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1. (a) The test equation is given by
y′ = λy.

Application of the method to the test equation gives

wn+1 = wn +
1

2
λ∆twn +

1

2
λ∆twn+1.

This is equivalent to (
1− 1

2
λ∆t

)
wn+1 =

(
1 +

1

2
λ∆t

)
wn.

Hence the amplification factor is given by

Q(λ∆t) =
1 + 1

2
λ∆t

1− 1
2
λ∆t

.

(b) The local truncation error for the test equation is given as

τn+1(∆t) =
eλ∆t −Q(λ∆t)

∆t
yn. (1)

A Taylor expansion of eλ∆t around λ∆t = 0 yields

eλ∆t = 1 + λ∆t+
1

2
(λ∆t)2 +

1

6
(λ∆t)3 +O(∆t4). (2)

A Taylor expansion of Q(λ∆t) around 1
2
λ∆t = 0 yields

Q(λ∆t) =
1 + 1

2
λ∆t

1− 1
2
λ∆t

=

(
1 +

1

2
λ∆t

)(
1 +

1

2
λ∆t+

(
1

2
λ∆t

)2

+

(
1

2
λ∆t

)3

+O(∆t4)

)
= 1 + λ∆t+

1

2
(λ∆t)2 +

1

4
(λ∆t)3 +O(∆t4). (3)

Equations (2) and (3) are substituted into relation (1) to obtain

τn+1 = − 1

12
ynλ

3∆t2 +O(∆t3),

hence

T = − 1

12
ynλ

3.
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(c) With x = [x1, x2, x3]T , the problem can be written as x′ = Ax + b, with

A =

−1 2 −2
0 −2 −2
0 2 −2

 ,
and

b =

9
4
8

 .
The characteristic equation of A is given by

det(A− λI) = 0

⇒

∣∣∣∣∣∣
−1− λ 2 −2

0 −2− λ −2
0 2 −2− λ

∣∣∣∣∣∣ = 0

⇒ (−1− λ)

∣∣∣∣−2− λ −2
2 −2− λ

∣∣∣∣ = 0

⇒ (−1− λ)
(
(−2− λ)2 + 4

)
= 0.

The eigenvalues of A are calculated from this as λ1 = −1 and λ2 = λ3 = −2 + 2i.

Because λ2 and λ3 are each other complex conjugates, stability is governed by λ1

and λ2.

For λ1 = −1 and ∆t = 1 we obtain

Q(λ1∆t) = Q(−1)

=
1 + 1

2
(−1)

1− 1
2
(−1)

=
1
2
3
2

=
1

3
,

and therefore

|Q(λ1∆t)| = 1

3
≤ 1. (4)

For λ2 = −2 + 2i and ∆t = 1 we obtain

Q(λ2∆t) = Q(−2 + 2i)

=
1 + 1

2
(−2 + 2i)

1− 1
2
(−2 + 2i)

=
i

2− i)

= −1

5
+

2

5
i,

and therefore

|Q(λ2∆t)| =
√

1

25
+

4

25
=

√
1

5
≤ 1. (5)

From (4) and (5) it follows that the method applied to the given IVP is stable for
∆t = 1.
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(d) First note that holds

w0 =

 1
−1
3

 .
We can show that

Aw0 + b = 0. (6)

The given value for w1 is exactly equal to w0, so we also have as a direct consequence:

Aw1 + b = 0. (7)

(6), (7) and the values for w0 and w1 can be substituted in the method, which leads
to  1

−1
3

 =

 1
−1
3

 ,
which is mathematically correct. Therefor w1 as given is indeed the approximation
of the exact solution at time t = 1.

Alternative solution: w1 can also be calculated explicitly be direct application of
the method, which has the following calculations:

w0 =

 1
−1
3

 ,
Method: w1 = w0 +

1

2
(Aw0 + b + Aw1 + b) ,

⇒
(
I − 1

2
A

)
w1 =

(
I +

1

2
A

)
w0 + b,

⇒

3/2 −1 1
0 2 1
0 −1 2

w1 =

11/2

1
7

 ,
⇒ w1 =

 1
−1
3

 .
No points will be given if a different method is used or a different system of differential
equations is solved.
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2. (a) The order can be determined with the use of Taylor expansions. We need the
following:

y(x+ ∆x) = y(x) + y′(x)∆x+
1

2
y′′(x)∆x2 +

1

6
y′′′(x)∆x3 +O(∆x4),

y(x) = y(x),

y(x−∆x) = y(x)− y′(x)∆x+
1

2
y′′(x)∆x2 − 1

6
y′′′(x)∆x3 +O(∆x4).

Substitution of the above in the given finite difference Q(∆x) gives

Q(∆x) =
y′′(x)∆x2 +O(∆x4)

∆x2

= y′′(x) +O(∆x2).

This shows that Q(∆x) is indeed a O(∆x2) approximation of y′′(x).

(b) Evaulation of the ode in x = xj and replacing y′′(xj) with the given finite difference
Q(∆x) gives

−y(xj+1)− 2y(xj) + y(xj−1)

∆x2
+O

(
∆x2

)
+ xjy(xj) = sin(2πxj).

Next, we neglect the truncation error, and set wj ≈ y(xj) to obtain

−wj+1 − 2wj + wj−1

∆x2
+ j∆xwj = sin(2πj∆x), (8)

which is the second of the given equations.

At the left boundary, x = 0, we have w0 = 0, which after substitution in (8) for
j = 1 gives

−w2 − 2w1

∆x2
+ ∆xw1 = sin(2π∆x),

which is the first of the given equations.

At the right boundary, x = 1, we have wn+1 = 1, which after substitution in (8) for
j = n gives

−−2wn + wn−1

∆x2
+ n∆xwn = sin(2πn∆x) +

1

∆x2
,

which is the third of the given equations.

(c) The matrix A of the scheme is given by

A =
1

∆x2



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


+ ∆x


1

2
. . .

n

 .

Because A is symmetric (AT = A), all eigenvalues of A are real, so the Gershgorin
circle theorem will give intervals in R instead of circles in C.

The first row of A gives the inequalities

− 1

∆x2
≤ λ−

(
2

∆x2
+ ∆x

)
≤ 1

∆x2
.
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These can be rewritten to

1

∆x2
+ ∆x ≤ λ ≤ 3

∆x2
+ ∆x. (9)

In a similar manner, row j of matrix A with j ∈ {2, . . . , n− 1} gives

j∆x ≤ λ ≤ 4

∆x2
+ j∆x, (10)

and row n finally gives

1

∆x2
+ n∆x ≤ λ ≤ 3

∆x2
+ n∆x. (11)

Combining Equations (9), (10) and (11) gives

∆x ≤ λ ≤ 4

∆x2
+ n∆x,

as was requested to show.
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3. (a) The given formula for s(x) consists of two polynomials of degree 3 on disjunct in-
tervals dividing [−1, 1], so s(x) is a piecewise function consisting of polynomials of
degree 3 or lower.

(b) The nodes of the spline are x = −1, x = 0 and x = 1.

We will evaluate s(x) in these three nodes and show that it is equal to f(x) in these
nodes:

s(−1) = −3

4
x3 − 9

4
x2 +

1

2
x+ 2

∣∣∣∣
x=−1

= −3

4
(−1)3 − 9

4
(−1)2 +

1

2
(−1) + 2

=
3

4
− 9

4
− 1

2
+ 2

= 0

= f(−1),

s(0) =
3

4
x3 − 9

4
x2 +

1

2
x+ 2

∣∣∣∣
x=0

=
3

4
(0)3 − 9

4
(0)2 +

1

2
(0) + 2

= 0− 0 + 0 + 2

= 2

= f(0),

s(1) =
3

4
x3 − 9

4
x2 +

1

2
x+ 2

∣∣∣∣
x=1

=
3

4
(1)3 − 9

4
(1)2 +

1

2
(1) + 2

=
3

4
− 9

4
+

1

2
+ 2

= 1

= f(1).

(c) Because s(x) consists of polynomials, the only possible point of discontinuity is the
node x = 0, so s(x) is continuous if it is continuous in x = 0.

Therefore we have to show

lim
x→0−

s(x) = lim
x→0+

s(x).

The left limit equals:

lim
x→0−

s(x) = lim
x→0−

−3

4
x3 − 9

4
x2 +

1

2
x+ 2

= 2.

The right limit equals:

lim
x→0+

s(x) = lim
x→0+

3

4
x3 − 9

4
x2 +

1

2
x+ 2

= 2.

So s(x) is continuous.
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The derivative s′(x) is given by

s′(x) =


−9

4
x2 − 9

2
x+

1

2
if x ∈ [−1, 0),

9

4
x2 − 9

2
x+

1

2
if x ∈ [0, 1].

s′(x) is continuous if it is continuous in x = 0, so we have to show

lim
x→0−

s′(x) = lim
x→0+

s′(x).

The left limit equals:

lim
x→0−

s′(x) = lim
x→0−

−9

4
x2 − 9

2
x+

1

2

=
1

2
.

The right limit equals:

lim
x→0+

s′(x) = lim
x→0+

9

4
x2 − 9

2
x+

1

2

=
1

2
.

So s′(x) is continuous.

The second derivative s′′(x) is given by

s′′(x) =


−9

2
x− 9

2
if x ∈ [−1, 0),

9

2
x− 9

2
if x ∈ [0, 1].

s′′(x) is continuous if it is continuous in x = 0, so we have to show

lim
x→0−

s′′(x) = lim
x→0+

s′′(x).

The left limit equals:

lim
x→0−

s′′(x) = lim
x→0−

−9

2
x− 9

2

= −9

2
.

The right limit equals:

lim
x→0+

s′′(x) = lim
x→0+

9

2
x− 9

2

= −9

2
.

So s′′(x) is continuous.
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(d) Evualuating s′′(x) in x = −1 gives:

s′′(−1) = −9

2
x− 9

2

∣∣∣∣
x=−1

=
9

2
− 9

2
= 0,

and evaluation at x = 1 gives

s′′(1) =
9

2
x− 9

2

∣∣∣∣
x=1

=
9

2
− 9

2
= 0,

so indeed s′′(x) = 0 in the end points.

(e) x = −1
2

lies in the left interval, so we need to perform the next calculation:

f

(
−1

2

)
≈ s

(
−1

2

)
= −3

4
x3 − 9

4
x2 +

1

2
x+ 2

∣∣∣∣
x=− 1

2

= −3

4

(
−1

2

)3

− 9

4

(
−1

2

)2

+
1

2

(
−1

2

)
+ 2

= −3

4

(
−1

8

)
− 9

4

(
1

4

)
+

1

2

(
−1

2

)
+ 2

=
3

32
− 9

16
− 1

4
+ 2

=
3

32
− 18

32
− 8

32
+

64

32

=
3− 18− 8 + 64

32

=
41

32
.
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