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The amplification factor can be derived as follows. Consider the test equation
y' = A\y. Application of the trapezoidal rule to this equation gives:

At
Wit = Wy + 7 ()\w] + )\U)j+1) (1)

Rearranging of w;; and w; in (1) yields

At At
(1 — 7)\) Wjy1 = (]. + 7)\) wy .

1+ 5t
Wj1 = @U}j,

It now follows that

and thus
1+ £

@At =T

The definition of the local truncation error is

Y1 — QAN )y,
Tj+1 = At .

The exact solution of the test equation is given by

A
Yj+1 = € tij-
Combination of these results shows that the local truncation error of the test
equation is determined by the difference between the exponential function and
the amplification factor Q(AtN)

A — Q(ALN)
Tjy1 = A Yj- (2)

The difference between the exponential function and amplification factor can be
computed as follows. The Taylor series of e with known point 0 is:

2
A =1 4+ \AL + @ + O(A). (3)



The Taylor series of ﬁ with known point 0 is:
2

1 1
= L+ ZA+ ZARA? + O(A?). (4)

At

With (4) it follows that % is equal to

2

1+ 5
A
1 — A0

= 1 AN (AN + O(AF), (5)

In order to determine e2** — Q(At\), we subtract (5) from (3). Now it follows
that
AN — Q(ALN) = O(AP). (6)

The local truncation error can be found by substituting (6) into (2), which leads
to
Tj+1 = O(AtQ)

Application of the trapezoidal rule to
y = =2y + ¢, with y(0) = 2,
and step size At =1 gives:

w; = wy + 7[—2100 +e — 2w +el.

Using the initial value wy = y(0) = 2 and step size At = 1 gives:
1

This leads to

5 24 —34+e 1 i e 1 n €
wy = ==+ -,80w =<+ .

! 2 2 2 YTy
We use the following definition x; = y and 9 = y/. This implies that 2] = ¢’ =
zo and xh =y’ = —y — %y = —Ty— %xl. Writing this in vector notation shows
that

| _ | 0 1 Ty
xh —3 -1 xo |’
} . To compute the eigenvalues we look for values of A\ such

|A — AI| =0.
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This implies that A is a solution of

1
N4+A+ =0,
2
which leads to the roots:
1 1 1 1
M=——-+ztand \g = —- — =@

To investigate the stability it is sufficient that
|Q(AtA)] < 1 and |Q(AtAy)| < 1.

Since A; and Ay are complex valued, it is sufficient to check only the first in-

equality. This leads to
1+ At(—5+351)

1_ At(—g-l—%i)

=N [N =
o |—

— Y

which is equivalent to
At | Ati
B= el oy
EEErah
Using the definition of the absolute value we arrive at the inequality
V(1= 824 (A2
V(14802 4 (22

This equality is valid for all values of At because

Ja-2e e S e Jus Bt B

<1

for all At > 0.

The linear Lagrangian interpolatory polynomial, with nodes zy and xy, is given
by

r — T

pi(z) = - mlf(l'o) A

r — TIg

f(@1). (7)
This is evident from application of the given formula.
The quadratic Lagrangian interpolatory polynomial with nodes zg, z; and x5 is

given by

(x — zo)(x — 22) (x — zo)(x — 1)

f(z1)+ (w2 — 70) (72 — 1) f(x2).
(8)

(r—z) (7 — 29) .
p?(x) - ($0 _ .1'1)(1'0 _ xQ)f( 0>+(x1 — Z‘o)(xl - $2)

This is also evident from application of the given formula.
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(¢) Obviously, p1(0) = 2 and py(0) = 2 since the Lagrange interpolation polyno-

mial satisfies p,(z;) = f(x;) for all points xg,z1,...,z,. Next, we compute
p1(0.5) and p2(0.5) for both linear and quadratic Lagrangian interpolation as
approximations at = 0.5. For linear interpolation, we have

0.5—-0 0.5+1 3
R e R (9)

n(0-5) = —— 0+1 2’

and for quadratic interpolation, one obtains

(05-0)(05-1) , (05+1)(0.5-1) _ (0.5+1)(0.5—0)
p(05) == o 2t o 5 =3.
(10)

The method of Newton-Raphson is based on linearization around the iterate p,.
This is given by

L("E) = f(pn) + (J} _pn>f/(pn)' (11)
Next, we determine p,, 1 such that L(p,41) = 0, that is
f(Pn)

f®n) + (Pas1 = 2a) ['(Pn) = 0 puy1 = o — f'(pn) 0. (12)

f'(Pn)’
This result can also be proved graphically, see book, chapter 4.

We have f(x) =e* — x3, so f'(z) = e” — 3z* and hence

_ e »
Pni1 = Pn o _ 32 3p2 .
With the initial value py = 3, this gives
ed — 33
—3___ _° _9
b 3 — 3. 32
and consequently
2 _ 23 2 _ 16
pr=2— — =: ~ 1.8675

e?2—-3-22 e2-12

We consider a Taylor polynomial around p,,, to express p

0= 1) = 1)+ 0 -2 ) + TP e, )

for some &,, between p and p,,. Note that this form gives the exact representation.
Subsequently, we consider the Newton-Raphson approximation

0= Lpn1) = f(pn) + (Pus1 — pu) f (Pn)- (14)
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Subtraction of these two above equations gives

(Pn —p)* f"(6n)

il — P = ided that f'(p,) # 0, 15

st == PR L rovided that 1) # (15)
and hence

(Pn —p)? f"(&n) . :

nt1 — D| = : ded that ) # 0, 16

Put1 = Dl 5 |f’(pn)‘ provided that f(pn) 7 (16)

Using p, — p, & — p as n — oo and continuity of f(z) up to at least the

second derivative, we arrive at K = |§l,l((5 )) |. O



