the number of iterations
needed with ILUT as a solver becomes h-dependent, leading to a high number of
iterations on finer meshes. As shown in Table 12 and Table 13, the same observations
can be made for the second and third benchmark, respectively. These results indicate
that the coarse grid correction is necessary to obtain a low number of iterations until
convergence in reached.

Table 11 Number of iterations needed for achieving convergence for the first benchmark with ILUT
as solver.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 25 40 55 h = 2−4 12 18 29 h = 2−4 7 10 18
h = 2−5 96 125 148 h = 2−5 50 53 67 h = 2−5 22 27 35
h = 2−6 352 397 437 h = 2−6 171 182 199 h = 2−6 80 86 106
h = 2−7 1280 1356 1440 h = 2−7 609 623 664 h = 2−7 288 307 324

Table 12 Number of iterations needed to obtain convergence for the second benchmark with ILUT
as solver.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 14 17 28 h = 2−4 6 9 15 h = 2−4 4 6 −

h = 2−5 56 55 63 h = 2−5 23 21 30 h = 2−5 12 13 16
h = 2−6 194 219 217 h = 2−6 76 84 83 h = 2−6 37 39 41
h = 2−7 716 710 700 h = 2−7 251 276 301 h = 2−7 131 138 137

Table 13 Number of iterations needed to obtain convergence for the third benchmark with ILUT
as solver.

# patches # patches # patches
p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16
h = 2−4 33 26 32 h = 2−4 13 10 16 h = 2−4 8 7 12
h = 2−5 126 90 88 h = 2−5 45 25 33 h = 2−5 23 14 17
h = 2−6 469 290 288 h = 2−6 168 88 100 h = 2−6 80 40 47
h = 2−7 1667 1046 1050 h = 2−7 596 320 332 h = 2−7 283 150 146
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Comparison h- and hp-multigrid

In the previous subsection, it was shown that a coarse grid correction is necessary
to obtain an efficient solution method. To determine the quality of the coarse
grid correction with p-multigrid in more detail, results are compared with h- and
hp-multigrid methods. In these methods, only the way in which the hierarchy is
constructed differs. For the h-multigrid method, coarsening in h is applied, while for
the hp-multigrid method coarsening in h and p is applied simultaneously. All other
components (i.e. smoothing, prolongation and restriction) are identical. It should
be noted that, since coarsening in h leads to a nested hierarchy of discretizations,
a canonical prolongation/restriction operator could be defined for the h-multigrid
method. These transfer operators are, however, not taken into account in this paper.
Results obtained for the benchmarks with the different coarsening strategies on a
multipatch geometry for different values of h and p are shown in Table 14, 15 and
16, respectively.

Table 14 Comparison of p-multigrid with h- and hp-multigrid for the first benchmark on 4
patches, ν = 2.

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 5 8 9 h = 2−3 3 4 4 h = 2−3 2 3 3
h = 2−4 6 18 20 h = 2−4 5 10 11 h = 2−4 4 6 6
h = 2−5 5 28 31 h = 2−5 6 25 31 h = 2−5 5 14 16
h = 2−6 5 32 35 h = 2−6 5 56 70 h = 2−6 5 36 48

For all benchmarks, the number of V-cycles needed with p-multigrid is significantly
lower for all configurations compared to h- and hp-multigrid. Furthermore, the
difference in the number of V-cycles increases when the knot span size is halved.
In general, coarsening in h is more efficient compared to coarsening both in h and
p. Results indicate that the coarsening in p leads to the most effective coarse grid
correction, resulting in the lowest number of V-cycles.

Table 15 Comparison of p-multigrid with h- and hp-multigrid for the second benchmark on 4
patches, ν = 2.

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 3 4 4 h = 2−3 2 2 3 h = 2−3 2 2 2
h = 2−4 4 10 11 h = 2−4 3 5 5 h = 2−4 2 3 3
h = 2−5 4 20 22 h = 2−5 4 13 16 h = 2−5 4 8 8
h = 2−6 4 26 27 h = 2−6 4 31 39 h = 2−6 4 19 23

Table 16 Comparison of p-multigrid with h- and hp-multigrid for the third benchmark on 4
patches, ν = 2.

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 4 6 6 h = 2−3 2 3 3 h = 2−3 2 2 2
h = 2−4 5 14 16 h = 2−4 4 6 6 h = 2−4 3 3 3
h = 2−5 4 23 25 h = 2−5 5 14 17 h = 2−5 4 8 8
h = 2−6 4 28 30 h = 2−6 4 34 46 h = 2−6 4 20 25
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Besides the number of iterations, CPU times have been compared for the different
multigrid methods. This comparison is in particular interesting, since the coarse
grid correction is more expensive for p-multigrid methods compared to h- and hp-
multigrid approaches. A serial implementation is considered on a Intel(R) Xeon(R)
E5-2687W CPU (3.10 GHz). Table 17, 18 and 19 present the computational times
(in seconds) for all benchmarks obtained with the different coarsening strategies.

Table 17 Computational times (in seconds) with p, h- and hp-multigrid for the first benchmark
on 4 patches, ν = 2.

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 1.4 1.0 1.2 h = 2−3 1.4 1.4 1.4 h = 2−3 2.0 1.8 1.9
h = 2−4 4.2 4.9 4.5 h = 2−4 5.1 5.8 5.8 h = 2−4 7.4 7.9 6.8
h = 2−5 13.1 22.1 21.9 h = 2−5 21.9 38.7 40.7 h = 2−5 31.6 48.0 44.7
h = 2−6 62.0 126.3 127.7 h = 2−6 105.1 384.2 419.5 h = 2−6 169.1 508.8 542.4

On coarser grids, the computational times for all multigrid methods are comparable.
For smaller values of h, however, the computational time needed with p-multigrid
is significantly smaller compared to h- and hp-multigrid due to the considerable
h-dependency of the latter two approaches. Furthermore, the computational time
needed with p-multigrid scales (almost) linearly with the number of degrees of
freedom. This holds for all benchmarks and all values of p considered in this study.

Table 18 Computational times (in seconds) with p, h- and hp-multigrid for the second benchmark
on 4 patches, ν = 2.

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 1.2 1.0 1.1 h = 2−3 1.6 1.5 1.7 h = 2−3 2.2 1.8 1.9
h = 2−4 4.4 4.9 4.8 h = 2−4 5.7 5.9 5.3 h = 2−4 7.3 7.7 6.9
h = 2−5 14.4 22.1 23.0 h = 2−5 22.1 33.7 33.5 h = 2−5 35.5 42.4 36.8
h = 2−6 64.2 142.3 136.7 h = 2−6 105.6 306.3 320.8 h = 2−6 175.8 382.6 376.6

Table 19 Computational times (in seconds) with p, h- and hp-multigrid for the third benchmark
on 4 patches, ν = 2.

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 1.1 1.1 1.0 h = 2−3 1.3 1.3 1.6 h = 2−3 2.0 1.8 1.7
h = 2−4 4.2 4.8 3.9 h = 2−4 5.4 5.2 5.0 h = 2−4 7.1 6.4 6.1
h = 2−5 13.1 20.0 20.1 h = 2−5 20.5 27.3 27.9 h = 2−5 29.1 32.9 29.9
h = 2−6 59.8 120.1 119.7 h = 2−6 94.3 257.5 299.1 h = 2−6 149.0 307.6 308.8
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6 Conclusion

In this paper, we have extended our p-multigrid solver for IgA discretizations using
a Incomplete LU factorization [27] to multipatch geometries. An analysis of the
spectrum of the iteration matrix shows that this p-multigrid method can be applied
onmultipatch geometries, with convergence rates essentially independent of the knot
span size h and approximation order p. Only a mild dependence of the convergence
rate on the number of patches is observed. Numerical results, obtained for Poisson’s
equation on the unit square, the quarter annulus and an L-shaped domain, confirm
this analysis. Furthermore, results show the necessity of the coarse grid correction
within the p-multigrid method. Finally, different coarsening strategies have been
compared, indicating that coarsening in p is most effictive compared to coarsing in
h or h and p simultaneously. Future research should focus on the application of the
p-multigrid method on partial differential equations of higher-order, for example the
biharmonic equation. Furthermore, the use of p-multigrid in a HPC framework can
be investigated, in which block ILUT can be applied efficiently as a smoother on
each multipatch separately.
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