DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

Examiner responsible: D. den Ouden-van der Horst

Examination reviewer: C. Vuik

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097TU WI3097Minor WI3197Minor AESB2210 AESB2210-18 CTB2400) Tuesday April 16th 2019, 13:30-16:30

Number of questions: This is an exam with 12 open questions, subdivided in 3 main questions.

Answers All answers require arguments and/or shown calculation steps. Answers without arguments or calculation steps will not give points.

Tools Only a non-graphical, non-programmable calculator is permitted. All other electronic tools are not permitted.

Assessment In total 20 points can be earned. The final not-rounded grade is given by P/2, where P is the number of points earned.

1. We consider the following time-integration method

$$w_{n+1} = w_n + \frac{1}{2}\Delta t \left(f(t_n, w_n) + f(t_{n+1}, w_n + \Delta t f(t_n, w_n)) \right)$$
 (1)

for the integration of the **initial value problem** $y' = f(t, y), y(t_0) = y_0.$

(a) Show that the local truncation error of (1) applied to y' = g(y) takes on the form

$$\tau_{n+1} = P\Delta t^2 + \mathcal{O}(\Delta t^3),$$

and give a formula for P.

(4 pt.)

(4 pt.)

Hint: y'' = g'(y)y'.

Remark: Usage of the test equation in question (a) will result in zero points for question (a).

(b) Demonstrate that the amplification factor of (1) is given by

$$Q(\lambda \Delta t) = 1 + \lambda \Delta t + \frac{1}{2} (\lambda \Delta t)^{2}.$$
 (1 pt.)

(c) We consider the following system of linear differential equations:

$$\begin{cases}
 x_1' &= -\frac{3}{2}x_1 - \frac{1}{2}x_2 - 1, \\
 x_2' &= -\frac{1}{2}x_1 - \frac{3}{2}x_2 + 1, \\
 x_1(0) &= 0, \\
 x_2(0) &= 0.
\end{cases} (2)$$

Write the above system as $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ and derive the most strict upper bound

 Δt_{max} for Δt such that the application of (1) to (2) is stable for $\Delta t \leq \Delta t_{\text{max}}$.

Hint: The eigenvalues of A are real numbers.

Remark: Wrong eigenvalues will lead to a substraction of 1 point in question (c).

(d) Perform one time step by applying (1) to (2) with $\Delta t = 1$. (1 pt.) Remark: Using a different method or solving a different system will result in zero points for question (d).

2. We consider the following convection-diffusion boundary-value problem:

$$\begin{cases}
-y''(x) - 3y'(x) &= 1, & x \in (0, 1], \\
y'(0) &= 0, \\
y(1) &= 1.
\end{cases}$$
(3)

In this exercise we approximate the exact solution with a numerical method.

(a) The derivative y'(x) will be approximated by an upwind discretization $U(\Delta x)$, for which there are two candidates available:

$$U(\Delta x) = \frac{y(x) - y(x - \Delta x)}{\Delta x},\tag{4}$$

or

$$U(\Delta x) = \frac{y(x + \Delta x) - y(x)}{\Delta x}.$$
 (5)

Argue which candidate should be used and determine the order of this approximation.

 $(1\frac{1}{2} \text{ pt.})$

(b) Derive an $\mathcal{O}(\Delta x^2)$ approximation $Q(\Delta x)$ for y''(x) which is of the form

$$Q(\Delta x) = \frac{\alpha_1 y(x + \Delta x) + \alpha_0 y(x) + \alpha_{-1} y(x - \Delta x)}{\Delta x^2}.$$

(2 pt.)

(c) We solve the boundary value problem (3) using the finite differences $Q(\Delta x)$ and $U(\Delta x)$, after setting $x_j = j\Delta x$, $(n+1)\Delta x = 1$, with Δx as the uniform step size.

Derive the resulting scheme, including arguments, for an arbitrary internal node x_j and for all boundary nodes.

 $(2\frac{1}{2} \text{ pt.})$

Remark: Your choice for $U(\Delta x)$ in question (a) and for $Q(\Delta x)$ in question (b) will not influence the points for question (c), if applied correctly.

3. We want to find an approximation of $\sqrt{3}$. Therefore we consider the fixed-point problem

$$x = g(x),$$

on the interval [1,2], where the function g is defined as

$$g(x) = -\frac{1}{3}x^2 + x + 1. (6)$$

In the next exercises you will prove that $p = \sqrt{3}$ is indeed the unique fixed point of g in the interval [1, 2] and that for any starting value of $p_0 \in [1, 2]$ the fixed-point iteration

$$p_{n+1} = g(p_n), (7)$$

converges to $p = \sqrt{3}$, and you will perform this fixed-point iteration.

- (a) Show that $p = \sqrt{3}$ is a fixed point of the function g. $(\frac{1}{2} \text{ pt.})$
- (b) Argue why g is continuous on [1, 2]. $(\frac{1}{2} \text{ pt.})$
- (c) Show that $1 \le g(x) \le 2$ for all $x \in [1, 2]$. (1 pt.)
- (d) Find the smallest value k such that $|g'(x)| \le k < 1$ for all $x \in [1, 2]$. (1 pt.)
- (e) Approximate $p = \sqrt{3}$ by calculating p_1 and p_2 with 4 significant digits, given that $p_0 = 2.000$. (1 pt.)

For the answers of this test we refer to: