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1.

a The local truncation error is defined as

τn+1(h) =
yn+1 − zn+1

h
, (1)

where zn+1 is given by

zn+1 = yn + h (a1f(tn, yn) + a2f(tn + h, yn + hf(tn, yn)) . (2)

A Taylor expansion of f around (tn, yn) yields

f(tn+h, yn+hf(tn, yn)) = f(tn, yn)+h
∂f

∂t
(tn, yn)+hf(tn, yn)

∂f

∂y
(tn, yn)+O(h2). (3)

This is substituted into equation (2) to obtain

zn+1 = yn+h

(
a1f(tn, yn) + a2

[
f(tn, yn) + h

∂f

∂t
(tn, yn) + hf(tn, yn)

∂f

∂y
(tn, yn)

])
+O(h3).

(4)
A Taylor series for y(t) around tn gives for yn+1

yn+1 = y(tn + h) = yn + hy′(tn) +
h2

2
y′′(tn) +O(h3). (5)

From the differential equation we know that:

y′(tn) = f(tn, yn) (6)

From the Chain Rule of Differentiation, we derive

y′′(tn) =
df(tn, yn)

dt
=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
y′(tn) (7)

after substitution of the differential equation one obtains:

y′′(tn) =
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn) (8)

Equations (5) and (4) are substituted into relation (1) to obtain

τn+1(h) = f(tn, yn)(1− (a1 + a2)) + h

(
∂f

∂t
+ f

∂f

∂y

)(
1

2
− a2

)
+O(h2) (9)

Hence
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(a) a1 + a2 = 1 implies τn+1(h) = O(h);

(b) a1 + a2 = 1 and a2 = 1/2, that is, a1 = a2 = 1/2, gives τn+1(h) = O(h2).

b The test equation is given by
y′ = λy. (10)

Application of the predictor step to the test equation gives

w∗n+1 = wn + hλwn = (1 + hλ)wn. (11)

The corrector step yields

wn+1 = wn + h (a1λwn + a2λ(1 + hλ)wn) = (1 + (a1 + a2)hλ+ a2h
2λ2)wn. (12)

Hence the amplification factor is given by

Q(hλ) = 1 + (a1 + a2)hλ+ a2h
2λ2. (13)

c Let λ < 0 (so λ is real), then, for stability, the amplification factor must satisfy

−1 ≤ Q(hλ) ≤ 1, (14)

from the previous assignment, we have

−1 ≤ 1 + (a1 + a2)hλ+ a2(hλ)2 ≤ 1⇔ −2 ≤ (a1 + a2)hλ+ a2(hλ)2 ≤ 0. (15)

First, we consider the left inequality:

a2(hλ)2 + (a1 + a2)hλ+ 2 ≥ 0 (16)

For hλ = 0, the above inequality is satisfied, further the discriminant is given by
(a1 + a2)

2 − 8a2 < 0. Here the last inequality follows from the given hypothesis.
Hence the left inequality in relation (15) is always satisfied. Next we consider the
right hand inequality of relation (15)

a2(hλ)2 + (a1 + a2)hλ ≤ 0. (17)

This relation is rearranged into

a2(hλ)2 ≤ −(a1 + a2)hλ, (18)

hence

a2|hλ|2 ≤ (a1 + a2)|hλ| ⇔ |hλ| ≤
a1 + a2
a2

, a2 6= 0. (19)

This results into the following condition for stability

h ≤ a1 + a2
a2|λ|

, a2 6= 0. (20)
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d The Jacobian, J , is given by

J =


∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

 . (21)

Since f1(y1, y2) = −2y1 − y1y2 and f2(y1, y2) = 2y1y2 − y22, we obtain

J =

(
−2− y2 −y1

2y2 2y1 − 2y2

)
. (22)

Substitution of the initial values y1(0) = 2 and y2(0) = 2, gives

J =

(
−4 −2
4 0

)
. (23)

e The eigenvalues of the Jacobian at y1(0) = y2(0) = 2 are given by λ1,2 = −2 ± 2i.
For our case, we have

Q(hλ) = 1 + hλ+
1

2
(hλ)2. (24)

Since our eigenvalues are not real valued, it is required for stability that

|Q(hλ)| ≤ 1. (25)

Since the eigenvalues are complex conjugates, we can proceed with one of the eigen-
values, say λ = −2 + 2i with λ2 = −8i to obtain

Q(hλ) = 1 + h(−2 + 2i) + 1
2
h2(−8i) (26)

Substitution of h = 1
2

shows that Q(hλ) = 0. This implies that |Q(hλ)| = 0 ≤ 1 so
the method is stable.

2. a. Given y(x) = ex(2 − x), then y′′(x) = −exx, and hence −y′′ + y = 2ex follows
by simple addition. Furthermore, y(0) = 2 and y′(x) = −ex(x − 1) and hence
y′(1) = 0. Hence the differential equation, as well as the boundary conditions
are satisfied.

b. Let yj = y(xj), and let xn = 1, hence h = 1/n, then

yj−1 = y(xj − h) = yj − hy′(xj) + h2/2y′′(xj)− h3/3!y′′′(xj) + h4/4!y′′′′(xj) +O(h5);

yj+1 = y(xj + h) = yj + hy′(xj) + h2/2y′′(xj) + h3/3!y′′′(xj) + h4/4!y′′′′(xj) +O(h5).
(27)
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From the above expressions, it can be seen that

y′′(xj) =
yj−1 − 2yj + yj+1

h2
+
h2

12
y′′′′(xj) +O(h3), (28)

and hence the error is O(h2). This gives the following discretisation

−wj−1 + 2wj − wj+1

h2
+ wj = 2exj , for j = 1 . . . n, (29)

where xj = jh and wj ≈ yj is the numerical (finite difference) solution neglecting
the error.

Furthermore, we use a virtual gridnode near x = 1, xn+1 = 1 + h, with

0 = y′(1) =
yn+1 − yn−1

2h
− h2

6
y′′′(1) +O(h3), (30)

hence the error is O(h2). Neglecting the error, and substitution into the dis-
cretisation equation j = n, yields

−2wn−1 + 2wn

h2
+ wn = 2e. (31)

Division by 2 to make the discretisation symmetric yields

−wn−1 + wn

h2
+

1

2
wn = e. (32)

The boundary condition y(0) = 2 at x = 0 yields

2w1 − w2

h2
+ w1 =

2

h2
+ 2eh. (33)

c. For j = 1, we get, using h = 1/3,

18w1 − 9w2 + w1 =
2 + 1/9

1/9
= 18 + 2e

1
3 (34)

For j = 2, we obtain

−9w1 + 18w2 − 9w3 + w2 = 2e2/3. (35)

For j = 3 = n, we obtain

−9w2 + 9w3 +
1

2
w3 = 2e. (36)

Hence, the system of equations reads
19w1 − 9w2 = 18 + 2e

1
3 ,

−9w1 + 19w2 − 9w3 = 2e2/3,

−9w2 + 19/2w3 = 2e.

(37)
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d. The exact solution is given by y(x) = ex(2 − x) and its derivative of order k
reads y(k)(x) = (2− x− k)ex. The error for the finite difference formula under
consideration is determined by the derivatives of third order and larger. Since
none of the derivatives y(3+l)(x), l ≥ 0 vanishes for all values of x the error
cannot be zero. We use the same argument to show that there is no finite
difference formula which yields a nodally exact solution.

e. The linear Lagrangian interpolation polynomial, with nodes a and b, is given by

p1(x) =
x− b
a− b

f(a) +
x− a
b− a

f(b). (38)

This is evident from application of the given formula. We integrate function
f(x) by approximating f(x) by p1(x), then it follows:∫ b

a

f(x) dx ≈
∫ b

a

p1(x) dx =

∫ b

a

{
f(a)

x− b
a− b

+ f(b)
x− a
b− a

}
dx =

=

[
1

2

(x− a)2

b− a
f(b)

]b
a

+

[
1

2

(x− b)2

a− b
f(a)

]b
a

=
1

2
(b− a)(f(a) + f(b)).

(39)

This is the Trapezoidal rule.

f. The magnitude of the error of the numerical integration over interval [a, b] is
given by

|
∫ b

a

f(x) dx−
∫ b

a

p1(x) dx| = |
∫ b

a

(f(x)− p1(x)) dx| =

|
∫ b

a

1

2
(x− a)(x− b)f ′′(χ(x)) dx| ≤ 1

2
max
x∈[a,b]

|f ′′(x)|
∫ b

a

|(x− a)(x− b)|dx =

1

12
(b− a)3 max

x∈[a,b]
|f ′′(x)|.

(40)
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