DELFT UNIVERSITY OF TECHNOLOGY

FAcULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

ANSWERS OF THE TEST NUMERICAL METHODS FOR
DIFFERENTIAL EQUATIONS ( WI3097 TU / Minor AESB2210 )
Thursday April 14th 2016, 18:30-21:30

1. (a) The local truncation error is defined by

n — Zn
Twir (AL) 1= %, (1)

where y,, := y(t,) represents the exact solution and

Zn+1 = Yn + Atf(tn-l-lu Zn—l—l); (2)

represents the approximation of the numerical solution at t,,; upon using ¥,
for the previous time step. Since, we use the test equation iy’ = Ay, we express
Yna1 in terms of y,, as follows

1
Yni1 = Yn€ 2 =y (1 + AAL + §(AAt)2 + O(AF)). (3)

From (2), we use the test equation and the geometric series

o yn . 2 3
bl = TRy Un(1 + AAL 4+ (ANAE)” + O(ALY)). (4)

Substitution of equations (3) and (4) into the definition of the local truncation
error, gives

T (AL) = % (—(Aét)Q + O(At3)> = O(AL). (5)

(b) Using the test equation, we get
Whi1 = Wy + AAtWw, 41, (6)

where w,, denotes the numerical approximation of y,. The above equation im-
plies

Wy, .

Here Q(AAt) represents the amplification factor. For numerical stability, we
require the modulus of the amplification factor to satisfy

|Q(AAL)| < 1, hence L. (8)

1 1
= <
1—)\At‘ =YY



From the above equation, it is clear that
11— A\At| > 1, 9)
and with A = p 4 v, we get
(1 — pAt)* + (vAL)? > 1. (10)

This area is the whole complex plane except the unit circle with center
(1,0), see Figure 1.

Euler Backward

Figure 1: The region of stability of the backward Euler method (grey area).

(c) Consider the equations that we have to solve

Y

= _y% + 29192 = fl(y17y2)7 (11)
Yy

/
1
é =~y — %yS = f2(y17y2)7

Here, we introduced the functions fi(y1,y2) and fo(y1,y2). Then, the Jacobian
matrix is given by

d il
a_zﬁ(yb Y2) 3—§;(y1, Y2) —2y1 + 2y, 211

J(y1,y2) = = . (12)
g—ﬁ(yl, Y2) g—ﬁ(yl, Y2) Y2 —Y1— Y2

For the equilibrium (y;(0),y2(0)) = (1,0), we have

smw = (3 %) (13)

Hence the eigenvalues are given by Ay = —2 and A\, = —1.



(d) e Wehave \; = —2 and Ay = —1, hence with At > 0, this implies that AtA <
0 (thus real-valued), then from Figure 1, it is clear that the backward
Euler is stable for any At > 0.
[The same argument holds for the backup choice A\; = —4 and Ay = —3.]

e Since the eigenvalues are real-valued and negative, we use

2
At < —, (14)
R
as stability bound for the forward Euler method. With A\ = —2, and
Ay = —1, we get At < 1 as the maximum allowable time step to warrant
numerical stability, based on linear stability analysis around (1, 0).
[For the backup choice \; = —4 and Ay = —3 we get At < % as the

maximum allowable time step to warrant numerical stability.]

(e) Applying the forward Euler time integration method to system (11), gives

Upi1 = Up + At(—u2 + 2u,vy,),
. ( ) (15)

Upg1 = Up + AbL(—upv, — 505

where w,, = (u,,v,)" denotes the numerical solution with components u,, and
v,. Using At =1 and ug = 1 and vy = 0, gives

up = up + At(—ud + 2upug) =1 —1 =0,

v1 = vy + At(—ugvg — %v%) = 0. (16)

Hence u; = 0 and v; = 0.

(a) The first order backward difference formula for the first derivative is
given by
d(t) —d(t —h)
7 :

Using ¢t = 10 [min], and A = 5 [min] the approximation of the velocity is

d(t) ~

d(10)5—d(5) [cm} _550;250 [cm} :60[cm]

min min

(b) Taylor polynomials are:
d(0) = d(2h) — 2hd (2h) + 2h%d (2h) —

h2
2

B gy

h3 /1

d(h) = d(2h) — hd (2h) + d"(2h)—gd (&),

d(2h) = d(2h).



We know that Q(h) = 92d(0) + Gtd(h) + S2d(2h), which should be equal to
d'(2h) + O(h?). This leads to the following conditions:

TS or R =0
200 — = 1,
20éoh + %Oélh = 0.

The truncation error follows from the Taylor polynomials:

&(2h) — Q(h) = d'(2h) — M= 4d<2h}3 +3d(2h)

S (&) — A(Bd" (&)
2h

_1 2 g
= Sh%d"(©).

Using the new formula with A = 5 [min| we obtain the estimate:

d(0) — 4d(;8) + 3d(20) [;:H _0-4x 25100~|— 3 x 550 [mm} 65 [%} .

The linear Lagrangian interpolatory polynomial, with nodes xy and =z,
is given by

r — T r — X

Lyi(z) =

f(zo) +

o — X1 1 — 2o

f(z). (17)
This is evident from application of the given formula.

The quadratic Lagrangian interpolatory polynomial with nodes g, z;
and x4 is given by

(7)) (7 — 29) .
L2<x> - («TO — $1)($0 — l’g)f( 0) (18)
(z — @) (2 — x2)
R P p—— f(a1) (19)
T ) (20)

(w2 — o) (22 — 71)
This is also evident from application of the given formula.

Obviously, L1(3) = 6 and Ly(3) = 6 since the Lagrange interpolation polyno-
mial satisfies L, (xy) = f(xx) for all points zg,x1,...,2,. Next, we compute
Ly(2) and L(2) for both linear and quadratic Lagrangian interpolation as ap-
proximations at x = 3. For linear interpolation, we have

2—3 2—1 9



and for quadratic interpolation, one obtains

(2-3)(2—-4)

Lo(3) = gy Ezbed

G-ai-1 > "e-nE-0 "



