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1. (a) The local truncation error is given by

τn+1(∆t) =
yn+1 − zn+1

∆t
, (1)

in which yn+1 the solution at time step n+ 1 and zn+1 is the numerical approx-
imation obtained by applying the numerical method with starting point yn, the
solution at time step n.

A Taylor series around tn of yn+1 is given by

yn+1 = y(tn+1)

= y(tn + ∆t)

= y(tn) + ∆ty′(tn) +O(∆t2). (2)

The numerical solution zn+1 is given by

zn+1 = yn + ∆tf(tn, yn)

= y(tn) + ∆ty′(tn). (3)

Substraction of (3) from (2) gives

yn+1 − zn+1 = O(∆t2).

Substitution of the above in (1) gives

τn+1 = O(∆t),

as was requested to show.

(b) Consider the test equation y′ = λy, then it follows that

wn+1 = wn + λ∆twn

= (1 + λ∆t)wn.

Hence the amplification factor is given by

Q(λ∆t) = 1 + λ∆t.
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(c) For stability must hold |Q(λ∆t)| ≤ 1, or equivalently |Q(λ∆t)|2 ≤ 1, for each
eigenvalue λ of the given matrix.

The eigenvalues of the given matrix are given by −3± 2i.

As the two eigenvalues are each others complex conjugate, only one eigenvalue
has to be considered during the stability analysis. (Also correct: Repeating the
below calculations for the other eigenvalue.)

Taking λ = −3− 2i (alternatively, λ = −3 + 2i), it follows that

Q(λ∆t) = 1 + (−3− 2i)∆t

= (1− 3∆t) + (−2∆t)i.

Herewith, it follows that

|Q(λ∆t)|2 = (1− 3∆t)2 + (−2∆t)2

= 1− 6∆t+ 13∆t2.

Substitution of the above into the stability criterion |Q(λ∆t)|2 ≤ 1 and solving
for ∆t gives that the given method is stable for the given initial value problem
if

∆t ≤ 6/13.

(d) The given method, applied to the system x′ = Ax as given in the question and
taking ∆t = 1/5, gives

w0 =

[
1
1

]
w1 = w0 + ∆tAw0

=

[
1
1

]
+

1

5

[
−3 −2
2 −3

] [
1
1

]
=

[
0
4/5

]
w2 = w1 + ∆tAw1

=

[
0
4/5

]
+

1

5

[
−3 −2
2 −3

] [
0
4/5

]
=

[
−8/25
8/25

]
.

2



2. (a) The solution and its first and second derivative are given by

u(x) = x− 1− ex

1− e
,

u′(x) = 1 +
ex

1− e
,

u′′(x) =
ex

1− e
.

The function u(x) has a critical point at x∗, with x∗ such that u′(x∗) = 0. This

gives the only critical point x∗ = ln

(
1

e− 1

)
.

The second derivative in this critical point equals

u′′(x∗) =
−1

(e− 1)2
< 0,

so u(x) has a (global) maximum at x∗, with the maximum value

u(x∗) = x− 1− ex∗

1− e
= ln(−1 + e)− 2− e

1− e
≈ 0.1233.

Furthermore, u(0) = 0 = u(1), so u(x) is monotonically increasing on [0, x∗] and
monotonically decreasing on [x∗, 1]. Therefore u(x) does not oscillate. (Other
physical/mathematical arguments why u(x) does not oscillate give equal points.)

Since the numerical solution should have the same characteristics as the exact
solution, oscillatory solutions should be considered as not reflecting the analytic
solution.

(b) The given formulas show that central difference approximations are used so we
expect a local truncation error of second order, O (∆x2).

To prove this we use the following central differences approximation at xj, for
j ∈ {1, . . . , n}:

u′(xj) ≈
u(xj+1)− u(xj−1)

2∆x
,

u′′(xj) ≈
u(xj+1)− 2u(xj) + u(xj−1)

(∆x)2
.

Since we approximate the derivatives at the point xj, we use Taylor series ex-
pansion about xj, to obtain:

u(xj+1) = u(xj) + ∆xu′(xj) +
(∆x)2

2
u′′(xj) +

(∆x)3

6
u′′′(xj) +O

(
∆x4

)
,

u(xj−1) = u(xj)−∆xu′(xj) +
(∆x)2

2
u′′(xj)−

(∆x)3

6
u′′′(xj) +O((∆x)4).
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This gives

−u(xj+1)− 2u(xj) + u(xj−1)

(∆x)2
= −u′′(xj) +

O (∆x4)

∆x2

= −u′′(xj) +O
(
∆x2

)
,

and

u(xj+1)− u(xj−1)

2∆x
= u′(xj) +

O (∆x3)

2∆x
= u′(xj) +O

(
∆x2

)
.

Hence the error is second order, that is O (∆x2).

Next, we neglect the truncation error, and set wj ≈ u(xj) to get

−wj+1 − 2wj + wj−1

(∆x)2
+
wj+1 − wj−1

2∆x
= 1, for j ∈ {1, . . . , n}. (4)

At the boundaries, we see for j = 1 and j = n, upon substituting w0 = 0 and
wn+1 = 0, respectively:

−w2 − 2w1 + 0

(∆x)2
+
w2 − 0

2∆x
= 1,

−0− 2wn + wn−1

(∆x)2
+

0− wn−1

2∆x
= 1.

This can be rewritten more neatly as follows:

−w2 − 2w1

(∆x)2
+

w2

2∆x
= 1, (5)

2wn − wn−1

(∆x)2
− wn−1

2∆x
= 1. (6)

(c) Next, we use ∆x = 1/4, then, from Equations (5), (4) and (6), one obtains the
following system:

32w1 − 14w2 = 1

−18w1 + 32w2 − 14w3 = 1

−18w2 + 32w3 = 1

This means with w = [w1, w2, w3]
T that

A =

 32 −14 0
−18 32 −14

0 −18 32

 ,
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and

b =

1
1
1

 .
3. (a) The linear Lagrangian interpolation polynomial, with nodes a and b, is given by

p1(x) =
x− b
a− b

f(a) +
x− a
b− a

f(b).

We approximate f(x) by p1(x) in the integral
∫ b

a
f(x)dx, from which follows:∫ b

a

f(x) dx ≈
∫ b

a

p1(x) dx

=

∫ b

a

{
x− b
a− b

f(a) +
x− a
b− a

f(b)

}
dx

=

[
1

2

(x− b)2

a− b
f(a)

]b
a

+

[
1

2

(x− a)2

b− a
f(b)

]b
a

=
1

2
(b− a)(f(a) + f(b)).

This is the Trapezoidal rule.

(b) The magnitude of the error of the numerical integration over interval [a, b] is
given by∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

p1(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(f(x)− p1(x)) dx

∣∣∣∣
=

∣∣∣∣∫ b

a

1

2
(x− a)(x− b)f ′′(ξ(x)) dx

∣∣∣∣
≤ 1

2
max
x∈[a,b]

|f ′′(x)|
∫ b

a

|(x− a)(x− b)| dx

=
1

12
(b− a)3 max

x∈[a,b]
|f ′′(x)| .

(c) The composite Trapezoidal rule for

∫ 1

0

x2 dx with h = 1/4 is given by

1

h

(
1

2
x20 +

(
3∑

j=2

x2j

)
+

1

2
x24

)
=

1

4

(
1

2
02 +

1

4

2

+
1

2

2

+
3

4

2

+
1

2
12

)
=

11

32
= 0.34375.
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(d) Since

∫ 1

0

x2 dx =
1

3
, the absolute value of the truncation error is:

∣∣∣∣13 − 22

64

∣∣∣∣ =
1

96
= 0.010416.
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