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Number of questions: This is an exam with 12 open questions, subdivided in 3 main ques-
tions.

Answers All answers require arguments and/or shown calculation steps. Answers without
arguments or calculation steps will not give points.

Tools Only a non-graphical, non-programmable calculator is permitted. All other electronic
tools are not permitted.

Assessment In total 20 points can be earned. The �nal not-rounded grade is given by P/2,
where P is the number of points earned.

1. We consider the following time-integration method

wn+1 = wn +
1

2
∆t (f(tn, wn) + f(tn+1, wn + ∆tf(tn, wn))) (1)

for the integration of the initial value problem y′ = f(t, y), y(t0) = y0.

(a) Show that the local truncation error of (1) applied to y′ = g(y) takes on the form

τn+1 = P∆t2 +O(∆t3),

and give a formula for P . (4 pt.)
Hint: y′′ = g′(y)y′.
Remark: Usage of the test equation in question (a) will result in zero points for
question (a).

(b) Demonstrate that the ampli�cation factor of (1) is given by

Q(λ∆t) = 1 + λ∆t+
1

2
(λ∆t)2.

(1 pt.)

(c) We consider the following system of linear di�erential equations :
x′1 = −3

2
x1 − 1

2
x2 − 1,

x′2 = −1
2
x1 − 3

2
x2 + 1,

x1(0) = 0,
x2(0) = 0.

(2)

Write the above system as x′ = Ax + b and derive the most strict upper bound
∆tmax for ∆t such that the application of (1) to (2) is stable for ∆t ≤ ∆tmax. (4 pt.)
Hint: The eigenvalues of A are real numbers.
Remark: Wrong eigenvalues will lead to a substraction of 1 point in question (c).

(d) Perform one time step by applying (1) to (2) with ∆t = 1. (1 pt.)
Remark: Using a di�erent method or solving a di�erent system will result in zero
points for question (d).
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2. We consider the following convection-di�usion boundary-value problem:
−y′′(x)− 3y′(x) = 1, x ∈ (0, 1],

y′(0) = 0,
y(1) = 1.

(3)

In this exercise we approximate the exact solution with a numerical method.

(a) The derivative y′(x) will be approximated by an upwind discretization U(∆x), for
which there are two candidates available:

U(∆x) =
y(x)− y(x−∆x)

∆x
, (4)

or

U(∆x) =
y(x+ ∆x)− y(x)

∆x
. (5)

Argue which candidate should be used and determine the order of this approxima-
tion. (11

2
pt.)

(b) Derive an O(∆x2) approximation Q(∆x) for y′′(x) which is of the form

Q(∆x) =
α1y(x+ ∆x) + α0y(x) + α−1y(x−∆x)

∆x2
.

(2 pt.)

(c) We solve the boundary value problem (3) using the �nite di�erences Q(∆x) and
U(∆x), after setting xj = j∆x, (n+ 1)∆x = 1, with ∆x as the uniform step size.

Derive the resulting scheme, including arguments, for an arbitrary internal node xj
and for all boundary nodes. (21

2
pt.)

Remark: Your choice for U(∆x) in question (a) and for Q(∆x) in question (b) will
not in�uence the points for question (c), if applied correctly.

3. We want to �nd an approximation of
√

3. Therefore we consider the �xed-point problem

x = g(x),

on the interval [1, 2], where the function g is de�ned as

g(x) = −1

3
x2 + x+ 1. (6)

In the next exercises you will prove that p =
√

3 is indeed the unique �xed point of g in
the interval [1, 2] and that for any starting value of p0 ∈ [1, 2] the �xed-point iteration

pn+1 = g(pn), (7)

converges to p =
√

3, and you will perform this �xed-point iteration.

(a) Show that p =
√

3 is a �xed point of the function g. (1
2
pt.)

(b) Argue why g is continuous on [1, 2]. (1
2
pt.)

(c) Show that 1 ≤ g(x) ≤ 2 for all x ∈ [1, 2]. (1 pt.)

(d) Find the smallest value k such that |g′(x)| ≤ k < 1 for all x ∈ [1, 2]. (1 pt.)

(e) Approximate p =
√

3 by calculating p1 and p2 with 4 signi�cant digits, given that
p0 = 2.000. (1 pt.)

For the answers of this test we refer to:
http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html


