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1. (a) Consider the test equation 3y’ = Ay, then it follows that
Wpy1 = Wy + (1 — O)AAtw,, + ONAtw, 1.

Solving for w,,; gives
1+ (1-0)\At
B ) VN
Hence the amplification factor is given by
1+ (1—-0)\At
1—0X\AE

(b) The local truncation error for the test equation y' = Ay is given by

M — Q(NAL)
At dn-

QA =

Tot1(At) =

The Taylor Series around 0 for e’ is:

=1+ MAt+ = (/\At) + O(A).
The Taylor Series around 0 for Q()\At) is

Q()\At) = ( (1 - Q)AAt) 1 — ONAL
= (14 (1= 0)AAL) (14 0AAL + 6% (AAL)® + O (AY))
=1+ AL+ 0 (AAL)® + O (AF) .

Hence, this gives
A Q(AAL) = (% - 9) (AAE?) + O (A%,

and hence
(3 —0) AAL2) + O (A)
Al Yn

— (% — 9) (AAL) y, + O (A?) = O (At).

Tn+1 (At) =

Furthermore, 7,11 = O(At?) if and only if § = 1
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To this extent, we determine the eigenvalues of the matrix. Subsequently, these
eigenvalues are substituted into the amplification factor. The eigenvalues of the
matrix are given by —1 & 3i.

Using At =1, 0 = 5 and taking A = —1 — 3¢ (alternatively, A = —1 + 3¢), it
follows that

1+ 2 (—1-3i)
AAL) = 2
QA 1—2(—1-30)
_ 3
3 3,
§+§’L

Herewith, it follows that |Q(AA?)[> = 2 < 1. (Different methods to show this
are possible.)

As the two eigenvalues are each others complex conjugate, only one eigenvalue
has to be considered during the stability analysis. (Also correct: Repeating the
above calculations for the other eigenvalue.)

Hence for At = 1 and 0 = % it follows that the method applied to the given
system is stable.

The given method, applied to the system 2’ = Az as given in the question and
taking 0 = %, gives

1 1
Wy = W, + §AtAwn + EAtAwnJrl

Rearranging gives the linear system
1 1
I — §AtA Wy = 1+ EAtA w,,.

With At =1 and the initial condition, w, = [1 O]T, this gives

4 el 00

[\ [V V][]

Solving for w, gives
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(a) The three relevant Lagrange basis polynomials are with n = 2 given by

(x — 1) (x — 22)

L) = (zo — @1) (w0 — 22)
_(z=3)(z -4
B
s

ng(a:) (371 - xo)(ﬂh - 372)

_ (x —1)(x—4)
3-1)(3—4)
145 5
=57 + 5%~ 2,
(x — xz0)(x — 21)
ng(x) ($2 - xo)(i@ - $1)
_ (x —1)(x —3)
(4—-1)(4-3)
= 1952 — éx +1
3 3

The resulting perturbed interpolating polynomial is then

Ly(z) = f(z0)Loz2(x) + f(21)Lia(x) + f(22) Laa(x)

31 7+2+6 12+52+51 4+1
67 & 9" T a7 37 73"

5 2 29 1
6 6
Evaluation in x = 2 finally gives
A 16
Ly (2) 3

Any alternative, but correct, route to the above answer gives the same amount
of (total) points.

(b) The unperturbed error |f(2) — L2(2)| can be bounded from above by the fol-
lowing steps:
(2-1)(2-3)(2—4)
3!

[F7(¢ ()]

1£(2) = L2(2)] < F"(¢(x))
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The perturbation error ‘L2(2) - ﬁg(Z)‘ can be bounded from above by the fol-
lowing steps:

Ly(2) — ﬁz@)’ = ‘(f(%) — f(@0)) Lo2(2) + (f(21) — (1)) L12(2) + (f(22) — f(22))Laa(2)

< é ‘f(xo) - f(xo)‘ + ’f(ﬁ) - f(ll) + % ‘f(%) - f(%)‘
He

< —.

- 3

Combining these upper bounds gives for the total error

12) = La(2)] = | £(2) = La(2) + La(2) - La(2)]

<1F(2) = La@)] + |La(2) - Lo(2)|
0 + 5e

<
- 3

3. (a) A fixed point p satisfies the equation p = g(p). Substitution gives: p = %3 + Z—g.
Rewriting this expression gives:

3 23 _
—%—FP—E =0
= —pP+6p—2% = 0
= f(p) =0,

which shows that a fixed point of g(z) also a root of f(z) is.
(b) Starting with pp = 1 we obtain:

o= s ~ 0.6458,
_ 347743 —~

p2 = TS ~ 0.5241,
__ _882018880783482655 .~

b3 = 1752976676930715648 0.5032.

A sketch of this fixed-point iteration is given by
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(c) For the convergence three conditions should be satisfied:
e g€ (C0,1].
e g(p) €[0,1] for all p € [0, 1].
e |J(p)| <k<1forall pel0,1].
p3

Since g(p) = & + % it follows that g is continuous everywhere, so the first

condition holds.

Furthermore, ¢'(z) = % Note that ¢'(p) > 0 for all p € [0, 1]. This implies that
g(x) is increasing on [0, 1]. A lower bound for g(x) is given by

23
>g(0)=—2>0
and an upper bound is given by
31
1)=—<1
(@) < g(1) = 55 <

So 0 < g(z) <1 and the second conditions holds.

For the third condition we note that |¢'(x)| = % <il=Fk<lforallzel01],
so the third condition is also satisfied.

As all conditions are satisfied, the fixed point iteration converges for all py € [0, 1]
to the fixed point p € [0, 1].



