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1. [a] The test–equation is given by y′ = λy, and we bear in mind that the amplification
factor is defined by

wn+1 = Q(hλ)wn. (1)

Then for the Trapezoidal Rule, we get

wn+1 = wn +
h

2
(λwn + λwn+1) = wn +

hλ

2
(wn + wn+1). (2)

The above equation is rewritten as

wn+1(1− hλ

2
) = wn(1 +

hλ

2
). (3)

Then, using the definition of the amplification factor, we immediately have

QT (hλ) =
1 + hλ

2

1− hλ
2

. (4)

The Modified Euler Method is treated analogously, to get

ŵn+1 = wn + hλwn, predictor

wn+1 = wn + h
2
(λwn + λŵn+1), corrector.

(5)

Combining the predictor and corrector, gives

wn+1 = wn +
hλ

2
(wn + wn + hλwn) = wn(1 + hλ+

(hλ)2

2
). (6)

Finally, the definition of the amplification factor implies that

QME(hλ) = 1 + hλ+
(hλ)2

2
. (7)

[b] The local truncation error is defined by

τn+1(h) =
yn+1 − zn+1

h
, (8)
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where yn+1 and zn+1, respectively, denote the exact solution and the numerical ap-
proximation at time tn+1 under using yn. Since, we use the test–equation to estimate
the local truncation error, we get

zn+1 = Q(hλ)yn. (9)

The exact solution to the test–equation at time tn+1 is expressed in terms of yn by

yn+1 = yneλh. (10)

Substitution into the definition of the local truncation error, gives

τn+1(h) =
yn

h
(ehλ −Q(hλ)) =

yn

h
(1 + hλ+

(hλ)2

2
+

(hλ)3

3!
+O(h4)−Q(hλ)), (11)

where we used the Taylor expansion of the exponential around 0. For the Trapezoidal
Rule, we have

QT (hλ) =
1 + hλ

2

1− hλ
2

= (1 +
hλ

2
)(1 +

hλ

2
+ (

hλ

2
)2 + (

hλ

2
)3 +O(h4)) =

1 + hλ+
(hλ)2

2
+

(hλ)3

4
+O(h4).

(12)

Using equation (11), we get after some rearrangements

τn+1(h) = −y
nλ3h2

12
+O(h3) = O(h2). (13)

The Modified Euler Method is treated similarly with

QME(hλ) = 1 + hλ+
(hλ)2

2
, (14)

to give via equation (11)

τn+1(h) =
ynλ3h2

6
+O(h3) = O(h2). (15)

[c] Let y1 = y and let y2 = y′1, then y′2 = y′′1 = y′′. Hence we have

y′1 = y2, y′2 = −4y1 + 2t. (16)

The two equations are linear and therewith, one can rewrite this system using a
matrix representation: (

y′1
y′2

)
=

(
0 1
−4 0

)(
y1
y2

)
+

(
0
2t

)
, (17)
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Further, we have y1(0) = y(0) = 1 and y2(0) = y′(0) = 0.

[d] We use h = 1
2
, and let

A =

(
0 1
−4 0

)
, w1 =

(
w1

1

w1
2

)
, w0 =

(
1
0

)
, (18)

where the subscript stands for the component, whereas the superscript denotes the
time–index. The Trapezoidal Rule gives

w1 = w0 +
h

2
(Aw0 + Aw1 +

(
0
1

)
). (19)

This gives

(I − h

2
A)w1 = (I +

h

2
A)w0 +

h

2

(
0
1

)
. (20)

Substitution of h = 1
2
, gives the following linear system(

1 −1
4

1 1

)
w1 =

(
1
−3

4

)
. (21)

This system is solved by

w1 =

(
0.65
−1.4

)
(22)

Next, we treat the Modified Euler Method. First, we carry out the prediction step

ŵ1 = w0 + hAw0 =

(
1
0

)
+

1

2

(
0
−4

)
=

 1

−2

 . (23)

Subsequently, we perform the corrector step

w1 = w0 +
h

2

(
Aw0 + Aŵ1 +

(
0
1

))
. (24)

Using h = 1
2
, gives

w1 =

(
1
0

)
+

1

4

((
0
−4

)
+

(
−2
−4

)
+

(
0
1

))
=

 1
2

−13
4

 . (25)

[e] The local truncation errors for both methods are approximated by

τTn+1(h) = −y
nλ3h2

12
, τEMn+1 (h) =

ynλ3h2

6
. (26)
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From these equations, it can be seen that the errors have the same order, although
the error from the Trapezoidal Rule is about twice as small as the one from the
Modified Euler Method in the limit for h→ 0.

With regard to stability, the eigenvalues of A in the present initial value problem,
are given by λ = ±2i. Herewith, the following amplification factors are obtained:

QT (h) =
1 +±ih
1−±ih

, QME(h) = 1± 2ih− 2h2. (27)

This gives the following moduli

|QT (h)| = 1, |QME(h)| =
√

(1− 2h2)2 + 4h2 =
√

1 + 4h4 > 1. (28)

Hence the Trapezoidal Rule is neutrally stable, whereas the Modified Euler Method
is unstable.

The workload is smaller for the Modified Euler Method, since no linear system needs
to be solved. Although the solution of the linear system may require considerable
computation time if A is a very large matrix, the issue is not very important for the
present case.

Therefore, the Trapezoidal Rule is to be preferred for the present system since the
system is just a two-by-two set of equations. Furthermore the Modified Euler Method
is instable.

2. (a) Consider y(x) = x2, then y′(x) = 2x and y′′(x) = 2, substitution into the
differential equation yields

−y′′(x) + xy = −2 + xx2 = x3 − 2, (29)

hence y(x) = x2 satisfies the differential equation. Next, we check the boundary
conditions: y′(0) = 2 · 0 = 0 and y(1) = 12 = 1 which proves that the boundary
conditions are also satisfied. Hence, y(x) = x2 is a solution of the boundary
value problem.

(b) Using central differences for the second order derivative at a node xj = jh, gives

y′′(xj) ≈
yj+1 − 2yj + yj−1

h2
=: Q(h). (30)

Here yj := y(xj). Next, we will prove that this approximation is second order
accurate, that is |y′′(xj) − Q(h)| = O(h2). Using Taylor’s Theorem around
x = xj, gives

yj+1 = y(xj + h) = y(xj) + hy′(xj) + h2

2
y′′(xj) + h3

3!
y′′′(xj) + h4

4!
y′′′′(η+),

yj−1 = y(xj − h) = y(xj)− hy′(xj) + h2

2
y′′(xj)− h3

3!
y′′′(xj) + h4

4!
y′′′′(η−).

(31)
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Here, η+ and η− are numbers within the intervals (xj, xj+1) and (xj−1, xj), re-
spectively. Substitution of these expressions into Q(h) gives |y′′(xj) − Q(h)| =
O(h2). This leads to the following discretization formula for internal grid nodes:

−wj−1 + 2wj − wj+1

h2
+ xjwj = x3j − 2. (32)

Here, wj represents the numerical approximation of the solution yj. To deal
with the boundary x = 0, we use a virtual node at x = −h, and we define
y−1 := y(−h). Then, using central differences at x = 0 gives

0 = y′(0) ≈ y1 − y−1
2h

=: Qb(h). (33)

Using Taylor’s Theorem, gives

Qb(h) =

y(0) + hy′(0) + h2

2
y′′(0) + h3

3!
y′′′(η+)− (y(0)− hy′(0) + h2

2
y′′(0)− h3

3!
y′′′(η−))

2h
=

y′(0) +O(h2).
(34)

Again, we get an error of O(h2).

(c) With respect to the numerical approximation at the virtual node, we get

w1 − w−1
2h

= 0⇔ w−1 = w1. (35)

The discretization at x = 0 is given by

−w−1 + 2w0 − w1

h2
= −2. (36)

Substitution of equation (35) into the above equation, yields

2w0 − 2w1

h2
= −2. (37)

Subsequently, we consider the boundary x = 1. To this extent, we consider
its neighboring point xn−1, here substitution of the boundary condition wn =
y(1) = yn = 1 into equation (32), gives

−wn−2 + 2wn−1
h2

+ xn−1wn−1 = x3n−1 − 2 +
1

h2
= (1− h)3 − 2 +

1

h2
. (38)

This concludes our discretization of the boundary conditions. In order to get a
symmetric discretization matrix, one divides equation (37) by 2.
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Next, we use h = 1/3, then, from equations (32, 37, 38), one obtains the
following system

9w0 − 9w1 = −1

−9w0 + 181
3
w1 − 9w2 = −53

27

−9w1 + 182
3
w2 = 197

27
.

(39)

(d) The truncation errors from the virtual grid point and internal points contain
a third- and fourth order derivative, respectively (see part b). Since the exact
solution is given by y(x) = x2, the third and fourth order derivatives are zero.
Hence, the error is zero at all grid points. Therefore, the numerical solution is
given by w0 = y0 = 0, w1 = y1 = 1/9 and w2 = y2 = 4/9.

Remark: This numerical solution can also be obtained from the solution of
system (39).

(e) Consider an interval of integration [xj−1, xj], then the Rectangle Rule reads

IRj = hf(xj−1), h = xj − xj−1. (40)

The composed integration rule is derived by

IR = h(IR1 + IR2 + . . .+ IRn ) = h(f(x0) + . . .+ f(xn−1)), (41)

which yields

IR =
1

3
· (0 + (

1

3
)2 + (

2

3
)2) =

5

27
. (42)

(f) For the interval of integration [xj−1, xj] the Trapezoidal Rule is

ITj =
h

2
(f(xj−1) + f(xj)). (43)

The composed integration rule is derived by

IT = h(IT1 + IT2 + . . .+ ITn ) = h(
f(x0)

2
+ f(x1) + . . .+ f(xn−1) +

f(xn)

2
), (44)

which leads to

IT =
1

3
· (0 + (

1

3
)2 + (

2

3
)2 +

1

2
) =

19

54
. (45)

(g) For a general number of subintervals, say n, the magnitude of the composed
Rectangle- and Trapezoidal Rules, is bounded from above by

εR ≤
h

2
max
x∈[0,1]

|y′(x)| ≤ h =
1

n
,

εT ≤
h2

12
max
x∈[0,1]

|y′′(x)| ≤ h2

6
=

1

6n2
.

(46)
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Here, the exact solution y(x) = x2 was used. Hence, the error from the Trape-
zoidal Rule is much smaller. Furthermore, from the composed Rules, it is easy
to see that the number of function evaluations for the composed Rectangle- and
Trapezoidal Rules is given by n and n+ 1, respectively. Since

lim
n→∞

n+ 1

n
= 1, (47)

it follows that the amount of work for the Trapezoidal Rule is not significantly
higher than it is for the Rectangle Rule. Hence, it is more attractive to use the
Trapezoidal Rule.
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