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1. We consider the general initial value problem

y′ = f(t, y), y(0) = y0, (1)

which we solve using the backward Euler time integration method.

wn+1 = wn + ∆tf(tn+1, wn+1). (2)

(a) Use the test equation, to demonstrate that the local truncation error of the
backward Euler method is order O(∆t).
Hint:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . ,

1

1− x
= 1 + x+ x2 + x3 + . . . . (3)

(3 pt.)

(b) Use the test equation, to show that for general complex λ = µ+iν, the numerical
solution is stable if

(1−∆tµ)2 + (∆tν)2 ≥ 1. (4)

Sketch the stability region in the complex plane. (2 pt.)

We apply the backward Euler method to the following equations

y′1 = −y21 + 2y1y2,
y′2 = −y1y2 − 1

2
y22,

(5)

subject to initial conditions, which will be specified later.

(c) Derive the Jacobian matrix from linearization of system (5) around (y1, y2) =
(1, 0), and give its eigenvalues. (1 pt.)

(d) Determine the maximum allowable time step size around (y1, y2) = (1, 0) that
warrants linear stability for the backward Euler time integration method. (1.5 pt.)

Hint: If you cannot find an answer to part (c) you can use λ1 = −4 and λ2 = −3
(note that these are not the correct eigenvalues).

Do the same for the the forward Euler time integration method. (1.5 pt.)

We use the forward Euler method to approximate the solution.

(e) Use the initial condition (y1(0), y2(0)) = (1, 0) and time-step ∆t = 1 to compute
the numerical solution after one time-step. (1 pt.)

please turn over



2. In this exercise an estimate is determined for the velocity of a drilling rig as it is used in
geoscience applications to create holes in the earth sub-surface. The measured depth
d of the drill bit from the surface of the earth are given in the table below:

t (min) 0 5 10
d(t) (cm) 0 250 550

(a) Give the first order backward difference formula and use this to determine
an estimate of the velocity for t = 10, that is, d′(10). (1.5 pt.)

(b) We are looking for a difference formula of the first derivative of d in 2h of the
form:

Q(h) =
α0

h
d(0) +

α1

h
d(h) +

α2

h
d(2h),

such that
d′(2h)−Q(h) = O(h2).

In the remainder of this exercise we use this formula. Show that the coefficients
α0, α1 and α2 should satisfy the next system:

α0

h
+ α1

h
+ α2

h
= 0 ,

−2α0 − α1 = 1 ,
2α0h + 1

2
α1h = 0 .

(2 pt.)

(c) The solution of this system is given by α0 = 1
2
, α1 = −2 and α2 = 3

2
. Give for

these values an expression for the truncation error d′(2h)−Q(h). Use this formula
to give an estimate of the velocity at t = 10. (1.5 pt.)

3. We analyse Lagrangian interpolation. For given points x0, x1, . . ., xn, with their
respective function values f(x0), f(x1), . . ., f(xn), the interpolatory polynomial Ln(x)
is given by

Ln(x) =
n∑
k=0

f(xk)Lkn(x), with

Lkn(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

(6)

(a) Give the linear Lagrangian interpolatory polynomial L1(x) with nodes x0
and x1. (1 pt.)

(b) Give the quadratic Lagrangian interpolatory polynomial L2(x) with nodes
x0, x1 and x2. (2 pt.)

(c) Calculate Ln(2) and Ln(3) both by using linear and quadratic Lagrangian inter-
polation using the following measured values:

k xk f(xk)
0 1 3
1 3 6
2 4 5

(2 pt.)

For the answers of this test we refer to:
http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html


