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1.
a The local truncation error is defined as
Tn+1(h) _ Yn+1 ;ZnJrl’ (1)
where z,,.1 is given by
Zn+1 = Yn + h (alf(tm yn) + a2f(tn + h, Yn + hf(tnv yn)) . (2)
A Taylor expansion of f around (t,,y,) yields
of of 5
Ftn+h, yn+hf(tn, yn)) = f(tn,yn)ﬂthg(tmyn)+hf(tn,yn)a—y(tn,yn)+0(h )- (3)
This is substituted into equation (2) to obtain
B of of 3
Zn+l = yn+h alf(tna yn) + a2 f(tn: yn) + ha(tm yn) + hf(tna yn)a_y(tm yn) +O(h )
(4)

A Taylor series for y(t) around t,, gives for y,1

/ h2 /!
Unsr = Y(tn +h) =y + hy/(tn) + 9" (bn) + O(h*). (5)

From the differential equation we know that:
y/(tn> = f(tn:Yn) (6)

From the Chain Rule of Differentiation, we derive

ny JIn 8 ny Jn 8 ny Jn /
St = df(tdty ) _ f(taty ) f(tayy )y(tn) 7)

after substitution of the differential equation one obtains:

8 ny Jn 8 ny Jn
(1) = 2Lt) DI t) gy, ©)

Equations (5) and (4) are substituted into relation (1) to obtain

rt(h) = Fltn )L — (ar +a2)) + (% T fg—g) (% . ) Loy ()

Hence



(a) ay + ay = 1 implies 7,.1(h) = O(h);
(b) a1 +as =1 and ay = 1/2, that is, a; = ay = 1/2, gives 7,41(h) = O(h?).

The test equation is given by
Y = \y. (10)
Application of the predictor step to the test equation gives

W =Wy, + hAw, = (1 + hA)w,. (11)
The corrector step yields
Wy i1 = Wy + (a1 w, + axA(1 + hN)w,) = (14 (a1 + az)hA + ash® ) w,.  (12)
Hence the amplification factor is given by

Q(h)\) =1 + (a1 + ag)h)\ + a2h2)\2. (13)

Let A < 0 (so A is real), then, for stability, the amplification factor must satisfy
-1 <Q(hN) <1, (14)
from the previous assignment, we have
—1 <1+ (a4 ag)hA +as(hA)? <1 —2 < (ay + ag)h\ + az(hA)? < 0. (15)
First, we consider the left inequality:
az(hA)? + (ay + ag)hA +2 >0 (16)

For hA = 0, the above inequality is satisfied, further the discriminant is given by
(a1 + az)? — 8ay < 0. Here the last inequality follows from the given hypothesis.
Hence the left inequality in relation (15) is always satisfied. Next we consider the
right hand inequality of relation (15)

az(hA\)? + (a; + az)h < 0. (17)

This relation is rearranged into

ag(hA)? < —(ay + az)h, (18)
hence o +a
ashA? < (ay + ag)|hA| < |hA| < 1a 2 ay #0. (19)
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This results into the following condition for stability

h< ai —|—(12’
ag| Al




d The Jacobian, J, is given by

of of
oy1 Oy

of: 0f:
Oy1 Oys

Since f1(y1,%2) = —2y1 — 11y2 and fo(y1,v2) = 2y1y2 — y3, we obtain

J = (_2 BECEN ) . (22)

2y2 2y1 — 2y

Substitution of the initial values y1(0) = 2 and y2(0) = 2, gives
-4 -2
() -

e The eigenvalues of the Jacobian at y;(0) = y2(0) = 2 are given by Ao = —2 £ 2i.
For our case, we have

1
Q(hA\) =1+ hX\+ i(hA)Q. (24)
Since our eigenvalues are not real valued, it is required for stability that
QRN < 1. (25)

Since the eigenvalues are complex conjugates, we can proceed with one of the eigen-
values, say A = —2 + 2i with \> = —8i to obtain

Q(hX) =1+ h(—2+ 2i) + 1h?(-8i) (26)

Substitution of & = £ shows that Q(hA) = 0. This implies that |Q(hA)] =0 < 1 so
the method is stable.

2. a. Given y(z) = €*(2 — ), then y"(z) = —e”x, and hence —y" + y = 2¢” follows
by simple addition. Furthermore, y(0) = 2 and y'(x) = —e”(z — 1) and hence
y'(1) = 0. Hence the differential equation, as well as the boundary conditions
are satisfied.

b. Let y; = y(z;), and let z,, = 1, hence h = 1/n, then
yio = ylz; —h) = y; — hy'(x;) + 122y (z;) — B3 /3ly" (x;) + I /Aly™ (2;) + O(R°);

Yjrr = y(x; + h) = y; + hy'(2;) + h*/2y" (x)) + B3 /3ly" (z;) + h*/Aly" (z;) + O(R).
(27)



From the above expressions, it can be seen that

Y1 — 2y +y; h?
y//(xj) _ JJ 1 h2] Jj+1 —I—ﬁym/(xj)-l-O(hg), (28)

and hence the error is O(h?). This gives the following discretisation

—Wj -1 + 2’LUj — Wj41
12
where z; = jh and w; = y; is the numerical (finite difference) solution neglecting
the error.

+w; = 2", forj=1...n, (29)

Furthermore, we use a virtual gridnode near x = 1, z,,1 = 1 + h, with

o . Yn+1 — Yn—1 h2 " 3
0=y (1) = =7 — =y (1) + O, (30)
2h 6
hence the error is O(h?). Neglecting the error, and substitution into the dis-
cretisation equation j = n, yields
—2/11]”,1 + an
h2

Division by 2 to make the discretisation symmetric yields

+ w, = 2e. (31)

—Wp—1 +w, 1

% + JWn =e. (32)
The boundary condition y(0) = 2 at z = 0 yields
2'LU1 — W2 2
T + wp = ﬁ + 2€h. (33)
. For j =1, we get, using h = 1/3,
24+1/9 1
18w; — Ywey + wy = +1/ = 18 + 2e3 (34)
1/9
For 7 = 2, we obtain
— 9w + 18wy — Yws + wy = 2e*/3. (35)
For j = 3 = n, we obtain
1
—9wy + 9ws + JWs = 2e. (36)
Hence, the system of equations reads
19w, — 9wy = 18 + 2e3,
—9w; + 19wy — Yws = 2e/3, (37)

—9wy + 19/2ws = 2e.



d. The exact solution is given by y(x) = e*(2 — z) and its derivative of order k
reads y® (z) = (2 — o — k)e®. The error for the finite difference formula under
consideration is determined by the derivatives of third order and larger. Since
none of the derivatives y®+9(z), I > 0 vanishes for all values of x the error
cannot be zero. We use the same argument to show that there is no finite
difference formula which yields a nodally exact solution.

e. The linear Lagrangian interpolation polynomial, with nodes a and b, is given by

z—b T —a

i) = a—bf<a>+ b—a

f(b). (38)

This is evident from application of the given formula. We integrate function
f(z) by approximating f(x) by pi(x), then it follows:

/abf(x)dx%/:m(x)dx:/ab{f(a)z:ZJrf(b)‘Z:Z} dr =

_ B%ﬂb)]i—l— [%%f(a)]i = %(b—a)(f(a) + f(b))-

(39)

This is the Trapezoidal rule.

f. The magnitude of the error of the numerical integration over interval [a,b] is
given by

[ r@ar- [nwad =1 [ 6@ - niw) wl =

[ 5= ala = b (x(a) dal < 5 max | 1"(a r/ (&~ a)(a ~ B)}ds =

2 zela,b]

—(h_ 4)3 "

(40)



