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1. (a) The local truncation error is given by

T (Af) = I o

where z,.1 is computed by one step of the method starting from v,, and we
determine vy, 11 by the use of a Taylor Series around ¢,:

! AtQ " 3
i = o+ DY (1) & Sy (1) + O(BF). ©)
We realize that
y/(tn) = f(tm yn)
df (t,, yn Of(tn, Yn Of(tn,yn) ,
J(t) = f(dty ) _ f(aty ), f(ayy )y (t,) = 5
- Of (tn, yn) | Of (tn, Yn)

Hence, this gives

Ynt1l = Yn + Aty/(tn> +

At? (af(tn,yn) L 9f(tn,yn)

(2l 2 ft, ) ) + O, ()

For 2,41, after substitution of the predictor-step for 2, | into the corrector-step,
and using the Taylor Series around (¢, y,)

Zng1 = Yn + 5L (f(tn, yYn) + [(tn + At Yo + ALf(tn, yn))) =

At Of (tn; Yn Of (tn, Yn
ot S (Fltaein) + Pt + 20 ) g 2T tn)y | oag).
2 ot y
(5)
Then, it follows that
3
Yni1 — zns1 = O(AF?), and hence 7,1 (At) = O(AAtt ) =0(AtY).  (6)



(b) Consider the test—equation ¥’ = Ay, then it follows that
W = Wy + AAtw, = (1 + AAt)w,,

At
W1 = Wy, + T(Aw” + Awy ) = (7)
2
= w, + %(Awn + AMw, + MNAtw,)) = (1 + MNAt + @)wn

Hence the amplification factor is given by

QAAL) =1+ NAt + %. (8)

(¢) Let 1 = y and x5 = ¢/, then it follows that y” = ), and hence we get

xh + 229 + 221 = sin(t),

To = T}. )
This expression is written as
[

xh = —2x1 — 2w + sin(t).

Finally, we get the following matrix—form:

!/
I . 0 1 T 0
(x2> a <—2 —2) <x2> + (sin(t)) ' (11)
0 1 0 o "
9 _2) and f = ( ) . The initial conditions are

sin(t)
st (58)- ()

(d) The Modified Euler Method, applied to the system 2’ = Az + f, gives

Here, we have A =

MT:Q0+At<AMU+iO)7

(12)
w; = w, + 5 (Awo + [, +Auw +L) :

With the initial condition and At = 0.1, this gives

SO OO0 o

Then, the correction—step is given by

s ()8 (% )0+ () (% %) () (i) -
- (\45)

[S



(e) To this extent, we determine the eigenvalues of the matrix A. Subsequently,
these eigenvalues are substituted into the amplification factor. The eigenvalues
of A are given by —1 4. Using At = 1, it follows that

QNAL) =1+ NAt + %VA# =1+ (—1+414)+ %(—1 +i)2=0 (15

Herewith, it follows that |Q(AA?)|> = 0 < 1. Hence for At = 1, it follows that
the method applied to the given system is stable. Note that this conclusion
holds for both the eigenvalues of A since they are complex conjugates.

(a) The first order backward difference formula for the first derivative is given by
d(t) —d(t — h)
. .
Using t = 20, and h = 10 the approximation of the velocity is
d(20) — d(10) 100 — 40
10 10

d(t) ~

=6 (m/s).

(b) Taylor polynomials are:

d(0) = d(2h) — 2hd (2h) + 2h%d" (2h) — @d"' (&) ,
d(h) = d(2h) — hd (2h) + h;d"(%) — %3d”' (&),

d(2h) = d(2h).

We know that Q(h) = 92d(0) + Gtd(h) + S2d(2h), which should be equal to
d'(2h) + O(h?). This leads to the following conditions:

PR e g =0,
—QOZ() - (0%} = 1,
20[0h + %Oélh = 0.

(¢) The truncation error follows from the Taylor polynomials:

d'(2h)—Q(h) = d,(Qh)_d(O) - 4d(2hh) +3d(2h) _ 4" (&) —2 :(%d’”(gl)) _ % p2

Using the new formula with A = 10 we obtain the estimate:

d(0) — 4d(1 d(2 —4x4 1
(0) (28)+3(0):0 x go+3>< L




3.

(a)

Newton-Raphson’s method is an iterative method to find p € R such that
f(p) = 0. Suppose f € C?[a,b]. Let T € [a,b] be an approximation of the root p
such that f'(z) # 0, and suppose that |p — Z| is small. Consider the first-degree
Taylor polynomial about Z:

Note that the right-hand side is the formula for the tangent in (z, f(Z)). Solving
for p yields
/(@)

f(@)
This motivates the Newton-Raphson method, that starts with an approximation
po and generates a sequence {p,} by

=p I (pna) for n>1.

Pn = Pn-1 — 9
f,(pn—l)

Remark 1 One can also give a graphical derivation following Figure 4.2 from
the book.

PRI —

The first derivative of g equals

PP @) @)
gle)=1 ()2 F@E

Substitution of f(x) = sin(z), f'(z) = cos(z) and f"(z) = —sin(z) yields

-2
/ sin”(z) 2
= ———F=<=—ta .
g (ZL’) COSz(I) n (JI)
Since tan(—m/4) = —1, tan(w/4) = 1 and the tangent function is monotonically
increasing on the interval [—1, 1] any initial guess inside the interval (—1, 1) will
lead to a convergent iteration process.



(c) Tt follows from the linearization of the function f about the iterate x,,_; that

),

_ afl — n— afl _ _

~ (n—1) 9J1 ./ (n-1) _ 1) YJ1 (n-1) . (n=1)
fip) = A" Y) + 7 " NP - )+ o+ I ") (Pm — i,

_ Ofm _ n— Ofm _ _

~ (n—1) “YJm (n—1) . (n—1) ~ZJm (n—1) . (n-1)
fm(P) = fr(P" ) + opr " ) —p ).+ o, ®" ) (Pm — P

Defining the Jacobian matrix of f(x) by

P )
%fT”f(x) gi—z(x)

the linearization can be written in the more compact form

f(p) ~ f(p ) + I(p" V) (p —p" 7).

The next iterate, p(™, is obtained by setting the linearization equal to zero:

£ ) + 3" )™ —p" V) =0, (17)

which can be rewritten as

J(p" st = —£(p" ), (18)

where s = p(™ — p(®»=1_ The new approximation equals p® = p=1 4 s,

Finally, Newton-Raphson’s formula for general nonlinear problems reads:

p" = p=~V — I (pr)E(p"Y). (19)

(d) First, we rewrite the system into the form

Ji(wy, wa) =0,
20
f?(wlwa) = 07 ( )
by setting
fi(wy, we) = 18wy — Ywy + (wy)?, (21)
fg(wl, wg) = —9?1)1 + 1811]2 + (w2)2 — 9.
We denote the Jacobi-matrix by J(wy,ws). At the first step we compute
w® = w® — J(@) Fw?), (22)
where w = [w; wy]?. Note that
(0)
18 + 2w -9
J(w?) = ! . 23
(w™) ( -9 18 + 2w§°)) (23)

).



Using w%o) = wéo) = 0 we obtain:

= (% ).

This implies that

1 18 9
0)\—1 _
J(w®) = T a1 <9 18)'

Furthermore

SO



