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1. (a) The local truncation error is defined by

τn+1(∆t) :=
yn+1 − zn+1

∆t
, (1)

where yn := y(tn) represents the exact solution and

zn+1 = yn + ∆tf(tn+1, zn+1), (2)

represents the approximation of the numerical solution at tn+1 upon using yn
for the previous time step. Since, we use the test equation y′ = λy, we express
yn+1 in terms of yn as follows

yn+1 = yne
λ∆t = yn(1 + λ∆t+

1

2
(λ∆t)2 +O(∆t3)). (3)

From (2), we use the test equation and the geometric series

zn+1 =
yn

1− λ∆t
= yn(1 + λ∆t+ (λ∆t)2 +O(∆t3)). (4)

Substitution of equations (3) and (4) into the definition of the local truncation
error, gives

τn+1(∆t) =
yn
∆t

(
−(λ∆t)2

2
+O(∆t3)

)
= O(∆t). (5)

(b) Using the test equation, we get

wn+1 = wn + λ∆twn+1, (6)

where wn denotes the numerical approximation of yn. The above equation im-
plies

wn+1 =
wn

1− λ∆t
=: Q(λ∆t)wn. (7)

Here Q(λ∆t) represents the amplification factor. For numerical stability, we
require the modulus of the amplification factor to satisfy

|Q(λ∆t)| ≤ 1, hence

∣∣∣∣ 1

1− λ∆t

∣∣∣∣ =
1

|1− λ∆t|
≤ 1. (8)
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From the above equation, it is clear that

|1− λ∆t| ≥ 1, (9)

and with λ = µ+ iν, we get

(1− µ∆t)2 + (ν∆t)2 ≥ 1. (10)

This area is the whole complex plane except the unit circle with center
(1, 0), see Figure 1.
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Figure 1: The region of stability of the backward Euler method (grey area).

(c) Consider the equations that we have to solve

y′1 = −y2
1 + 2y1y2 =: f1(y1, y2),

y′2 = −y1y2 − 1
2
y2

2 =: f2(y1, y2),
(11)

Here, we introduced the functions f1(y1, y2) and f2(y1, y2). Then, the Jacobian
matrix is given by

J(y1, y2) :=

∂f1
∂y1

(y1, y2) ∂f1
∂y2

(y1, y2)

∂f2
∂y1

(y1, y2) ∂f2
∂y2

(y1, y2)

 =

−2y1 + 2y2 2y1

−y2 −y1 − y2

 . (12)

For the equilibrium (y1(0), y2(0)) = (1, 0), we have

J(y1, y2) :=

(
−2 2
0 −1

)
. (13)

Hence the eigenvalues are given by λ1 = −2 and λ2 = −1.
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(d) • We have λ1 = −2 and λ2 = −1, hence with ∆t > 0, this implies that ∆tλ <
0 (thus real-valued), then from Figure 1, it is clear that the backward
Euler is stable for any ∆t > 0.
[The same argument holds for the backup choice λ1 = −4 and λ2 = −3.]

• Since the eigenvalues are real-valued and negative, we use

∆t ≤ 2

|λ|
, (14)

as stability bound for the forward Euler method. With λ1 = −2, and
λ2 = −1, we get ∆t ≤ 1 as the maximum allowable time step to warrant
numerical stability, based on linear stability analysis around (1, 0).
[For the backup choice λ1 = −4 and λ2 = −3 we get ∆t ≤ 1

2
as the

maximum allowable time step to warrant numerical stability.]

(e) Applying the forward Euler time integration method to system (11), gives

un+1 = un + ∆t(−u2
n + 2unvn),

vn+1 = vn + ∆t(−unvn − 1
2
v2
n).

(15)

where wn = (un, vn)> denotes the numerical solution with components un and
vn. Using ∆t = 1 and u0 = 1 and v0 = 0, gives

u1 = u0 + ∆t(−u2
0 + 2u0v0) = 1− 1 = 0,

v1 = v0 + ∆t(−u0v0 − 1
2
v2

0) = 0.
(16)

Hence u1 = 0 and v1 = 0.

2. (a) The first order backward difference formula for the first derivative is
given by

d′(t) ≈ d(t)− d(t− h)

h
.

Using t = 10 [min], and h = 5 [min] the approximation of the velocity is

d(10)− d(5)

5

[ cm

min

]
=

550− 250

5

[ cm

min

]
= 60

[ cm

min

]
.

(b) Taylor polynomials are:

d(0) = d(2h)− 2hd
′
(2h) + 2h2d

′′
(2h)− (2h)3

6
d

′′′
(ξ0) ,

d(h) = d(2h)− hd′
(2h) +

h2

2
d

′′
(2h)− h3

6
d

′′′
(ξ1) ,

d(2h) = d(2h).
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We know that Q(h) = α0

h
d(0) + α1

h
d(h) + α2

h
d(2h), which should be equal to

d′(2h) +O(h2). This leads to the following conditions:

α0

h
+ α1

h
+ α2

h
= 0 ,

−2α0 − α1 = 1 ,
2α0h + 1

2
α1h = 0 .

(c) The truncation error follows from the Taylor polynomials:

d′(2h)−Q(h) = d′(2h)− d(0)− 4d(h) + 3d(2h)

2h

=
8h3

6
d

′′′
(ξ0)− 4(h

3

6
d

′′′
(ξ1))

2h

=
1

3
h2d′′′(ξ).

Using the new formula with h = 5 [min] we obtain the estimate:

d(0)− 4d(10) + 3d(20)

20

[ cm

min

]
=

0− 4× 250 + 3× 550

10

[ cm

min

]
= 65

[ cm

min

]
.

3. (a) The linear Lagrangian interpolatory polynomial, with nodes x0 and x1,
is given by

L1(x) =
x− x1

x0 − x1

f(x0) +
x− x0

x1 − x0

f(x1). (17)

This is evident from application of the given formula.

(b) The quadratic Lagrangian interpolatory polynomial with nodes x0, x1

and x2 is given by

L2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) (18)

+
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1) (19)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2). (20)

This is also evident from application of the given formula.

(c) Obviously, L1(3) = 6 and L2(3) = 6 since the Lagrange interpolation polyno-
mial satisfies Ln(xk) = f(xk) for all points x0, x1, . . . , xn. Next, we compute
L1(2) and L2(2) for both linear and quadratic Lagrangian interpolation as ap-
proximations at x = 3. For linear interpolation, we have

L1(3) =
2− 3

1− 3
· 3 +

2− 1

3− 1
· 6 =

9

2
, (21)
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and for quadratic interpolation, one obtains

L2(3) =
(2− 3)(2− 4)

(1− 3)(1− 4)
· 3 +

(2− 1)(2− 4)

(3− 1)(3− 4)
· 6 +

(2− 1)(2− 3)

(4− 1)(4− 3)
· 5 =

16

3
. (22)
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