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1. (a) The local truncation error is defined by

Yn+1 — Zn+1
— Intl  “n+l 1
Th At ) ( )
where
Zntl = Yn T Atf(tna yn)7 (2)
for the Forward Euler method. A Taylor expansion for y,,; around ¢, is given
by
/ At2 "
Ynt1 = Yn + Aty (tn) + Ty (g)v = 5 € (tm thrl)' (3)
Since y'(t,) = f(tn, yn), we use equation (1), to get
At
Th = 7y//<5)7 J¢e (tn>tn+l)' (4)

Hence, the truncation error is of first order.

(b) We define y; := y and yo := ¢/, hence y] = y,. Further, we use the differential
equation to obtain

V+ey+y=yl+eyi tnm=ys+ep+u. (5)

Hence, we obtain
Yo = —y1 — €ya + sin(t). (6)
Hence the system is given by
Y1 = Yo,
. 7
Yo = —y1 — €Yo +sin(t). @)

The initial conditions are given by

1 =y(0) = 11(0),
0= 1/(0) = 4;(0) = 1:(0). ®)



()

First, we use the test equation, 3’ = Ay, to analyse numerical stability. For the
Forward Euler method, we obtain

Wpt1 = Wy, + AtAw, = Q(AA)w,, (9)
hence the amplification factor becomes
Q(A\AL) = 1+ MAL. (10)

The numerical solution is stable if and only if |Q(AA?)| < 1.
Next, we deal with the case ¢ = 0, to obtain the following system

Yi 0 =1\ (wn
= . 11
(yé) (1 0 Y2 (11)
This system gives the following eigenvalues \; o = £¢, where ¢ is the imaginary
unit. Hence, the amplification factor is given by

QAAL) = 1 +iAt. (12)
Then, it is immediately clear that |Q(AAt)| > 1 for all At > 0 since

1144 = /12 + (A1)?] > 1. (13)

Hence, we conclude that the forward Euler method is never stable if € = 0.

From part (c) we know that if ¢ = 0, the eigenvalues of the system are purely
imaginary. This implies that the system is analytically (zero) stable if € = 0.

Non-zero values of € give the following system

" 0 =1\ (n
= . 14
(yé) (1 e ) \u "
then we get the following eigenvalues A1, = 5 £ $ve? —4 (real-valued), if

e? —4 > 0and A = 5+ £v4—¢? (nonreal-valued) if e — 4 < 0. Hence,

we consider two cases: real-valued and nonreal-valued eigenvalues.

Real-valued eigenvalues

In this case || > 2, and 0 < e — 4 < €%, and hence the real-valued eigenvalues
have the same sign, which is determined by the sign of €. Hence, if ¢ < —2,
then, the system is stable. Furthermore, if € > 2, then, the system is unstable.

Nonreal-valued eirgenvalues

In this case |¢| < 2. The system is analytically unstable if and only if the real
part of the eigenvalues is positive. Further, the real part of the eigenvalues is
positive if and only if € > 0. Hence, the system is analytically unstable if and
only if € > 0. Hence, the system is stable if and only if (-2 <)e < 0.

From these arguments, it follows that the system is stable if and only if € < 0.
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(e)

Since currently the discriminant, £2 — 4, is negative, the eigenvalues are nonreal.
Substitution into the amplification factor yields

QAL =1+ %At + Z’Agm. (15)
Hence, numerical stability is warranted if
QAL > = (1 + gAt)2 + ATtQ(zL - <1 (16)
Hence for stability, we have
1+eAt+ SAr + At — SAE 1+ Ate + At? < 1. (17)

Since At > 0, we obtain the following stability criterion
At < —e = |e]. (18)

If ¢ = —2, then both eigenvalues are real-valued and given by A\, = —1. For
this case, we obtain Q(AAt) = 1 — At, and stability is warranted if and only if
—1 < Q(AAt) <1, hence At < 2(= |e].

We conclude that for —2 < ¢ < 0, we have a numerically stable solution if and
only if At < |e|.

Using central differences for the second order derivative at a node z; = jAx
gives

” . — 2y +yi_
/() m B — (Aa), (19)

Here, y; := y(z;). Next, we will prove that this approximation is second order
accurate, that is |y (x;) — Q(Ax)| = O(Az?).
Using Taylor’s Theorem around x = x; gives

$2 1‘3 x4
Yir1 = y(z; + Az) = y(x;) + Awy/(2;) + 259" (z;) + Sy (x5) + 2=y (n4),

yi1 = ylay — Ax) = y(;) — Aay'(x;) + 25y (2;) = Sy" () + 25y (1),

(20)
Here, n; and 7_ are numbers within the intervals (z;,z;41) and (z;_1,z;), re-
spectively. Substitution of these expressions into Q(Ax) gives

ly"(z;) — Q(Az)| = O(Az?).
This leads to the following discretisation formula for internal grid nodes:

—U)jfl + 2’11]]' — ij
Ax?

+ (2 + Dw; = 2% + 27 — 2. (21)



Here, w; represents the numerical approximation of the solution y;. To deal
with the boundary z = 0, we use a virtual node at + = —Axz, and we define
y_1 := y(—Az). Then, using central differences at x = 0 gives

0=y/(0) ~ L= = Qu(Aa). (22)

Using Taylor’s Theorem, gives

Qb(Al‘) =
_ y(0) + Axy'(0) + 25y (0) + A5y (1)
2Ax
~y(0) = Axy'(0) + 25y (0) — Ay (n-)
2Ax

= 9/(0) + O(Az?).
Again, we get an error of O(Ax?).
With respect to the numerical approximation at the virtual node, we get

wp — W

oAr =0 < w_;=w. (23)
The discretisation at x = 0 is given by

—w_q + 2w0 — W

Ax?

+wy = —2. (24)

Substitution of equation (23) into the above equation, yields

211)0 - 2w1

Ko two=-2 (25)

Subsequently, we consider the boundary x = 1. To this extent, we consider its
neighbouring point x,_; and substitute the boundary condition w, = y(1) =
Y, = 1 into equation (21) to obtain

—Wp—2 + 2wn—1

ACL’Q + (17”_1 + 1)11)”_1 (26)
1
= a0 a2l -2+ A2 (27)
1
— (1—Ax)3+(1—Ax)2—2+R. (28)

This concludes our discretisation of the boundary conditions. In order to get a
symmetric discretisation matrix, one divides equation (25) by 2.



Next, we use Az = 1/3. From equations (21, 25, 28) we obtain the following
system

9§w0 — 9w, = -1
1 50
-9 19-w; — 9 = ——
Wo -+ 3’11)1 Wo o7
2 209
-9 19— = —.
w1 + 3w2 97

The Gershgorin circle theorem states that the eigenvalues of a square matrix A
are located in the complex plane in the union of circles

|2 — a;] < Z la;;| where z¢eC (29)

i
j=1

For the 3 x 3 matrix derived in part (b) we have

e Fori=1: . .
—9-1<9 = [ Mlpn > = 30
2-9g]< Ml > & (30
e For i = 2:
1 1
2—1921 <18 = [Ag|mm > 1= (31)
3 3
e For i =3:
2 2

Hence, a lower bound for the smallest eigenvalue is % For a symmetric matrix
A we have

1
<2 (33)
‘)\’min

This proves that the finite-difference scheme is stable, e.g., with constant C' = 2.

A~ =

A fixed point p satisfies the equation p = g(p). Substitution gives: p = %3 + Z—g.
Rewriting this expression gives:

—%Ser—g =0
—p3+6p—§ =0
—p3—|—6p—2g =0

flp) =0



The fixed point iteration is defined by: p;y1 = g(p;). Starting with py = 1 one

obtains:
p1 = 0.6458
py = 0.5241
p3 = 0.5032

(b) The fixed point iteration is illustrated in figure 1.
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Figure 1: Graphical illustration of the fixed point iteration

(c) For the convergence two conditions should be satisfied:
e g(p) €10,1] for all p € [0, 1].
e |d(p)| <k<1forallpel01].



Since g(p) = %3 + 22 it follows that ¢'(p) = %2. Note that ¢'(p) > 0 for all

p € [0,1]. This implies that

23 31
0<5=00)<glp)<g() =g <1 forall pe0,1],  (34)

so the first condition holds.

For the second condition we note that |¢'(p)| = %2 < % =k < 1forall pe|0,1],
so the second conditions is also satisfied, which implies that the fixed point
iteration converges for all py € [0, 1].



