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1. a The local truncation error is defined by

τn+1(h) :=
yn+1 − zn+1

h
, (1)

where yn := y(tn) represents the exact solution and

zn+1 = yn + hf(tn+1, zn+1), (2)

represents the approximation of the numerical solution at tn+1 upon using yn
for the previous time step. Since, we use the test equation y′ = λy, we express
yn+1 in terms of yn as follows

yn+1 = yne
λh = yn(1 + hλ+

1

2
h2λ2 +O(h3)). (3)

From (2), we use the test equation and the geometric series

zn+1 =
yn

1− hλ
= yn(1 + hλ+ h2λ2 +O(h3)). (4)

Substitution of equations (3) and (4) into the definition of the local truncation
error, gives

τn+1(h) =
yn
h

(
−h

2λ2

2
+O(h3)

)
= O(h). (5)

b Using the test equation, we get

wn+1 = wn + hλwn+1, (6)

where wn denotes the numerical approximation of yn. The above equation im-
plies

wn+1 =
wn

1− hλ
=: Q(hλ)wn. (7)

Here Q(hλ) represents the amplification factor. For numerical stability, we
require the modulus of the amplification factor to satisfy

|Q(hλ)| ≤ 1, hence | 1

1− hλ
| = 1

|1− hλ|
≤ 1. (8)
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Figure 1: The region of stability of the backward Euler method (grey area).

From the above equation, it is clear that

|1− hλ| ≥ 1, (9)

and with λ = µ+ iν, we get

(1− hµ)2 + (hν)2 ≥ 1. (10)

This area is the whole complex plane except the unit circle with center (1, 0),
see Figure 1.

c Consider the equations that we have to solve

y′1 = y1(1− (y1 + 2y2)) =: f1(y1, y2),
y′2 = y2(1− (y1 + y2)) =: f2(y1, y2),

(11)

Here, we introduced the functions f1(y1, y2) and f2(y1, y2). Then, the Jacobi
matrix is given by

J(y1, y2) :=

∂f1
∂y1

(y1, y2)
∂f1
∂y2

(y1, y2)

∂f2
∂y1

(y1, y2)
∂f2
∂y2

(y1, y2)

 =

1− 2(y1 + y2) −2y1

−y2 1− (y1 + 2y2)

 .

(12)
For the equilibrium (0, 1), we have

J(y1, y2) :=

(
−1 0
−1 −1

)
. (13)

Hence both eigenvalues are given by λ1 = −1 and λ2 = −1.

d - We have λ1 = −1 and λ2 = −1, hence with h > 0, this implies that hλ < 0
(thus real-valued), then from Figure 1, it is clear that the backward Euler
is stable for any h > 0.
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- Since the eigenvalues are real-valued and negative, we use

h ≤ 2

|λ|
, (14)

as stability bound for the forward Euler method. With λ1 = λ2 = −1,
we get h ≤ 2 as the maximum allowable time step to warrant numerical
stability, based on linear stability analysis around (0, 1).

e Applying the forward Euler time integration method to system (11), gives

un+1 = un + hun(1− (un + 2vn)),
vn+1 = vn + hvn(1− (un + vn)).

(15)

where wn = (un, vn)T denotes the numerical solution with components un and
vn. Using h = 1 and u0 = 0.25 and v0 = 0.5, gives

u1 = u0 + hu0(1− (u0 + 2v0)) = 1
4

+ 1
4
(1− (1

4
+ 1)),

v1 = v0 + hv0(1− (u0 + v0)) = 1
2

+ 1
2
(1− (1

4
+ 1

2
)).

(16)

Hence u1 = 3
16

= 0.1875 and v1 = 5
8

= 0.625.

2. (a) The Taylor polynomials around 0 are given by:

f(0) = f(0) ,

f(−h) = f(0)− hf ′(0) +
h2

2
f
′′
(0)− h3

6
f
′′′

(ξ1) ,

f(−2h) = f(0)− 2hf
′
(0) + 2h2f

′′
(0)− (2h)3

6
f
′′′

(ξ2) .

Here ξ1 ∈ (−h, 0), ξ2 ∈ (−2h, 0). We know that Q(h) = α0

h2
f(0) + α−1

h2
f(−h) +

α−2

h2
f(−2h), which should be equal to f ′′(0) +O(h). This leads to the following

conditions:

f(0) : α0

h2
+ α−1

h2
+ α−2

h2
= 0 ,

f
′
(0) : −hα−1

h2
− 2hα−2

h2
= 0 ,

f
′′
(0) : h2

2h2
α−1 + 2h2α−2

h2
= 1 .

This can also be written as

f(0) : α0 + α−1 + α−2 = 0 ,
f
′
(0) : −α−1 − 2α−2 = 0 ,

f
′′
(0) : α−1

2
+ 2α−2 = 1 .

(b) The truncation error follows from the Taylor polynomials:

f ′′(0)−Q(h) = f ′′(0)−f(0)− 2f(−h) + f(−2h)

h2
= −

(
2h3

6
f
′′′

(ξ1)− 8h3

6
f
′′′

(ξ2)

h2

)
= hf ′′′(ξ).
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(c) Note that
f ′′(0)−Q(h) = Kh (17)

f ′′(0)−Q(
h

2
) = K(

h

2
) (18)

Subtraction gives:

Q(
h

2
)−Q(h) = Kh−Kh

2
= K(

h

2
). (19)

We choose h = 1
2
. Then Q(h) = Q(1

2
) = 0−2×0.1250+1

0.25
= 3 and Q(h

2
) = Q(1

4
) =

0−2×0.0156+0.1250
( 1
4
)2

= 1.5008. Combining (18) and (19) shows that

f ′′(0)−Q(
1

4
) = Q(

1

4
)−Q(

1

2
) = −1.4992

(d) To estimate the rounding error we note that

|Q(h)− Q̂(h)| = |(f(0)− f̂(0))− 2(f(−h)− f̂(−h)) + (f(−2h)− f̂(−2h))

h2
|

≤ |f(0)− f̂(0)|+ 2|f(−h)− f̂(−h)|+ |f(−2h)− f̂(−2h)|
h2

≤ 4ε

h2
,

so C1 = 4. Since only 4 digits are given the rounding error is: ε = 0.00005.

(e) The total error is bounded by

|f ′′(0)− Q̂(h)| = |f ′′(0)−Q(h) +Q(h)− Q̂(h)|

≤ |f ′′(0)−Q(h)|+ |Q(h)− Q̂(h)|

≤ 6h+
4ε

h2
= g(h)

This is minimal for hopt, for which g′(hopt) = 0. Note that g′(h) = 6− 8ε
h3

. This

implies that h3opt = 4ε
3

, so hopt = (4ε
3

)
1
3 ≈ 0.0405.
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