DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU CTB2400) Thursday August 13th 2015, 18:30-21:30

1. In this exercise we use the trapezoidal rule for the integration of the following initial value problem y' = f(t, y) with $y(t_0) = y_0$:

$$w_{n+1} = w_n + \frac{\Delta t}{2} \left(f(t_n, w_n) + f(t_{n+1}, w_{n+1}) \right)$$
 (1)

(a) Show that the amplification factor of the trapezoidal rule is given by

$$Q(\Delta t\lambda) = \frac{1 + \frac{\Delta t\lambda}{2}}{1 - \frac{\Delta t\lambda}{2}}.$$

(1 pt.)

(2 pt.)

(b) Give the order (+ proof) of the local truncation error of the trapezoidal rule for the test equation (hint the following series can be used: $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ and $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$). (3 pt.)

(c) Do one step with the trapezoidal rule for the following initial value problem

$$y' = -2y + e^t$$
, with $y(0) = 2$,

and step size $\Delta t = 1$.

(d) We consider the initial value problem:

$$y'' = -y' - \frac{1}{2}y$$
, $y(0) = 1$, $y'(0) = 0$.

Write this second order differential equation as a system of first order differential equations: $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Show that the eigenvalues of \mathbf{A} are given by

$$\lambda_1 = -\frac{1}{2} + \frac{1}{2}i \text{ en } \lambda_2 = -\frac{1}{2} - \frac{1}{2}i.$$

(2 pt.)

(e) Investigate the stability of the trapezoidal rule applied to the system as given in (d). (2 pt.)

⁰please turn over, For the answers of this test we refer to: http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html

2. We analyze Lagrangian interpolation. For given points x_0, x_1, \ldots, x_n , with their respective function values $f(x_0), f(x_1), \ldots, f(x_n)$, the interpolatory polynomial $p_n(x)$ is given by

$$p_n(x) = \sum_{i=0}^n f(x_i) L_i(x), \text{ with}$$

$$L_i(x) = \frac{(x - x_0)(\dots)(x - x_{i-1})(x - x_{i+1})(\dots)(x - x_n)}{(x_i - x_0)(\dots)(x_i - x_{i-1})(x_i - x_{i+1})(\dots)(x_i - x_n)}.$$
(2)

Further, the following measured values have been given in tabular form:

$$\begin{array}{cccc}
i & x_i & f(x_i) \\
\hline
0 & -1 & 3 \\
1 & 0 & 2 \\
2 & 1 & 5
\end{array}$$

- (a) Give the linear Lagrangian interpolatory polynomial with nodes x_0 and x_1 . (1pt.)
- (b) Give the quadratic Lagrangian interpolatory polynomial with nodes x_0 , x_1 and x_2 . (2 pt.)
- (c) Calculate f(0) and f(0.5) both by using linear and quadratic Lagrangian interpolation. (2 pt.)

The Newton-Raphson method is based on the following formula:

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}.$$

- (d) Derive the above formula for the Newton-Raphson method. (1.5 pt.)
- (e) We are searching the positive zero of $f(x) = e^x x^3$. Use $p_0 = 3$ as the initial guess and determine p_1 and p_2 by the use of the Newton-Raphson method.

(1.5 pt.)

(f) Let p be the solution of f(p) = 0. Demonstrate that

$$|p - p_{n+1}| = K|p - p_n|^2, \text{ for } n \to \infty$$
(3)

and determine the value of K. (2 pt.)