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1. (a) The local truncation error is defined as

n — Zn
T (Af) = ST M

where z,.1 is given by

Zn+1 = Yn + At (alf(tna yn) + a?f(tn + At» Yn + Atf(tna yn)) : (2)
A Taylor expansion of f around (t,,y,) yields

of

Fta+ At yn+Atf (tn, yn)) = f(tn, yn)+At8—J;(tmyn)+Atf(tm Yn) 5 (tny Yn) +O((AL)?).

0 dy
(3)
This is substituted into equation (2) to obtain

Zn4+1 = yn+At (@1f<tm yn) + a2 |if(tn7 yn) + Atg(tm yn) + Atf(tn7 yn)ﬁ(tnv yn):| ) +O((At)3)

ot dy
(4)
A Taylor series for y(t) around ¢,, gives for y,1
/ (At)Q " 3
Yni1 = Y(tn + A = yo + Aty (ta) + —=4" (ta) + O((A)°). (5)

From the differential equation we know that:

y/(tn) = f(tn, Yn) (6)
From the Chain Rule of Differentiation, we derive

d ny Jn a ny Jn a ny JIn /
S (1) = f(tdty ) _ f(gty ), f(gyy )y(tn) (7)

after substitution of the differential equation one obtains:

_ Of(tyn) | O (tn,9)

(e = 2 o) ) ©)
Equations (5) and (4) are substituted into relation (1) to obtain
0 0 1
(80 = Fltw ) (1= (arra) +8¢ (G4 150) (5 - ) voa07) @

Hence



(b)

i. a1+ as = 1 implies 7,41(At) = O(At);
ii. a;+ay =1anday = 1/2, that is, a; = ay = 1/2, gives 7,11 (At) = O((At)?).
The test equation is given by
Yy = \y. (10)
Application of the predictor step to the test equation gives
Wy = Wy + AAtw, = (1 4+ AA)w,,. (11)

The corrector step yields

Why1 = Wy + At (g wy, + agA(1 4+ AAD)w,) = (1+ (a1 + ag) AAE + as(AAL)?)w,.
(12)
Hence the amplification factor is given by

QAAL) = 1 + (ay + ag) AAL + ay(AAL)?. (13)
Let A < 0 (so A is real), then, for stability, the amplification factor must satisfy
-1 < QAL <1, (14)

from the previous assignment, we have

—1 <1+ (a1 + a2)ANAt + aa(MNAE)? < 1 & —2 < (a1 + ag) AL + ag(AAE)? < 0.
(15)
First, we consider the left inequality:

azs(AAL)? + (a1 + az)A\At +2 > 0 (16)

For AAt = 0, the above inequality is satisfied. The discriminant of the quadratic
equation is given by (a; + as)? — 8ay. From the given assumption it follows that
(aq + a2)2 — 8ay < 0 so the quadratic equation does not have real roots. Hence
the left inequality in relation (15) is always satisfied. Next we consider the right
hand inequality of relation (15)

CZQ()\At)Z -+ (a1 + CZQ))\At S 0. (17)

This relation is rearranged into

as(AAL)? < —(ay + az) AAL, (18)
hence o +a

as| AAE? < (a1 + a) | AAE < MNAH < =2, ay £0. (19)

ag

This results into the following condition for stability

a1 + as

At < 0. 20
s CL2|)\| ) as 7é ( )
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In order to compute the Jacobian, we note that the right-hand side of the non
linear system is given by:

fi(zy,x9) = —sinxy + 229 + ¢

f2(1‘17$2) =T — 9U§

From the definition of the Jacobian it follows that:
3—3;1 % B <— COS T 2 )
Ofs Of - _ :
a_:vi a—zz 1 21’2
Substitution of (1:1(0)) = (2) shows that

2(0)
J = (‘11 _22) :

For the stability it is sufficient to check that [Q(X\;At)| < 1 for all the eigenvalues
of the Jacobian matrix. It is easy to see that the eigenvalues of the Jacobian
matrix are Ay = —3 and Ay = 0.

1

5 We use the expression

For the choice a1 = as =
1
QAAL) =1+ MAt + §(AAt)2

For \y = 0 it appears that Q(A2At) = 1 so the inequality is satisfied for all At.
For A\; = —3 we have to check the following inequalities:

—1<1-3At+ g(At)2 <1
For the left-hand inequality we arrive at
9 2
0< 5(At) — 3At+2

It appears that the discriminant 9 —4- g -2 is negative, so there are no real roots
which implies that the inequality is satisfied for all At.

For the right-hand inequality we get

—3At + g(At)2 <0

g(At)Q < 3At
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SO
At <

Wl N

(another option is to see that for a; = ay = % the method is equal to the modified

Euler method, and remember that this method is stable for real eigenvalues if
At < 32)
=\

(a) The Taylor polynomials around 0 are given by:

h? h?
F(=h) = F0) = hf(0) + - f(0) = =" (&)
2h)3
f2m) = 70— 2nr'0) + 202(0) ~ P ey
Here §; € (=h,0), & € (—=2h,0). We know that Q(h) = 25 f(0) + =+ f(—h) +
== f(=2h), which should be equal to f”(0) + O(h). This leads to the following
conditions:
0w o+ % =0,
! . o — o — _
s P S
f”(O) : WO(,1 + h2_2 = 1.
This can also be written as
f(0) : ap + a1 + a, = 0,
/'(0) - —a.; — 20, = 0,
17(0) : S+ 20, = 1.

(b) The truncation error follows from the Taylor polynomials:

1"(0)=Q(n) = f"(0)—

FO) = 2f(=h) + f(=2h) _ <¥f'"<gl> - %f”’(&))

h? h?
= hf"(&).
(c¢) Note that
f7(0) = Q(2h) = K2h (21)
f7(0) = Q(h) = Kh (22)
Subtraction gives:
Q(h) — Q(2h) = K2h — Kh = Kh. (23)



We choose h = . Then Q(2h) = Q(3) = 2220 = 3 and Q(h) = Q(3) =

0—2X0'(21532+0'1250 1.5008. Combining (22) and (23) shows that
4

=

1 1

£1(0) = Q7) = Q(p) — QU3) = 14992

First, we check the boundary conditions:

1 — ele 1—1 1 — el/e
U(O):O—l_el/ezl_el/ezo, u(l)ZI_l——el/EZO (24)
Further, we have
@ = 14— )
u(r) =
e(1 —el/e)’
Wy = - 26
Hence, we immediately see
x/e /e
o oy €€ e B
eu'(z) +u'(x) = —62(1—61/5)+1+—6(1—61/6)_1' (27)
Hence, the solution u(z) = 1 — 1:?; satisfies the differential equation and

the Dirichlet boundary conditions, and therewith wu(z) is the solution to the
boundary value problem (uniqueness can be demonstrated in a straightforward
way, but this was not asked for).

The domain of computation, being (0, 1), is divided into subintervals with mesh
points, we set x; = jAxz, where we use n unknowns, such that z,4; = (n +
1)Az = 1. The discretization method for an interior node is given by
Wit — 2W; +wj1 | Wy — Wi :
—€ =1, forje{l,...,n}. 28
L jedln) (@)
At the boundaries, we see for j = 1 and j = n, upon substituting wy = 0 and
wy1 = 0, respectively:

w2—2w1+0 wl—O_

— =1
‘ (Az)? * Az ’
(29)
0— an + Wp—1 Wy — Wp—1 —1
(Ar)? Ar 7
This can be rewritten more neatly as follows:
—Ws9y + 2’11)1 w1
_zrem oy g
A2 TAs
(30)
2wn — Wp-1 Wp — Wp—1
=1
‘ (Ax)? * Ax
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(c¢) Next, we use Ax = 1/4 and thus n = 3. Then, from equations (28) and (30),
one obtains the following 3 x 3 linear system of equations

32e¢+4 —16¢ 0 wq 1
—16e —4 32e+4  —16¢ wy| = |1 (31)
0 —16e —4 16e+4| |ws 1

(d) No, the upwind difference method for the convective terms is designed to not
produce oscillatory solutions independent of the size of the diffusion coefficient
e and the velocity v which is equal to one in this case.



