DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU and CTB2400) Thursday August 14 2014, 18:30-21:30

1. In this assignment predictor-corrector methods of the following type are considered:

$$k_{1} = hf(t_{n}, w_{n})$$

$$k_{2} = hf(t_{n} + h, w_{n} + k_{1})$$

$$w_{n+1} = w_{n} + \beta k_{1} + (1 - \beta) k_{2}.$$
(1)

- a) Show, for the general equation y' = f(t, y), that the local truncation error is $O(h^2)$ for $\beta = \frac{1}{2}$ and O(h) for other values of β . (3 pt)
- b) Determine the amplification factor for arbitrary β . (2 pt)
- c) Method (1) can be applied to the system

$$\mathbf{y}' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{y}. \tag{2}$$

Show that the stepsize h must satisfy

$$h^2 < \frac{1 - 2\beta}{(1 - \beta)^2} \tag{3}$$

for stable integration of (2). For which values of β is stable integration possible? (2 pt)

- d) Show that the stability bound (3) becomes optimal for $\beta=0$ and give this stability bound. (Hint: the derivative of $\frac{1-2\beta}{(1-\beta)^2}$ is equal to $\frac{-2\beta}{(1-\beta)^3}$.) (1 pt)
- e) Let $\beta = 0$, and let the initial values be given by $y_1(0) = 1$ and $y_2(0) = 1$. Use h = 0.5 to compute the numerical solution at the next time step.

 $^{^{0}}$ please turn over, For the answers of this test we refer to: http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html

2. We analyze Lagrangian interpolation. For given points x_0, x_1, \ldots, x_n , with their respective function values $f(x_0), f(x_1), \ldots, f(x_n)$, the interpolatory polynomial $p_n(x)$ is given by

$$p_n(x) = \sum_{i=0}^n f(x_i) L_i(x), \text{ with}$$

$$L_i(x) = \frac{(x - x_0)(\dots)(x - x_{i-1})(x - x_{i+1})(\dots)(x - x_n)}{(x_i - x_0)(\dots)(x_i - x_{i-1})(x_i - x_{i+1})(\dots)(x_i - x_n)}.$$
(4)

Further, the following measured values have been given in tabular form:

$$\begin{array}{cccc}
 i & x_i & f(x_i) \\
 \hline
 0 & 0 & 1 \\
 1 & 1 & 2 \\
 2 & 2 & 4
\end{array}$$

- (a) Give the linear Lagrangian interpolatory polynomial with nodes x_0 and x_1 . (1pt.)
- (b) Give the quadratic Lagrangian interpolatory polynomial with nodes x_0 , x_1 and
- (c) Approximate f(0.5) both by using linear and quadratic Lagrangian interpolation. (2pt.)
- (d) Suppose that the function values in the table contain measurement errors with a magnitude of at most ε . Show that the error, as a consequence of the inaccuracy of the measured data, is bounded as long as we interpolate between the nodes x_0 and x_1 if we use linear interpolation. (1pt.)
- (e) The following iteration process is given $x_{n+1} = g(x_n)$, with

$$g(x_n) = x_n + h(x_n)(x_n^3 - 3),$$

where h is a continuous function with $h(x) \neq 0$ for each $x \neq 0$. If this process converges, to which limit p does it converge? (1pt.)

- (f) Consider three possible choices for h(x):

 - i. $h_1(x) = -\frac{1}{x^4}$ ii. $h_2(x) = -\frac{1}{x^2}$ iii. $h_3(x) = -\frac{1}{3x^2}$

For which choice does the process not converge? For which choice is the convergence the fastest? Motivate your answer. (2pt.)

(g) p is the root of a given function f. \hat{f} is the function perturbed by measurement errors. It is given that $|\hat{f}(x) - f(x)| \le \epsilon_{max}$ for all x. Show that the root \hat{p} from \hat{f} satisfies the following inequality $|\hat{p} - p| \leq \frac{\epsilon_{max}}{|f'(p)|}$. (1pt.)