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1. (a) The amplification factor can be derived as follows. Consider the test equation
y′ = λy. Application of the trapezoidal rule to this equation gives:

wj+1 = wj +
∆t

2
(λwj + λwj+1) (1)

Rearranging of wj+1 and wj in (1) yields(
1− ∆t

2
λ

)
wj+1 =

(
1 +

∆t

2
λ

)
wj.

It now follows that

wj+1 =
1 + ∆t

2
λ

1− ∆t
2
λ
wj,

and thus

Q(∆tλ) =
1 + ∆t

2
λ

1− ∆t
2
λ
.

(b) The definition of the local truncation error is

τj+1 =
yj+1 −Q(∆tλ)yj

∆t
.

The exact solution of the test equation is given by

yj+1 = e∆tλyj.

Combination of these results shows that the local truncation error of the test
equation is determined by the difference between the exponential function and
the amplification factor Q(∆tλ)

τj+1 =
e∆tλ −Q(∆tλ)

∆t
yj. (2)

The difference between the exponential function and amplification factor can be
computed as follows. The Taylor series of e∆tλ with known point 0 is:

e∆tλ = 1 + λ∆t+
(λ∆t)2

2
+O(∆t3). (3)
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The Taylor series of 1
1−∆t

2
λ

with known point 0 is:

1

1− ∆t
2
λ

= 1 +
1

2
∆tλ+

1

4
∆t2λ2 +O(∆t3). (4)

With (4) it follows that
1+ ∆t

2
λ

1−∆t
2
λ

is equal to

1 + ∆t
2
λ

1− ∆t
2
λ

= 1 + ∆tλ+
1

2
(∆tλ)2 +O(∆t3). (5)

In order to determine e∆tλ −Q(∆tλ), we subtract (5) from (3). Now it follows
that

e∆tλ −Q(∆tλ) = O(∆t3). (6)

The local truncation error can be found by substituting (6) into (2), which leads
to

τj+1 = O(∆t2).

(c) Application of the trapezoidal rule to

y′ = −2y + et, with y(0) = 2,

and step size ∆t = 1 gives:

w1 = w0 +
∆t

2
[−2w0 + e0 − 2w1 + e].

Using the initial value w0 = y(0) = 2 and step size ∆t = 1 gives:

w1 = 2 +
1

2
[−4− 2w1 + 1 + e].

This leads to

2w1 = 2 +
−3 + e

2
=

1

2
+
e

2
, so w1 =

1

4
+
e

4
.

(d) We use the following definition x1 = y and x2 = y′. This implies that x′1 = y′ =
x2 and x′2 = y′′ = −y′ − 1

2
y = −x2 − 1

2
x1. Writing this in vector notation shows

that [
x′1
x′2

]
=

[
0 1
−1

2
−1

] [
x1

x2

]
,

so A =

[
0 1
−1

2
−1

]
. To compute the eigenvalues we look for values of λ such

that
|A− λI| = 0.
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This implies that λ is a solution of

λ2 + λ+
1

2
= 0,

which leads to the roots:

λ1 = −1

2
+

1

2
i and λ2 = −1

2
− 1

2
i.

(e) To investigate the stability it is sufficient that

|Q(∆tλ1)| ≤ 1 and |Q(∆tλ2)| ≤ 1.

Since λ1 and λ2 are complex valued, it is sufficient to check only the first in-
equality. This leads to ∣∣∣∣∣1 +

∆t(− 1
2

+ 1
2
i)

2

1− ∆t(− 1
2

+ 1
2
i)

2

∣∣∣∣∣ ≤ 1,

which is equivalent to
|1− ∆t

4
+ ∆ti

4
|

|1 + ∆t
4
− ∆ti

4
|
≤ 1.

Using the definition of the absolute value we arrive at the inequality√
(1− ∆t

4
)2 + (∆t

4
)2√

(1 + ∆t
4

)2 + ( δt
4

)2

≤ 1.

This equality is valid for all values of ∆t because√
(1− ∆t

4
)2 + (

∆t

4
)2 ≤

√
(1 +

∆t

4
)2 + (

∆t

4
)2,

for all ∆t > 0.

2. (a) The linear Lagrangian interpolatory polynomial, with nodes x0 and x1, is given
by

p1(x) =
x− x1

x0 − x1

f(x0) +
x− x0

x1 − x0

f(x1). (7)

This is evident from application of the given formula.

(b) The quadratic Lagrangian interpolatory polynomial with nodes x0, x1 and x2 is
given by

p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0)+

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)+

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2).

(8)
This is also evident from application of the given formula.
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(c) Obviously, p1(0) = 2 and p2(0) = 2 since the Lagrange interpolation polyno-
mial satisfies pn(xi) = f(xi) for all points x0, x1, . . . , xn. Next, we compute
p1(0.5) and p2(0.5) for both linear and quadratic Lagrangian interpolation as
approximations at x = 0.5. For linear interpolation, we have

p1(0.5) =
0.5− 0

−1− 0
· 3 +

0.5 + 1

0 + 1
· 2 =

3

2
, (9)

and for quadratic interpolation, one obtains

p2(0.5) =
(0.5− 0)(0.5− 1)

(−1) · (−2)
·3+

(0.5 + 1)(0.5− 1)

1 · (−1)
·2+

(0.5 + 1)(0.5− 0)

2 · 1
·5 = 3.

(10)

(d) The method of Newton-Raphson is based on linearization around the iterate pn.
This is given by

L(x) = f(pn) + (x− pn)f ′(pn). (11)

Next, we determine pn+1 such that L(pn+1) = 0, that is

f(pn) + (pn+1 − pn)f ′(pn) = 0⇔ pn+1 = pn −
f(pn)

f ′(pn)
, f ′(pn) 6= 0. (12)

This result can also be proved graphically, see book, chapter 4.

(e) We have f(x) = ex − x3, so f ′(x) = ex − 3x2 and hence

pn+1 = pn −
epn − p3

n

epn − 3p2
n

.

With the initial value p0 = 3, this gives

p1 = 3− e3 − 33

e3 − 3 · 32
= 2

and consequently

p2 = 2− e2 − 23

e2 − 3 · 22
=
e2 − 16

e2 − 12
≈ 1.8675

(f) We consider a Taylor polynomial around pn, to express p

0 = f(p) = f(pn) + (p− pn)f ′(pn) +
(p− pn)2

2
f ′′(ξn), (13)

for some ξn between p and pn. Note that this form gives the exact representation.
Subsequently, we consider the Newton-Raphson approximation

0 = L(pn+1) = f(pn) + (pn+1 − pn)f ′(pn). (14)
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Subtraction of these two above equations gives

pn+1 − p =
(pn − p)2

2

f ′′(ξn)

f ′(pn)
, provided that f ′(pn) 6= 0, (15)

and hence

|pn+1 − p| =
(pn − p)2

2
|f
′′(ξn)

f ′(pn)
|, provided that f ′(pn) 6= 0, (16)

Using pn → p, ξn → p as n → ∞ and continuity of f(x) up to at least the

second derivative, we arrive at K = |f
′′(p)
f ′(p)
|. �
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