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1. (a) The local truncation error is given by

τn+1(h) =
yn+1 − zn+1

h
, (1)

in which we determine yn+1 by the use of Taylor expansions around tn:

yn+1 = yn + hy′(tn) +
h2

2
y′′(tn) +O(h3). (2)

We bear in mind that

y′(tn) = f(tn, yn)

y′′(tn) =
df(tn, yn)

dt
=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
y′(tn) =

∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn).

(3)

Hence

yn+1 = yn + hy′(tn) +
h2

2

(
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn)

)
+O(h3). (4)

After substitution of the predictor z∗n+1 = yn+hf(tn, yn) into the corrector, and
after using a Taylor expansion around (tn, yn), we obtain for zn+1

zn+1 = yn + h
2

(f(tn, yn) + f(tn + h, yn + hf(tn, yn))) =

yn +
h

2

(
f(tn, yn) + f(tn, yn) + h(

∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y
) +O(h2)

)
.

(5)
Herewith, one obtains

yn+1 − zn+1 = O(h3), and hence τn+1(h) =
O(h3)

h
= O(h2). (6)
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(b) Let x1 = y and x2 = y′, then y′′ = x′2, and hence

x′2 + 4x2 + 3x1 = cos(t),
x2 = x′1.

(7)

We write this as
x′1 = x2,
x′2 = −3x1 − 4x2 + cos(t).

(8)

Finally, this is represented in the following matrix-vector form:(
x1
x2

)′
=

(
0 1
−3 −4

)(
x1
x2

)
+

(
0

cos(t)

)
. (9)

In which, we have the following matrix A =

(
0 1
−3 −4

)
and f =

(
0

cos(t)

)
.

The initial conditions are defined by

(
x1(0)
x2(0)

)
=

(
1
2

)
.

(c) Application of the integration method to the system x′ = Ax+ f , gives

w∗1 = w0 + h
(
Aw0 + f

0

)
,

w1 = w0 + h
2

(
Aw0 + f0 + Aw∗1 + f

1

)
.

(10)

With the initial condition w0 =

(
1
2

)
and h = 0.1, this gives the following result

for the predictor

w∗1 =

(
1
2

)
+

1

10

((
0 1
−3 −4

)(
1
2

)
+

(
0
1

))
=

(
6/5
1

)
. (11)

The corrector is calculated as follows

w1 =

(
1
2

)
+ 1

20

((
0 1
−3 −4

)(
1
2

)
+

(
0
1

)
+

(
0 1
−3 −4

)(
6/5
1

)
+

(
0

cos( 1
10

)

))
=

=

(
1.1500
1.1698

)
(12)

(d) Consider the test equation y′ = λy, then one gets

w∗n+1 = wn + hλwn = (1 + hλ)wn,

wn+1 = wn +
h

2
(λwn + λw∗n+1) =

= wn +
h

2
(λwn + λ(wn + hλwn)) = (1 + hλ+

(hλ)2

2
)wn.

(13)

Hence the amplification factor is given by

Q(hλ) = 1 + hλ+
(hλ)2

2
. (14)
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(e) First, we determine the eigenvalues of the matrix A. Subsequently, the eigenval-
ues are substituted into the amplification factor. The eigenvalues of the matrix
A are given by λ1 = −1 and λ2 = −3. We first check the amplification factor
of λ1 = −1:

−1 ≤ 1− h+
1

2
h2 ≤ 1 (15)

The first inequality leads to

0 ≤ 2− h+
1

2
h2

Since the discriminant of this equation is equal to 1−4∗ 1
2
∗2 = −3 the inequality

always holds. The second inequality leads to

−h+
1

2
h2 ≤ 0

so
1

2
h2 ≤ h

which implies
h ≤ 2

Now we check the amplification factor of λ2 = −3:

−1 ≤ 1− 3h+
1

2
9h2 ≤ 1 (16)

The first inequality leads to

0 ≤ 2− 3h+
1

2
9h2

Since the discriminant of this equation is equal to 9 − 4 ∗ 9
2
∗ 2 = −27 the

inequality always holds. The second inequality leads to

−3h+
9

2
h2 ≤ 0

so
3

2
h2 ≤ h

which implies

h ≤ 2

3

So the integration method is stable if h ≤ 2
3
.
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2. (a) The first order backward difference formula for the first derivative is given by

d′(t) ≈ d(t)− d(t− h)

h
.

Using t = 20, and h = 10 the approximation of the velocity is

d(20)− d(10)

10
=

100− 40

10
= 6 (m/s).

(b) Taylor polynomials are:

d(0) = d(2h)− 2hd
′
(2h) + 2h2d

′′
(2h)− (2h)3

6
d

′′′
(ξ0) ,

d(h) = d(2h)− hd′
(2h) +

h2

2
d

′′
(2h)− h3

6
d

′′′
(ξ1) ,

d(2h) = d(2h).

We know that Q(h) = α0

h
d(0) + α1

h
d(h) + α2

h
d(2h), which should be equal to

d′(2h) +O(h2). This leads to the following conditions:

α0

h
+ α1

h
+ α2

h
= 0 ,

−2α0 − α1 = 1 ,
2α0h + 1

2
α1h = 0 .

(c) The truncation error follows from the Taylor polynomials:

d′(2h)−Q(h) = d′(2h)−d(0)− 4d(h) + 3d(2h)

2h
=

8h3

6
d

′′′
(ξ0)− 4(h

3

6
d

′′′
(ξ1))

2h
=

1

3
h2d′′′(ξ).

Using the new formula with h = 10 we obtain the estimate:

d(0)− 4d(10) + 3d(20)

20
=

0− 4× 40 + 3× 100

20
= 7 (m/s).

(d) To estimate the measuring error we note that

|Q(h)− Q̂(h)| = |(d(0)− d̂(0))− 4(d(h)− d̂(h)) + 3(d(2h)− d̂(2h))

2h
|

≤ |d(0)− d̂(0)|+ 4|d(h)− d̂(h)|+ 3|d(2h)− d̂(2h)|
2h

=
4ε

h
,

so C1 = 4.
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(e) The method of Newton-Raphson is based on linearization around the iterate pn.
This is given by

L(x) = f(pn) + (x− pn)f ′(pn).

Next, we determine pn+1 such that L(pn+1) = 0, that is

f(pn) + (pn+1 − pn)f ′(pn) = 0⇔ pn+1 = pn −
f(pn)

f ′(pn)
, f ′(pn) 6= 0.

This result can also be proved graphically, see book, chapter 4.

(f) We have f(x) = esin(x) − 1
e
, so f ′(x) = cos(x)esin(x) and hence

pn+1 = pn −
esin(pn) − 1

e

cos(pn)esin(pn)
.

With the initial value p0 = π, this gives

p1 = π −
e0 − 1

e

−1× e0
= π + 1− 1

e
≈ 3.77.

With the initial value p0 = 3
2
π, this gives

p1 =
3

2
π −

e−1 − 1
e

0
=

3

2
π − 0

0
.

In the recursion, one divides by zero. Division by zero does not make any sense,
so p0 = 3

2
π is not a suitable starting value. Geometrically, one may remark that

the tangent is horizontal for p0 = 3
2
π. However, f(p0) = f(3

2
π) = 0 so that a

practical Newton-Raphson method would not start iterating but return p0 = 3
2
π

as root.
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